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ABSTRACT

This paper proposes a formulation to provide necessary and
sufficient conditions for robust stability of a family of matrices
modeling linearized power system dynamics. A construction for
transforming variations in operating point into a polytope of
matrices for the linearized system models is derived. Sufficient
conditions to establish robust stability or instability of a polytope
are developed. Finally, an iterative "branch and bound" technique
is described that combines these tests to provide a necessary and
sufficient test for robust stability of the matrix polytope.

L. Introduction and Background

Power system planners face the problem of designing control
and operation schemes to ensure that the dynamics of the network
remain well behaved over a wide range of operating points. As
customer load levels vary, the system equilibrium moves quasi-
statically to track these changes; as a minimal requirement for
acceptable operation, the eigenvalues associated with the family of
linearizations about these equilibria should remain strictly in the
open left half of the complex plane. For example, bifurcation
phenomena associated with recent voltage collapse failures in
power networks have raised concerns that operating conditions
may evolve to a stage where the equilibrium disappears, indicating
that an eigenvalue of the linearized system has gone to the origin.
Computationally efficient tests to identify such undesirable
operating regimes, and to guarantee acceptable linearized dynamics
over a family of operating points, have become increasing
important in power system planning.

For the purposes of this paper, a set S of nxn real matrices
representing linearized power system dynamics will be classified
as "robustly stable" if for every A e §, the spectrum of A is
contained in the open left half plane. If there exists an A € S with
an eigenvalue having non-negative real part, the set will be
classified as unstable. This paper will first develop a dynamic
model and a method of parameterizing uncertainty in the operating
points for power systems such that the resulting set of linearized
dynamic matrices forms a polytope. An algorithm to classify the
resulting polytope as either robustly stable or unstable is then
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developed. The basic building blocks of the algorithm will be a
sufficiency test for establishing robust stability, and another for
establishing instability. Roughly speaking, the algorithm attempts
to "bound" a given polytope to classify it as robustly stable or
unstable. Should both tests fail, the polytope is halved, and the
algorithm "branches" to apply the sufficiency tests to the two sub-
polytopes. The nature of the tests is such that ultimately one or the
other must succeed when the sub-polytopes are sufficiently smatl.
The branching to create successively smaller sub-polytopes
continues until one proves to be unstable, or all can be
characterized as robustly stable.

IL. Polytope Parameterization for
Linearized Power System Models

A description of a set of linearized system matrices for a robust
stability test involves a trade-off between computational tractability
of the problem versus accurate representation of physical
phenomena that introduce uncertainty. The most significant
parameters influencing a power system operating point are
changes in aggregate load demand at distribution substations. A
straightforward approach might specify a set of possible system
loads as given data, and a hypothetical robust stability algorithm
could then compute the resulting family of operating points, the
linearized system dynamics for each of those operating points, and
test for acceptable eigenvalue locations in these linearizations.
Current utility practice approximates this approach, but with the
significant drawback that Monte-Carlo sampling among the
possible load vectors is used, often with some attempt at reducing
the cost of repeated eigenvalue computations for each of the
matrices for the resulting linearized dynamics [1]. The drawbacks
of such an approach include the obvious computational cost in
system models that can contain thousands of states, and the high
sensitivity of eigenvalue location to the system matrix elements.
Unless such tests are coupled with a measure of eigenvalue
conditioning to determine how "fine" a sample must be examined,
there is the risk that all sampled points may be prove acceptable,
while other operating points in the set yield linearizations with
unstable eigenvalues.

To ease the computational burden in the robust stability test,
the approach proposed here parameterizes uncertainty in a different
but physically meaningful way. Rather than taking bus power



injections as the uncertain parameters, this formulation will use the
voltage phase angle differences across each transmission line,
denoted as o, as the underlying uncertain parameters. We assume
that the given data will consist of upper and lower bounds on these
"line angles" over the range of operating points of interest. The
observant reader will note that by treating line angles as
independent uncertain parameters, a degree of conservatism will
be introduced in the analysis. For a network of { lines, basic
network theory implies that line angles cannot vary arbitrarily over
a hyper-rectangle in RY; indeed, KVL implies that the set of
possible line flows must lie in a lower dimensional subspace.
However, for computational convenience, we will accept this
over-bounding. Hence, the given data parameterizing uncertainty
in the operating point will be assumed to have the form:

ove lof o], k=12

The simple "classical” model for the power system dynamics
will be considered here. While practical application of robust
stability tests will typically focus on much more detailed
representations, this model is adequate to illustrate the components
of the system linearization affected by changes in operating point.
The classical model reflects the second order rotational dynamics
of each generator, as coupled through the transmission network.
The underlying dynamics are of the form inertia«{rotational
acceleration} = net torque. For readers not familiar with power
systems modeling, the key assumptions to recognize are that
voltage frequency of a generator is proportional to rotational
speed, and electrical power delivered is linearly related to torque.
Hence the dynamics can be re-written as {derivative of frequency}
= [inertia}‘l-[net power) and (derivative of voltage phase angle)
= (frequency). More precisely::

6=M" {Do+T @-f) } (12)

6=To (1b)
where

= bus frequencies,
o = bus voltage phase angles,
M = diagonal matrix of positive generator

inertia constants,
D = diagonal matrix of positive generator

damping constants,
f,(or) = power absorbed by network at bus i =

n

Db, sin(oy-04) + 00804

k=1

by = imaginary part of admittance linking buses i-k
gy = real part of admittance linking buses i-k
P, = mechanical power delivered to shaft of generator i

T= In-lxn-l
= _eT s

ee R e=[-1,-1,...,-17.

Note that the dependence of the linearization of (1) on changes
in operating point will be entirely determined by the structure of
the Jacobian of f, denoted here as J(a). In particular, the
linearization of these dynamics will take the form:

Mp -MITIw

™ 0

Note that M, D, and T are constant matrices that do not change
with operating point. While more detailed models will introduce
additional states with corresponding state equations, the variation
in the linearization with respect to changes in operating point will
almost always involve a block of the form (constant matrix)*J(c).

Recall that the goal in this formulation is to relate the
structure of J to the assumed uncertainty in line angles. The
approach exploits some standard concepts of basic circuit theory.
We associate with the power network a directed graph; each
transmission line is associated with a branch and each bus with a
node of the di-graph. The orientation of each branch can be
assigned arbitrarily. Let

A := incidence matrix for the reduced network [2].

The vector of phase angle differences across each line is then

given by:
o=ATa.

This confirms the earlier observation that a hyper-rectangle over
bounds the physically achievable line angle variations, because
these must lie in the range of AT,

With this notation, f(a) from (1) may be re-written as a

function of the line angles, i.c.

blsin(ol) _} glcos(cl)

bzsin(cz) gzcos(cz)
f(o) =A : +1al

b Qsin((s Q) g Qcos(c Q)

by =by =bji if branch k links bus i to j, zero otherwise;
8 = 8;j =8 if branch k links bus i to j, zero otherwise;
IAl denotes the matrix formed by taking absolute
value of each element of A.

The desired Jacobian expressed as a function of ¢ becomes:

blcos(cl)

b2cos(<52)

b Qcos(c Q)
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-glsin(cl)

-gzsin(cz)
+ |A|

-g Qsin(c 'Q)_l
2

The diagonal sine and cosine dependence in (2) indicate that a
hyper-rectangle in the space of line angles will not directly yield a
polytope set of Jacobian matrices. However, the simple form of
the dependence on the (bjcos(c;), -g;sin(c;)) pairs suggests an
approximation that will over-bpund the true set. The resulting
degree of conservatism will be small in cases where the
transmission line losses are small relative to the line susceptance
(e, g <<by). Let

Z; = bicos(0;) , zj4. g = -gjsin(oy), fori=1,2, .., L,

and

4
)
T
J@)=A A
%
zﬁ+1
Z!l+2
T
+ lal A
%

3

As each o; varies over an interval, the (bjcos(c;), -g;sin(oy))
pair maps to a curve in R%. Our approach will simply indentify
the rectangle for (z;, z ;) in R? that contains this curve. The
polytope of feasible z in R?4 will then form a hyper-rectangle,
denoted as Z. Since J(z) is linear with respect to z, the image
J(Z) will form a polytope. For the analysis to follow, it will
prove convenient to exploit this linearity to express J(z) as a
weighted sum of constant matrices Ji:

20 .
J(z) = Z z J
i=1

To express the family of system linearizations as a weighted
sum, it will prove convenient to expand the dimension of the
hyper-rectangle by one. This additional axis is contracted to a
degenerate interval of a single point, zp,; =1 The resulting
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20+1 dimensional hyper-rectangle will be denoted as Z (single
tilde). The family of linearizations becomes:
20+1 X
L(z) = Z z, L

i=1

@

where

. i
L‘=[0 M TJ:’hi:l,?,...ZJl; L -
o o

II1. Sufficient Condition for Robust
Stability of a Matrix Polytope

Given a polytope of matrices, the numerical analysis and
control systems literature documents a wide variety of sufficient
conditions for guaranteeing that each matrix in the polytope has all
eigenvalues in the open left half plane; see, for example, [3] and
the references therein. The test employed here is chosen to be
easily adapted to the model structure described above with low
computational cost. The price is a high degree of conservatism; a
polytope can easily fail the sufficient condition below, and yet all
the matrices in that polytope may be stable. For overall stability
algorithm to be proposed in Section V, the consequence will be
that a polytope may need to be divided into a larger number of
smaller sub-polytopes than would be necessary with a less
conservative test. However, the low computational cost for each
application of the test was judged to outweigh this potential
drawback.

The approach for establishing stability employes a simple
matrix norm bound on eigenvalue perturbation. Let zf 4
("™ +z"™/2 represent the center point of each of the given
intervals in z, and L(zC) the corresponding linearized system
matrix. L(z€) is assumed diagonalizable, so there exists a
He Cnxn guch that H'IL(ZC)H = diag(k;). Moreover, L(z°) must
be stable (if not, the polytope is obviously classified as unstable),
with "minimum stability degree” defined as

8 = - max Re{(L(z))}.
Exploiting the linearity of L(z) in (4), one has

L(z) = L(z°) + L(z-2°)
{o M.]TJ(z—zc)—‘

Lo U

The following Lemma bounds the norm variation in L as z

= L% +
5)

varies from the "center" point,

Lemma 1
- z")ll1
T -1 c c
. . e -z + -
<a-la’ll) - max M, {fgjaéa(zl 7))+ max (g 29



Proof
From the definition of J(z) in (3) it follows that

s, <llall . {lmax PARS

: max_ |z }-”AT” .
<i<f 20 1

2+1<j<

Observing that IIAH1 = ||T||1= 2 by construction, the result
follows immediately from (5). |

Proposition 2 below provides an easily computed sufficient
condition for robust stability of the matrix polytope L(Z).

Proposition 2
If 8g/4

T . -1. o ¢ -l -1
<lla ”1 frgl?énMi {]tgjasxﬁ(zj zj )ténkgn(zk zk)} IH“l”H ”l

then the matrix polytope L(Z2) is robustly stable.

Proof
This follows directly from Lemma 1 and an eigenvalue
perturbation result due to Bauer and Fike, reported in [4],
pp. 87-88. | ]

Note that given a fixed center point L(z°), if L(z°) is stable,
and the hyper-rectangle 2 is sufficiently small, the hypothesis of
Proposition 2 must hold. This will prove important in considering
the convergence of the algorithm proposed in Section V.

IV. Sufficient Condition for Matrix
Polytope Instability

If L(z€) is stable, there exists a point§ & 2 such that L) is
unstable, it follows by continuity arguments that there exists a
Z € 2 such that L(’z\) has an imaginary eigenvalue j®, with
corresponding eigenvector v = a+jb. To locate this Iz\ consider
an augmented 2nx2n matrix function L(z, ®), defined as

It will prove convenient to again expand the vector z and hyper-
rectangle 2 to include o as its 2 0+2 component, with L24+2
defined as the constant skew symmetric matrix multiplying @
above. The new 22+2 dimensional hyper-rectangle will be
denoted 2. An interval for the @ axis of Zcan be easily calculated
by bounding the largest spectral radius expected for matrices in the
original L(Z). Letting

x &1aT, pTT,
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it follows that the polytope contains a matrix having jo as an
eigenvalue if and only if there exists a ze Zand a xe R,
x # 0, such that L(z)x = 0. Establishing instability through this
rank test is similar to the guardian map concept of [5], though the
dimension of the augmented matrices is considerably smaller in the
approach given here. From the rank test a condition for instability
may be obtained as the solution to an optimization problem.
Given L(z°) is stable, the matrix polytope L(2) is unstable if and
only if

i A Ty T _
e i, 9@ D EXL @LEX = 0.

In the construction above, note that there will exist constant
matrices Ni , i = 1,2, ... 2n with the property that

2042 2n

ZZiLiX = zxiNiz 4 Nx)z .

i=1 i=1

The objective function therefore has the attractive property of
being quadratic in the x and z variables individually. While this
does not make the overall objective function convex in (x, 2), it
does suggest that local minima may be located by alternately
minimizing with respect to one variable while the other is held
fixed.

If this "alternating minimization" approach is to yield a local
minima for the full cost function, it must be true that if the
necessary Kuhn-Tucker conditions for minima are satisfied with
respect to X and z individually, then the corresponding condition
(gradient of cost orthogonal to tangent space of constraint
manifold) for the overall problem is satisfied. To establish this
result, the following notation is developed. Let &, 7 ) be a
"candidate” local minimizer. The function g,: R2"—R will
denote the egnality constraints on X; ie., g;(x) Lxll -1=0.
Let g,: R2 4+2_R™M denote the inequality constraints active at ’z\
For simplicity, we will assume that Z is not a vertex of the hyper-
rectangle Z, so the constraints have a well defined tangent space at
the point ()\(, z ). We partition the composite vector &, z ) as
independent variables ﬁ, and dependent variables W. The
component W will have dimension equal to the number of active
constraints in g,, plus one for the g, constraint.

The proposition to follow will use the reduced gradient [6].
Note that the selection of the dependent variable vector w must be
such that

Jg
det <E- @, @) =0.

For the g's defined here, this implies that one component of W
must be chosen from among the elements of X, say Xy, while the
remaining components of w are selected from elements of z.
Assume that these components are ordered in w with the xy

element first and z elements following. Similarly, assume that the



first 2n-1 components of u correspond to elements of x, followed
by components corresponding to z. Let

RGO (x, 2 £ "Full" reduced gradient =

-1
EoY @.[L&J dg
ou ow [Ow] oJu

Next, consider the reduced gradient associated with the
optimization problem in x alone, when z is held fixed. For this
problem, only the g,(x) constraint is considered. Let Uy and
W(x) denote the vectors obtained by retaining only those
components of the independent and dependent variables
corresponding to X terms (note that W(x) Will be a scalar). The
notation RG]y will be used to represent the reduced gradient in
this case, with

-1

g 9
9% a9 1 81
RG], = <2 . 9% |1
(x) 3u(x) aw(x) Law(x) | au(x)

Similarly, for the optimization problem in z alone, with x held
fixed, let u(;) and w(;) denote the vectors obtained by retaining
only those components corresponding to z terms. Then

-1
o0 |8 | O
aw(z) Law(z) ] au(z)

an
du 2

RGO,y =

The desired result can be summarized in the following
proposition.

Proposition 3
A A
If RG[8) (X, Z) = 0 and RG[)(z)(X, ) = 0, then
A
RGO x, (%, 2) = 0.

Proof
This result follows directly from the definition of the
reduced gradient in each case, and the fact that for the
“full" set of constraints, the partial of g with respect to w
then has a block diagonal structure,

,—g%(ﬁ) 0 _}

Jg
0o B
L =2

To exploit this result and provide a sufficient condition for
instability of the polytope, the following "conceptual” algorithm is
suggested:

dg -
o &, 9=

0) Given feasible points x9, lx0ll =1, and z°¢ z, with L(z%)
assumed stable (again, if not, the polytope is trivially classified as
unstable). Initialize index i =0.
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While { RG[0](y)(x', 21) # 0 or RG[0](,)(xi, 21) # 0}, do
{ .
1) With zi fixed, solve for xi*! to minimize:

min xTLT(zi)L(zi)x
lixll = 1

(note that for the Euclidean norm on x, the solution is
obtained directly from the singular value decomposition
of L(z));

2) With xi*! fixed, solve for zi*! to minimize:

min ZTNT(xi+1)N(xi+1)z
z€Z

3i=i+1

If this algorithm terminates, Proposition 3 ensures that the
resulting ()} z ) point will satisfy the necessary condition for a
local minimum of the overall optimization problem. If the cost
function reaches zero at this point, or if L(z®) is unstable at the
outset, the polytope is unstable. If the algorithm fails to
converge, or reaches a point with cost greater than zero, no
conclusion can be drawn. However, the attractive feature of this
algorithm is the simple nature of the optimization to be performed
at steps 1 and 2. Step 1 is directly solvable from a singular value
decomposition, while step 2 can be formulated as a standard
quadratic program.

As in the test of Section I, an important issue relating to this
algorithm is its performance as the polytope in question gets
sufficiently small. Suppose ()\(, 2) is a feasible point at which ¢
achieves its global minimum of 13()\:, /z\) = (0. We will assume that
there exists a neighborhood of ()\(, 2) with the property that any
initial (x0, 20) selected from that neighborhood will converge to
(Q, ,z\) under the algorithm above. Without specifying in detail the
optimization schemes to be used at steps 1 and 2 above, this local
convergence condition cannot be formally proven here. However,
it represents a reasonable minimum requirement for an iterative
optimization scheme applied to a C* objective function. It will
guarantee that for a sufficiently small hyper-rectangle z, if the
polytope L(2) contains a matrix having imaginary axis
eigenvalues, then the algorithm above will converge to a point
having zero cost and classify the polytope as unstable.

V. Branch and Bound Robust Stability Test

Given sufficiency tests for robust stability and instability of the
matrix polytope, an overall necessary and sufficient test can be
obtained by combining these in a "branch and bound" framework.
Given data will consist of a hyper-rectangle Z, and corresponding
Li'g describing a matrix polytope via (4). Consider a logical
function Z5(Z) that returns "true” if the polytope is robustly
stable, and "false" if it is unstable. Using the tests outlined in
sections IIT and IV, the following algorithm defines this function

recursively:



If the polytope L(Z2) satisfies the sufficient condition for
robust stability of Section III, then Z5(2) = “true;"

else
if the polytope L(2) satisfies the sufficient condition for
instability of Section IV, then T5(2) = "false;"

else
create new hyper-rectangles zA and ZB by halving the
longest axis of Z, and let
T5(2) = T5(z*) and TS(Z).

Note that at each "branching” step, the hyper-rectangle is
halved along its longest axis. This ensures that for any >0, a
sufficient number of branching steps will produce hyper-
rectangles with all axes less than € in length. Given the
observations at the ends of Sections III and IV, once the hyper-
rectangles are sufficiently small, one or the other of the tests is
guaranteed to yield a definitive conclusion for each corresponding
matrix polytope.

More interesting is the computational cost of such an
approach. In the worst case, the cost of computation can
obviously grow exponentially. However, the test for instability
offers the possibility for considerable computational savings, since
if any one sub-polytope yields an unstable point, the algorithm
terminates. Initial computational experience with a similar
formulation [7] has proven promising for a number of matrix
polytope test cases. The optimization successfully identified
marginally stable matrices (i.e., the algorithm terminated at a zero
cost point) in all unstable polytopes tested, without the need to
divide these into smaller sub-polytopes. However, the test cases
examined were of small dimension, and hardly exhaustive. A
thorough computational test of the proposed algorithm applied to
power system examples of reasonable dimension awaits further

research efforts.

VI. Conclusions

This paper has proposed a formulation representing a family of
linearizations in a power system dynamic model as a polytope of
matrices. Using this polytope structure, a simple sufficient
condition for robust stability of the matrix polytope is developed.
Also, an optimization scheme is proposed to provide a sufficient
condition for instability of the polytope. These two tests are
combined in a branch and bound algorithm that divides the
polytope into smaller and smailer sub-polytopes, repeatedly testing
for instability or robust stability. The algorithm terminates when
any sub-polytope proves unstable, or when all sub-polytopes
prove robustly stable. While the algorithm awaits further tests to
ascertain its average computational cost in practice, the initial

experience appears promising.

3027

References

[1] N. Uchida and T. Nagao, "A New Eigen-analysis Method of
Steady State Stability Studies for Large Power Systems: S Matrix
Method," IEEE Trans. on Power Systems, vol. 3, pp. 706-714,
May 1988.

[2] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and
Nonlinear Circuits, McGraw-Hill, New York, 1987.

(3] B. R. Barmish and C. L. DeMarco, "Criteria for robust
stability of systems with structured uncertainty: A perspective,"”
Proc. 1987 American Control Conference, pp. 476-481,
Minneapolis, MN, June 1987.

[4] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford
University Press, London, 1965.

[5] L. Saydy, A. L. Tits and E. H. Abed, "Robust Stability of
Linear Systems Relative to Guarded Domains," Proc. 27th Conf.
on Decision and Control, pp. 544-551, Austin, Texas, 1988.

[6] D. Luenberger, Introduction to Linear and Nonlinear
Programming, Addison-Wesley, 1973.

[7]1 C. L. DeMarco, B. R. Barmish, and S. J. Saleh, "A
Computational Approach to Establish Instability of a Polytope of
Matrices," Memorandum no. ECE-88-11, Department of Electrical
and Computer Engineering, University of Wisconsin-Madison,
May 1988.



