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Volterra Series: Engineering Fundamentals
Stephen P. Boyd
ABSTRACT

In the last century engineers have achieved great success in the analysis, control, and design
of circuits and systems which are linear and time-invariant . For such systems we have the con-

volution formula for the output y(t)in terms of the input u (¢) to the system:

y(t)= [a(u(t-ndr (1)

A Volterra series ezpansion is a representation for nonlinear systems analogous to (1):

y(t)=ho+ .if s fha(ry, ..o T )u(t-n)u(t-r)d . d, (2)
The purpose of this thesis is to address some fundamental engineering issues surrounding the
Volterra series (2). These issues are:
(1) When does (2) make sense and what ezactly does it mean?

We show that (2) can be interpreted as a Taylor series, and so it is not surprising that (2)
makes sense for inputs u smaller than a positive number which has the interpretation of the
radius of convergence of the Volterra series (2).

(II) For what nonlinear systems is the ezpansion (2) appropriate?

Unlike (1), which is valid for essentially all linear time-invariant operators arising in
engineering, the Volterra series expansion (2) is only appropriate for some nonlinear operators.

We show that it is appropriate precisely for those operators with fading memory .
(I11) How can the kernels h, be measured in the laboratory?

Measuring the kernels by classical methods is extremely slow. We develop a new quick

method for measuring the kernels and apply it to various real systems.
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List of Symbols

Meaning

(tE€R|120}, {tER|t <0}

{2€ C|Res >0}

{-101,---}, {012 -}, {- --2-10}, {1,23- - -}
Zero-centered open ball of radius p, {z|||z]| <»}.

Bounded (signed) measures on R}, with norm ||u|| & [ dlul.
R}

Bounded functions on R,t with norm ||u||&sup{|u(t)||t ER }.

Integrable (square-integrable) functions on R}, with norms

llullh& [ |u] and [jull.2( [ u?)"2
R} R}

Bounded sequences on Z (Z ., Z_), with norm ||u||ésu:p|u(k)].

Summable sequences on Z (Z ., Z_), with norm ||u||,.4.2|u(k)|
;

Square-summable sequences on Z (Z ., Z_), with norm

IIHIIzQ-(Zku(k)Q)"“’-

Subspace of L™ consisting of continuous functions (supported on |a,b]).

t Tecbnically, equivalence classes of essentially bounded functions agreeing off a set of measure gero. We will

not be so precise in the sequel.






Chapter !

Introduction and Overview

1. Overview

In the last century engineers have achieved great success in the analysis, control, and design
of circuits and systems which are linear and time-invariant. For such systems we have the con-
volution formula for the output y(¢) in terms of the input u(t) to the system:

y(t) = [h(Du(t-n)dr (1)

If the input u to such a system is 27w -periodic, we have the frequency-domain formula

¥(m) = H(jum)i(m) (2)
expressing the Fourier coeflicients of the output in terms of the Fourier coefficients of the input.

In this thesis we wili study Volterra series, a representation for nonlinear systems analogous

to (1):

¥ =hot+ S [ [halr - o 7a)ult=r)..u(t-ry)dr...d7, (3)

n=1]

Corresponding to (2) we have the formula

m)= 3 (o S, [ bRk k) (1)

n=l} k;+ +k=m

which expresses the Fourier coefficients of the output in terms of the Fourier coeflicients of a
27w l-periodic input.

The purpose of this thesis is to address some fundamental issues surrounding the Volterra
series (3).

Our first topic in chapter 2, Analytical Foundations, is, what ezactly do we mean by equation
(8)? Just as equation (1) can be interpreted in several different ways, so can (3). But the precise
interpretation of (3) is more complicated than that of (1)- we will see, for example, that the Vol
terra series (3) is in general meaningful only for signals bounded by a certain number which we

call the radius of convergence of the Volterra series (3).
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(3]

We then carefully derive formulas for the kernels A, of various system interconnections.
Here our observation that Volterra series can be interpreted as a Taylor series helps us make
sense of these (admittedly awful) formulas. We close chapter 2 by applying these arguments to

show that a simple dynamical system has a Volterra series description.

In chapter 3, Frequency Domain Topics, we study the formula (4), which undoubtediy
appears complicated and strange to the reader. In fact it is complicated; it is not always true,
and indeed it does not always make sense. Our two main objectives in chapter 3 are, first, to give
an intuitive interpretation to the formula (4), and, second, to give some simple conditions under
which it holds. At the end of chapter 3 we present two applications of the material, the first
related to a question involving modeling nonlinear devices; the second concerns linearizing a non-

linear operator with a nonlinear compensator.

Chapter 4, Approzimating Nonlinear Operators with Volterra Series, is motivated by the fol-

lowing fundamental question:

When can a system be represented by the Volterra series (8), that is, for what systems is
the Volterra series representation appropriate?

The answer to this question depends on what we mean by represent. Suppose our system is
described by a circuit with ideal circuit elements, a block diagram of simple operators, or as a
finite-dimensional dynamical system, with the property that it determines an input/output opera-

tor N from one function space to another.

We might ask, is V given ezactly by a Volterra series operator, that is, are there kernels &,

such that for the inputs u of interest we have

00
Nu(t)=ho+ Y -+ [ha(ry, . .., 70)u(t-n)...u(t-r,)dny...d7,
n=l
The answer to this question is quite often yes. The interconnection formulas of chapter 2 can
sometimes establish this; for the general case we refer the reader to the work of Sandberg.!:2:3
Very roughly speaking, the requirement is that the nonlinearities which describe N are analytic,
that is, have a power series which converges at least for small arguments. For a circuit we would

require the constitutive relations of the various elements to be analytic; for a dynamical system
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we would require the vector field to be analytic.t

Thus our question is answered, but the answer is not really in terms of direct engineering
significance. We would not ask a technician to check whether the V- curve of some device is
analytic, as opposed to merely infinitely differentiable, since all modeling of real systems applies
only within a certain precision, for a certain set of input signals. Thus we are led to a different

question: when can an operator N be approximated within some precision ¢ over some useful set

K of signals by a Volterra series operator N, that is

Ny - Ryl <
for all u € K? This is the topic of chapter 4.

The answer is simply that N must have feding memory, which makes good engineering

sense. Thus we may answer our (modified) question:
The Volterra series representation (S) is appropriate for systems with fading memory.

One important comment: while the class of systems with fading memory is a very wide class
of systems, it is by no means all the nonlinear systems important in engineering. To give one
example, dynamical systems with several stable equilibria do not have fading memory. Thus the
scope of Volterra series is a strict subset (it could be argued, a very strict subset) of the nonlinear
systems arising in engineering. This is in marked contrast to (1), which suffices to describe all the

linear time-invariant systems of engineering.

In chapter 5, Measuring Volterra Kernels, we show that the Volterra kernels can actually be
measured in the laboratory, though of course the measurements are not so simple as those of a

linear system (1).

2. A Comment

Perhaps the most obvious difference between (1) and (2) and their analogs (3) and (4) is that

(3) and (4) are much more complicated. This greater complication persists throughout our study

t Analyticity is not the only requirement; for example the dynamical system y(¢)—=-y(f)®+ w(t) can be
shown mof to have an exact Volterra series representation.
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of Volterra series. Where equations (1) and (2) are simple to interpret, equations (3) and (4) are
quite tricky; where the representation (2) is easy to manipulate, we will see in the next chapter
formulas for Volterra kernels which fill two lines. Where (1) and (2) are appropriate for all linear
time-invariant systems in engineering, the Volterra series representation (3) is only appropriate for
some nonlinear systems. This greater complication is not due to the representation (3), but

rather to the vastly more complicated behavior of nonlinear systems over linear systems.

3. Contribution of This Thesis

The material of chapter 2 is classic. Informal expositions of this material can be found in
the early MIT work on Volterra series*® or Rugh’s book,% and the results could be rigorously

derived from the work of Sandberg.l:2

The material of chapter 3 is mostly new, though it overlaps the work of Sandberg, particu-
larly his work on almost periodic forcing functions.” The observation that the frequency domain
formula (4) above does not always make sense, and the conditions under which it holds, are new,
as are the applications presented in the last two sections of chapter 3. Chapters 2 and 3 are

based on the paper:

S. Boyd, L. O. Chua, and C. A. Desoer, Analytical Foundations of Volterra Series, to
appear, IMA Journal of Mathematical Control and Information, Oxford University
Press, (also UCB/ERL memo M84/14).

§6 of chapter 3 comes from the papers:

S. Boyd and L. O. Chua, Uniqueness of a Basic Nonlinear Structure, JEEE Trans. Cir-
cuits and Systems, CAS-30 #9, Sept 1983, p648-651 (also UCB/ERL memo M83/8).

S. Boyd and L. O. Chua, Uniqueness of Circuits and Systems Containing One Non-
linearity, Math. Theory of Networks and Systems Conf. Proc. Lecture Notes in Control
and Information Sciences vol. 58, p101-119, June 1983. To appear in IEEE Trans. on
Automatic Control, TAC-30 #7, July 1985 (also UCB/ERL memo M83/30).

All of the results of chapter 4 are new, though the topic of approximating nonlinear opera-

tors with Volterra series operators is an old one. Chapters 4 is based on the paper:

S. Boyd and L. O. Chua, Fading Memory and the Problem of Approximating Non-
linear Operators with Volterra Series, submitted to IEEE Trans. Circuits and Systems,
(also UCB/ERL memo M84/96).
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Most of the techniques presented in chapter 5 are new, especially the quick method of
measuring the second kernel and the idea of choosing the phases in the probing signal so as to

minimize its crest factor. It is based on the paper:

S. Boyd, Y. S. Tang, and L. O. Chua, Measuring Volterra Kernels, JEEE Trans. Cir-
cuits and Systems, CAS-30 #8, August 1983, p571-577 (also UCB/ERL memo M83/7).






Chapter 2

Analytical Foundations

In this chapter we carefully study the analysis involved with the formal Volterra series (0.1):

Nu(t) = hy + if...fh,,(rl,...,r,,)u(t—rl)...u(t—f,,)dr,...dr, (0.1)

Our first topic is the interpretation of (0.1). For example, what are the kernels 4,, ordinary
functions or distributions? When do the integrals and sum in (0.1) make sense? What restrictions
are there on the input signal u? There are many ways to answer these questions, depending on
what systems we will model with the Volterra series (0.1) and what we propose to use the model

for.

If we intend to design controllers for nonlinear dynamical systems, for example, (0.1) should
be able to model unstable systems which have some smoothing (roughly speaking, are strictly
proper). In this case the kernels might be taken to be continuous functions supported on the posi-
tive orthant R]. The inputs could then be restricted to be continuous or piecewise-continuous
functions supported on R, and such that the integrals and sum in (0.1) converge absolutely.

This is a common interpretation of (0.1).

On the other hand if we intend to model systems which, roughly speaking, are stable, but
need not have any smoothing effect (example: memoryless nonlinearity), then another interpreta-
tion of (0.1) is more appropriate. This is the formulation we will develop. In fact, it is not
difficult (just cumbersome) to extend or modify the following to apply to unstable or multi-input

multi-output systems.

After stating in detail what we mean by (0.1), we examine some elementary properties of
Volterra series operators, such as continuity and differentiability. We will show that they can be
interpreted as Taylor series, and so are analogous to ordinary power series. This analogy guides
the rest of the chapter. For example, we prove the Uniqueness theorem, which asserts that two
operators of the form (0.1) (with symmetric kernels) are equal if and only the corresponding ker-

nels are equal (cf. ordinary power series).
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We then prove some well-known formulas for the kernels of various "system interconnec-
tions”. We give an elementary and complete proof of the Inversion theorem for Volterra series,

and work through an illustrative example.

1. What are the Kernels?

In most treatments the kernels k,(r,,...,7,) in equation (0.1) are interpreted as functions
from R” to R. Unfortunately this interpretation rules out some operators common in engineer-

ing. We start with two examples:

Example 1:

and z(0)=0. Then fort >0

2

t
y(t) = {{e"u(l—r)dr}
=ff1(r1)l(72)c_(1‘+'2)u(t—r,)u(l-rz)drldrz
where
02y (29

Hence this operator has a Volterra series description with just one nonzero kernel,

holruts) = 1(r)1(rg)e 72

This kernel h, is an ordinary function :R?— R.

Example 2:

and z(0)=0. Here

y(t) = _!;e"u(t-f)zdr =

=[f Un)Urg)e S(r-r)u(t-ny)u(t-r;)drdr,

if you will condone the notation. So here the kernel A, is not a function as it was in example 1
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but a measure supported on the line r,=r7,, informally given by

hAri,10) = 1(r))1(rz)8(ry-rp)e

These example; are typical- in general the Volterra series of dynamical systems with the
vector field affine in the input u (e.g. bilinear systems) have kernels which are ordinary functions
whereas in other cases more general measures may be necessary.89.10.3 Ip the latter case Sand-
berg has called the series "Volterra-like”.3 §A1 contains an in-depth discussion of Volterra-like
series.

A less exotic but widely occurring nonlinear operator whose description requires kernels

which are measures is the memoryless operator

y(t) = f(u(t))

where f:R—R is analytic near 0.

We will allow our kernels to be measures. We will see that the analysis is no harder, and

the resulting theory then includes all the examples above.

2. When the Serles Converges

00 .
Recall that the ordinary power series g(z)= Y a,2" converges absolutely for |z| <p, where
n=0

the radius of convergence is given by p=(limsup[a,.|’/ *)L. Similarly a radius of convergence p
=00

can be associated with a formal Volterra series

Nu(t) = y(t) = ho + gj e [ ha(ryeta)u(E=ry)ont(t=7, )d 1y d T, 2.1)

such that the series will converge for input signals with |u(¢)] < p.
More precisely, let B(IR}) be the bounded measures on R} (R, A& {r|r>0}),+ with
|l#}| = [d|u|. For convenience we will write elements of B(R.) as if they were absolutely con-
tinuous ("Physicists’ style”), e.g. hy{dn,d,)= §r—r,)e ‘dr,dr,. For signals Il || will denote the

co-norm, i.e. |Ju||= ||u”°°.A=51:p| u(t)).+4

t We thus consider only causal operators, but in fact all of the following holds for kernels which are bounded
measures on [R".
tt An excellent reference on bounded measures and these norms {and analysis in genenal) is Rudin's book
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Definition: By a Volterra series operator we will henceforth mean an operator given by equation

(0.1) above and satisfying assumptions
(A1) hy€ R, b, € B(R}]), and

(A2) lim sup||h,]|/" <oo, that is, {||h,]|"/"} is bounded.
n—00

Our first task is to determine for which u’s equation (2.1) makes sense.

Definition: If N is a Volterra series operator with kernels A,, we define the gain bound function

o0
of N to be, for >0, f(z)&|ho|+ Y ||hal|z" (with extended values, that is, f(z) may be o).

n=]

The radius of convergence of N is defined by p=RadN & (lim sup]|4,||/")™.

Assumption (A2) implies that p>0 and that the gain bound function f is analytic at 0, with
normal radius of convergence p. Since all the terms in the series for / are positive p is also given
by p=inf{z|f(z)=0cc}, a formula which will be useful in §3. We can now say when (2.1) makes
sense:

Theorem 2.1 (Galn bound theorem):
Suppose N is a Volterra series operator with kernels 4,, gain bound function f, and radius of
convergence p. Then
(I)  the integrals and sum in equation (2.1) above converge absolutely for inputs with ||uf|<p,
that is, in B, the ball of radius p in L.
(I) N satisfies ||Nu]| < f(||¢]]) and consequently N maps B, into L™.
(I1) is partial justification for naming f the gain bound function, we’ll soon see more.

Theorem 2.1 is well known (in various forms).6.12.8,13,14,10,15,1

Proof:

f R f|h,,(r,,...,r,,)u(t-r,)...u(t—r,,)|dr,...df,, < ikl iull®

In particular, the integrals make sense. If ||u||< p, then

{11).
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[ho| + i [ - [halryera)u(t-ny)...u(t-1,)dr...d7, |

< lhod + B[ e [ halritn)u(t=r)et(t=1a) | drpd s

ne=]
00
<kl + X liaallllull® = £(lfu]]) < o
==l
which establishes absolute convergence of the series and the gain bound in (II). []

For convenience we adopt the notational convention that throughout this chapter N will
denote a Volterra series operator with kernels A,, gain bound function f, and radius of conver-

gence p.

The Gain Bound theorem has many simple applications. For example, the tail of the gain

bound function gives a bound on the truncation error for a Volterra series.
Corollary 2.2 (Error Bound for Truncated Volterra Serles):

The truncated Volterra series operator defined by

NO() A hy + th coo bty )u(t-ny)u(t-r,)dry...d1,

n m=x]
satisfies
t) S
INe - NOu)| < % [iaallllull”
ne=t+4 1

which is o(||u]|*). Thusif ¥ ||A,||M" is small, the operator N is well modeled by the trun-
ne=t41

cated Volterra series operator N*) for inputs whose peaks do not exceed M.

3. Elementary Properties: Continuity

We will now show that N is continuous on B, and Lipschitz continuous on any B,, r <p.

Lemma 3.1: Suppose ||u||+ ||v]| < p. Then

IN(u+ o -Nu)lE < £(lsll+ o=/ Alsl) < 7 Alull+ e lDiell

Proof: Assume ||u||+ ||v]|<p. Then |ju+ v||<p so N(u+ v) makes sense and

| N(u+ v)(t)-N(u)(t)] < (3-1a)
< if o [ Ba(rents) Il(u+ v)(t—r,)—ﬁlu(t—r,)} dry..dr, (3.1b)
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< S1nIE (sl liol G.1c)

= S tmlifdrt+ ety sl (3.1d)
n =y

= (lull+ llolD -7 (lu]) (3.1¢)

This technique will recur so careful explanation is worthwhile. In (3.1b) the first product, when
expanded, has 2" terms; the second product is precisely the first term in the expansion. Replac-

ing the remaining 2"-1 terms by their norms and integrating yields (3.1c).

The final inequality in lemma 3.1 follows from the mean value theorem, since

£l + 1lelD-rAlsll) = £ (Nl

where ||ul|< ¢<||u||+||v]| and f' is increasing. Thus f' can be interpreted as an incremental
gain bound function for N.[]

Theorem 3.2 (Incremental gain theorem): Let B, be the ball of radius r in L™, and suppose
r < p. Then

(I} N:B, — By, is Lipschitz continuous,

(I) N:B,— L% is continuous.

Proof: Suppose u and v are in B,. From the Gain Bound theorem

INu - Noll < f([«]l) + f(lv]]) (3.2
We claim that

| Nu - Nof| < f([fw-v]l+ |Io]l) - £(l2l]) (3.3)
For |lu-v||+||v]| < p (3.3) is simply lemma 3.1; for ||u—v||+ ||v]] > p (3.3) is true since its right-

hand side is co. From (3.2) and (3.3) we deduce

|INu-No| < min{ £ ((lu-sll+ lloll)- £ (o), £ (lull)+ 71D}

ot L u=vl)=F () 27(r) .
< llu-ofpminf L0 B0 < gu-yy

where K is the max of the expression min{ - - - } for 0<||u-v||<2r and is finite. (K is in fact

2f(r)/(f (31 (r))-r): see figure 1). This establishes (I); since (I) is true for any r < p (II) follows.

O
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!
\\ 'p'
\\ Ii—:':f(""ﬂu-vn)—f(r)
\ A T
/z/'\\ A
|
"2f-(r)II A \,I : Kg 26(r)
Y I £ (3F(r))-r
!
' |
f'(r) :
i £
! r
!
o P-r 2r
Ju-v]
figure {

We will soon see that N is much more than merely continuous; for example, N has Frechet
derivatives of all orders on B,. But before moving on, we present an extension of the last

theorem which will be important in the next chapter.

Recall that for linear systems y=~h,# we have the result Null, < Isdlllull,, for
1<p <0.18 It turns out that when properly reformulated the Gain Bound theorem and the
Incremental Gain theorem are also true with general p-norms. First some warnings for p <oo: a
Volterra series operator need not be defined on any open subset of L” (e.g. Nu(t)=u(t)/(1-u(t))),
and even when it is, it need not map L” back into L” (e.g. Nu(t)=u(t)?). For more details and

discussion we refer the reader to §A2.

Theorem 3.3 (Galn Bound theorem for L”): Suppose hy=0. Then for 1 <p<L™

INall, < nun,’—,‘{{}“lﬁ

(unmarked norms are co-norms).
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Even though our next theorem is stronger, we give the proof here to demonstrate the basic

argument.

Proof:

o)) < [ - I balriyesma)u(t-y)...u(t=1,) ] d7y...d7,

< ||u||"-‘f{f - --j|h,,(r,,...,r,,)|drz...dr,,}|u(t-rl)|dr1 (3.4)
Now the bracketed expression in (3.4) is a measure in 7; with norm ||4,||, hence using the result

for linear systems cited above we have!$

luall, < Wull™ Aa 11,
Thus

lINu]], < i lsnlly < Hutly 35 1nalllul*™ = II“IIP-JUL’ﬁJ]; !

which establishes theorem 3.3. [J

Lemma 3.4:

+ —_
¥+ )= Nl < foll, ZUEMAMTAD < gy, 7o grais oy
The proof combines the proof above with the proof of the Incremental Gain theorem and is in
§A2.
Theorem 3.5 (Incremental Gain theorem for L?): Let B, be the ball of radius r in L®, with

r < p. Then there is a K such that

[INu-Nv|l, < K|[u-v]],

Note that here the Volterra series N may have a nonzero Oth order kernel h, The proof of

theorem 3.3 is identical to that of theorem 3.2 and so is omitted.

4. Multilinear and Polynomial Mappings
This section contains mostly background material for the next section and may be skipped
by those familiar with the topic. There are many good references on this material, both in

mathematics!” 18 and engineering.!9 20
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Note that the nth term y, in a Volterra series is homogeneous of degree n in the input u.
Indeed much more is true; it is a polynomial mapping in u.
Definition: Let V and W be vector spaces over R. Then M:V"— W is said to be multilinear or

n-linear if it is linear in each argument separately, i.e. if

M(vy,...v,+ aw,..v,) = M(vy,..v,,..0,) + aM(vy,..w,...v,)
Example 1: V=R", M(v,,v,)=vlAv, A € R""
Example 2: Let V=W =L®, b € B(RZ) and

M(uy,uy) = ff"(71,7'2)“1(‘"Tx)uz(‘—fz)dﬁdfz

Definition: Let M:V" — W be n-linear. Then a map P:V—W of the form

P(v) = M(v,...v)

is said to be an n-order polynomial mapping.
Example 3: Let V=W =L®, h € B(R}) and
P(u) = ffh(r,,rz)u(I—rl)u(t—rz)dr,drz
And in general the nth term of a Volterra series operator is an n-order polynomial mapping in
the input u.
Theorem 4.1: An n-order polynomial mapping is homogeneous of degree n, but the converse is
not true.
Proof: P(av)= M(av,...av)= a"M(v,...v)= a"P(v).

To see that the converse is not in general true, let V=R? W=R, and consider

F(z1,29) = (21| + |2of)* = 2f + 23 + 2|22
F is homogeneous of degree two but is not a polynomial mapping, since a second order polyno-
mial mapping satisfies P(z,+ z,)+ P(z,-z,)= 2P(z,)+ 2P(z,); F does not.
This distinction between a homogeneous mapping and a polynomial mapping is like the
difference between a general norm and a norm which comes from an inner product. To bring the

discussion home to engineering consider the nonlinear TI operator Nj,m,, given by

Nhamogu(') = F(“(‘):u(t—l))
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Nyomeg is homogeneous of degree two. We will see later that the response of a second order Vol
terra series operator to the input u(t)=rcost has, at most, two components: one at D.C. and one

at 2 rad/sec. Nj,mo,(cost), however, has infinitely many harmonics. [J
We need just a few more definitions:

Definition: An n-linear map M is said to be symmetric if for any permutation ¢ € S”

M(voli"-’voru) = M(v,,...,v,,)

Thus the bilinear map of example 1 is symmetric if A=A T and the bilinear map of example 2 is
symmetric iff h(r},72)= h(72,7).
Definition: SYMM is the multilinear mapping defined by

1
SYMM(v,,...,v,,)é-F Y M(voy,...,v00)
‘o€ st

and similarly if h, is a function or measure, we define

1
SYMb,(r1,...,7) & — Y hu(To1,eTon)
n! €S
o { ]

SYMM derives its importance from:

Theorem 4.2: Suppose the polynomial maps P, and P are induced by multilinear maps M, and
M,, respectively. Then P;= P, iff SYMM,=SYMM,.

Thus two bilinear maps of the form of example 1 induce the same polynomial map if and
only if A,+ AT = A,+ AT

Proof: First note that SYMM and M always induce the same polynomial map, since

SYMM(v,...,v) = %— Y M(v,...v) = M(v,..,v)

‘o€ St

The "if” part follows. In the next section we will prove more than the “only if” part, so here we

will give just an informal sketch of how the "only if” proof goes. The key is the formula

1 8" "
n! Ba,...0a, |a_°P(§qa,v,) = SYMM(v,,...,v,) (4.1)

so that P, = P, implies SYMM, =SYMM,. To "establish” the formula, note that

P(ga,v,) = Z.: e Y oeea, My, v, )

1=l 1, =]
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The only terms which contribute to

1 _&
n! da,...0a, |a=0

are the n! terms where the (i, ) are a permutation of (1,2,...,n), and the resulting sum is
SYMM (vy,...,v,). Of course we don’t know yet that these derivatives exist, but we will see later

that if the multilinear operators are bounded, then these derivatives are just Frechet derivatives.

This process of determining SYMM from the polynomial map P induced by M is known as
polarization. In fact, we could replace the formula (4.1) above involving partial derivatives with a

purely algebraic one; for example for n=2 we have the polarization formula

. ]
SYMM (uy,u5) = P(———2) - P(—=2)

We gave the formula (4.1) because it generalizes to whole Volterra Series; the algebraic identities
do not.
Let us now assume that V and W are Banach spaces. Then an n-linear map M: V" — W is

bounded if

M(vy,..., .
12up (1M vyl < o0 (42)
in which case we call the lefthand side of (4.2) the norm of M as a multilinear operator and

denote it ||M]||pr . The bilinear operator of example 1 is bounded, with {|[M ||,z = 7(A).t The bil-

inear operator in example 2 is bounded with norm at most ||A;)].tt

We now quickly review derivatives in Banach space.l8.17 Recall that L(V,W) denotes the
Banach space of bounded linear maps from V into W, with the operator norm
l[A]|&sup{|]Av]]|]|v]|€1}. A map N:G—W, where G is an open subset of V, is said to have a
Frechet or strong derivative DN(uo) € L(V,W) at uo,€G if

[[N(so+ u)- N(uo)~ DN(uo)ul| = o(lfull)
If the map ug—DN(ug) has a Frechet derivative, we say N has a second Frechet derivative

D®N(u,) and it is an element of L(V,L(V, W)). Fortunately this space can be identified with

t 7(A) means the largest singular value of A; here we assume the Euclidean norm on IR*.
t1 The actual norm, rather than this upper bound, is hard to compute; see §AS.
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LAV,W), the space of bounded bilinear maps :V?*— W, with the norm || ||xz defined above.
Similarly the nth Frechet derivative, if it exists, can be thought of as a bounded n-linear map

:V"—W. It can be shown that D N(u,) is symmetric, e.g. if D"+ N(u,) exists.

We now have all the background material necessary for

5. Relatlon to Taylor Series; Uniqueness of Volterra Series

We will now see that Volterra series operators are Taylor series of operators from some

open ball in L* into L*™.
Theorem 5.1 (Frechet Derivatives of Volterra Series Operators):

On B, N has Frechet derivatives of all orders with

DEN(uo)(uy,...,u)(t) = (5.1a)
= SYM i;n(n—l)...(n—k+ l)f...fh,(rl,...,r,,)ﬁlu,(t—r,)dr, L![Huo(t—r,)dr, (5.1b)

Thus ||D®N(uo)|] < 7*)X||uol]) and (n!)*D™N(0) is the n-linear mapping associated with the
nth term of the Volterra series and given by:
L DONON g1 )(t) = [ Ba(Tiyeen T )us(t=1) oo tig (-7, )7y, d T (5.1¢)
o 1reesUn a7 Ta JUIE-T1) U 0Ty JA Ty "
Remark: (5.1c) of theorem 5.1 tells us that the Volterra series we have considered so far are in
fact Taylor series of operators :L*—L*. The reader may wonder whether the Volterra series

constitute all of the Taylor series of TI nonlinear maps :L® — L. In §A3 we show that this is

not true, but that the Taylor series left out are not important in engineering.

Proof: Let M, denote the multilinear map given in (5.1b) above. We will show that

N(sot u) - 3 grMuluu) = ofllull™*)

which will prove M, = D()N(u,) as claimed. First note that

IM,]| < f; n(n-1)...(n-k+ |y lllull™* = FOudll)

Now using the symmetry of SYMA,

N(uogt+ u) = if .. stMh,.(rl,...,r,.)Q[Z]Ijlu(,_r,)dr, fI uo(t-1,)dr, (5.2)

==l =xt4-1
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For [|u]| small enough ( [|u]|+ ||uo]| < p will do) the entire righthand side of equation (5.2) is

absolutely convergent so we may rewrite it as:

= i %—E n(n-1)..(n-k+1)f - - - fSYMh,,(rl,...,r,,)ﬁ u,{t-r,)dr, fI ugt-r,)dr,
k=0 ::;: 1==] 1mt4]

= iLM,‘(u,...,u)

i F!

Thus we have

"1 1
IN(uo+ 8)- 35 oMol € 5 ZolMlflul®
=~ k=n41 ¥

< X 2/ NlwolDllullE = 1 Gludl+ sl 3 s luolllull*
km=mg1 R k=0 M-
which is indeed o({|u]]**?). O

Theorem 5.2 (Uniqueness theorem for Volterra serles): Suppose N and M are Volterra

series operators with kernels 4, and g,, respectively.
Then N= M iff SYMh, =SYMy, for all n.

Note that N = M asserts equality of maps from some ball in L™ into L™, whereas the con-

clusion asserts equality of a sequence of measures.

Proof: The "if” part is clear, (see theorem 4.2). To show the only if” part we will show that the
measures SYMA, are determined by the operator N. A measure p € B(R}) is determined by its
integral over all n-rectangles in R", i. e. by the integrals

[ fulr,on)uy(-n)..up(-r,)d7,...d 7, (5.3)
where each u, is the characteristic function of an interval. Now by theorem 5.1 we have

f s [SYMb, (1.7 )us(-7y). up (-7, )d 7y d T,
1 o(n
= ;—!-D( )N(ul,...,u,.)(O)

so that NV determines the integrals in (5.3) and hence the measure SYMA,. A more explicit for-
mula for these integrals is:

J - [SYMbhy(n,...,a)us(-7)... 40 (-7, )d 7y ..d 7,

e a"

n! Jda,...0a,

LMEau)0)
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which is the formula mentioned in the previous section. ]

The Uniqueness theorem tells us that we may as well choose our kernels &, to be symmetric,
and from now on we will assume that all kernels are symmetric. Of course other canonical forms
are possible and in some cases more convenient. For example the friangular kernels satisfy

By o{71,--,7s) =0 unless 0< < ..<7,
and the Volterra series is then

7

2
[ [hnalryora)u(t-n). u(t-r,)dr...d7,
0 0

Oy

Nu(l) = ho +

1048

1

These kernels are often convenient in the study of dynamical systems.
One point worth mentioning: the triangle inequality implies

[ISYMbA,|| = A all < ||hall
Thus using the symmetric (or triangular) kernels can only decrease the gain bound function f
and hence increase the radius of convergence p. In the sequel we will refer to the gain bound

function and radius of convergence computed from the symmetric kernels as the gain bound func-

tion and radius of convergence of N.

6. Final Comments on the Formulation

The formulation we have given is by no means the only possible, even for stable systems.
For example, we could interpret the norms on input signals and kernels as L? norms, leaving the
norm on output signals (i.e. y==Nu) an L™ norm. Input signals and kernels would thus be L?
functions with ||h,||&||Aa)lz =([...[ha(rs,..,7a)?d i...d7,)"/% Then with the exception of the
L’ material of §3 all the preceding results hold. This is essentially the Fock space framework pro-

posed by deFigueiredo et al.}2!

7. Applications to Systems Theory: Sum and Product Operator

In the next few sections we apply the ideas of the previous sections to give simple rigorous

proofs of some well-known theorems. We show that the sum, pointwise product, and composition

t Our Volterra series with radii exceeding r would be almost all of the Fock space with weighta alr®.
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of two Volterra series operators have Volterra series and we bound their gain functions. We
proceed to find the condition under which a Volterra series operator has an inverse and compute
its kernels. This is applied to show that the 1/O operator of a simple dynamical system is given

by a Volterra series.

This program of working out the Volterra series of various "system interconnections” was
first carried out at MIT in the late 1950's,12.4 but none of this work is rigorous. This constructive
approach is not really a fully modern approach, where one powerful general theorem would prove
all these theorems (and more).! Unfortunately this one powerful theorem may be so general and
abstract that the underlying simplicity of the formulas may be lost. In this section we want to
demonstrate two things: First, that supplying the analytical details in the MIT work is relatively
straightforward; and second, that the resulting formulas, though complicated, are just simple
extensions of the same formulas for ordinary power series. This of course should be expected in
view of theorem 5.1.

The notation for the next three sections (§7-§9) is as follows: A and B will denote Volterra
series operators with kernels s, and b,, gain bound functions f, and fg, and radii of convergence
p4 and pg, respectively. To simplify some of the formulas, we will assume the constant terms

(Oth order kernels) a, and b, are zero.
The pointwise product of A and B is defined by
[4-BJu(t) = [Au](0)|Bu](t)
Definitlon: if s €B(R}), b EB(R,{,) then the symmetric tensor product a\/b GB(B_;‘_‘“) is

defined by:

a\/b(TyeesTagt) & SYMa(7h,e, 70 )b (Tag1seesTat )

By the product we mean the normal product measure. (Thus A(7)g(r) doesn’t necessarily make

sense, but h(r)g(r;) does.) Note that

[laVb]l = [...[ISYMa(ry,...70)8 (Tasp 1, Tai 1) 471 d Ta g

1
< -(—’-‘--'_—k)'- Yy tf...fla(r,,,...,ra,,)|]b(r,,,+1,...,r,,,+,)|d1'1...dr,+k
‘ 0€5'+
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= llajti13]]

Theorem 7.1 (Product Operator): A B is a Volterra series operator with kernels

n-1

hy =3 0,\/by s
ks
and characteristic gain function f4 p < f4fp. In particular, p, g > min{p,, pp}-

Remark: If we write a Volterra series as a formal sum

al+ ---+an+--.

then we can write the formal symmetric tensor product of 6,4+ --- and b;+ - - as

(84 - - - Wb+ - - )= (8,Vb))+ (8;\Vbot ag\/b))+ -

so the Volterra series of A-B is the formal symmetric tensor product of the Volterra series of A
and B. Note the similarity with the formula for the coefficients of the product of two power

series.

Proof: Let ||u||<min{p,,pp}. Then Au and Bu make sense and

A'Bu(t) = {ilf...fa,,,(7,,...,rm)1_:[lu(t—r,)dr,:{i f...fb,,(rl,...,r.)I![u(l—r,)dr,} (7.1a)

n==1 te=]
= il 2)f...fa,,,(fl,...r,,,)b,,(r,,,.,,,,...f,,.,.,.)"ﬁ:u(br,)dr, (7.1b)
= iff{il ag\/b,,_k}t:(l—rl)...u(t—r,,)dr,...dr, (7.1¢)
n=] k=]

All of the changes in the order of summation and integration in equation (7.1) are justified by the

Fubini theorem, since

i i f.“fln,,,(r,,...r,,)b,(rm+1,...rm+ﬁ)"ﬁ”u (t-1,)|dr,

ms=ln=] 1==1
< f; gllanllllbmllllull"*" = falll=l)/a(ll]]) < oo

Since equation (7.1) holds for any u with ||u||<min{p4,pp}, the Uniqueness theorem tells us that

n-1
Y a,\Vb,_ are the kernels of A-B. Now

(101

o o n-1
fas(z)= Y lhllz" = ¥ Ylla:Vba ][z
wam] nux] p=x]

© 00 ;
< X Y llallllbaillz™
n=]t==]
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= (St} Sinller) = G)1st2)

» ==l nox]

The final conclusion p, p > min{p,, pp} follows from f, 5 < f4fp and py p =inf{z|f, p=cc}.
d

Theorem 7.2 (Sum Operator): A+ B is a Volterra series operator with kernels

Ba(T1,-e0sn) = 871, 0sTn) + bu(11,.0s70)

and gain bound function f,45 < f4s+ fp. Thus ps4p > min{p4,pp}.

The proof is left to the reader.

8. Composition Operator
The composition of A and B, which we denote by the juxtaposition AB, is defined by
[ABJu(t) & A(Bu)(t)
To motivate the formula for the kernels of AB, recall that the nth coefficient of the compo-

sition of the ordinary power series Y 4,2z’ and Y 4,2z’ is given by
{==] {==]

n

k§1 ) E)l by by (8.1)
lrﬂr't...
'l+”'+'t'"

Theorem 8.1 (Composition theorem): AB is a Volterra series operator with kernels

ho(ty,....t,) = SYM Y, Y S Selr.n) (8.2a)
k=11 130,421
’1+"‘+'t="
'b,l(tl—fl,..."l‘rl) e blk(tﬂ—l‘-f—l_rk""tﬂ_rk)dTl"'dTl' (8.2b)

Moreover f45(2)</4(/5(2)). Thus pas>min{ps,/57(s4)}.
Proof: Let A, be defined by the formula (8.2) above. First note that

5.1l < ; 3 {lladllls g - - 118, (8.3)

a=x]l{ Lot 21
3 1+ ot 1, m=n

and the righthand side of (8.3) is the nth coeflicient of f,(f5(")), 50 fu(z) < f4(f5(z)). This

computation justifies the changes of order of integration and summation in the following.
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Suppose f4(f5(]|u}])) < 0o. Then Bu makes sense and ||Bu|{<fg(||u]]) 50 ABu makes sense and:

ABu(t) = f:f “++ [ay(ry,...,re)Bu(t-r;) - - - Bu(t-1;)dr...d7,

k]

f]{ y f...fb,,(tl,...tm)u(t—f.—tl)...u(t—r,-t,,)dt,...dt,,,}dr,

i=lm

= Elf...fak(ﬁ,---;ft)

00
== Ef...fak(rl,...,fk){ Z b'l(tl’"-}"l—rl).'.b'b(t'l+'"+'k—l+l,.“’t'l+"‘+'k).
k=] 112 1eeay >1

'u(t—Tl—-t,)...u(t—Tl-t,l)...u(t—Tg—!,l+___+,k_l+1)...u(t—n-—t,l..,_".‘. 'k)dtl"'dt‘l+'“+'tdTl"'di

We now collect terms by degree in u to get:

00 n

=Y/ JI1Z] ¥ |aln..n)
=] kel 4y 21
t1+...+x‘—1|

Bt )by (b e ta)u () 0 (ot ) (t—fk-t,,_,k“)...u(t-rk—t,,)}dtl...dt,, dry..d7,

Finally, we change the ¢, variables:

— if .. f é P f...fak(rl,...,r,)-

n=l F=1{ tgee i 21
it ety =n

by (tmryeti o) b,k(t,,_,*,,,l—f,,,...,t,,—r,)drl...dr,,}u(t-rl)...u(t-r,,)dtl...dt,,

i ho(7y,..., 7o )u{t-1y)..u(t-7,)dry...d7,
n=]

and the uniqueness theorem tells us h, are the kernels of AB. Equation (8.3) establishes the

bound f,5 <f4fp, and the lower bound on the radius of convergence of AB follows. []

0. Inverses of Volterra Series Operators

We now ask the question: when does a Volterra series operator have a local inverse near 0
given by a Volterra series operator and what are its kernels? Whole papers have been written on
this important topic.19 22 Just like ordinary power series, the condition is just that the first term

be invertible.
Theorem 9.1 (Inversion theorem for Volterra Series):

A has a local inverse at 0 if and only if its first kernel 4, is invertible in B(R ), i.e. there exists
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a measure b, € B(R,) with a,#b,=8.¢
Remark: Since the Frechet derivative of A at 0 is given by convolution with a, (theorem 5.1), the

Inversion theorem can be thought of as a generalized Inveree function theorem. We will not pur-

sue this idea further: instead we take a constructive approach.

Proof: To see the only if” part, suppose A has a local inverse B, that is

AB = BA =1 (9.1)
where I is the identity operator (I,=2§, I, =0 for n>0). Using the composition theorem to com-
pute the first kernel of the operators in equation (9.1) yields

al‘bl = 61'51 = 6

Thus 6, is invertible in B(R ).

The proof of the ”if” part will proceed as follows: we first construct a right inverse for A
under the assumption that the first kernel is just 5. Using this we show that A has a right inverse
in the general case, g, invertible in B(R,). We finish the proof by showing that the right inverse
constructed is in fact also a left inverse for A.

Special Case: Assume for now that a;,=24§. To motivate what follows, consider an ordinary

00
power series a(z)é—Za,,z" with a,=1. Since a’(0)=1, a(-) has an analytic inverse
n==]

Y
b(z) A Y 5,2z" near 0. Using formula (3.3) for the coeflicients of the composition a(b(z))=z

n==]

yields ;=1 and the following recursive formula for b,:

by = "E Z akb:l e bl‘. (9.2)
F=2{ 130y 21
sl+...+:‘=n

Note that since the index k starts at two, the righthand side of (9.2) refers only to b,,...,5,;.
Incidently this process of recursively computing the coefficients of the inverse of an analytic func-

tion is known as reversion of a power series.23

1 Since the convolution of measures in B(R ) is commutative, 8,2 ,=>5 implies b, %a,=34.
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We now use the same construction for Volterra series. Let b;= 2§ and for n>1 define meas-

ures b, € B(R}) recursively by

bu(ty, . - ., t) =-SYMY, ) f...fak(fl,...,rt)- (9.3a)
k=2 1 21
H+ .t y=n
'b,l(tl—r,,...l,l—rl) s b,k(t,,_,k.,.l—r,‘,...t,,—f,,)drl...dn (9.3b)

As in (9.2) above this comes directly from the composition formula and (AB), =0, n>1. We
now have to show that b,, as defined in (9.3) above, are actually the kernels of a Volterra series

operator: we must verify that assumptions (A1) and (A2) hold.

We establish (A1) by induction. First note that 5, =6€B(R,). Assuming that

b, EB(RY{) for j=1,...,n-1 (9.3) implies that b, € B(R ), with

6.1l < k}: 3 (Haellifafl - - - 118l (94)
=2

ety 21
sl+...+lk-u

We now establish (A2). Let g(z)22z—f,(z). Since g’(0)=1 (recall that s,=14§) g has an

00
analytic inverse A(z)2 Y a,z” near 0. We claim that f5(z) < h(z) and thus pp >Radh(-). The

n=l

coeflicients a, are given by formula (9.2): ;=1 and for n>1

"
@ =3 P faellers, - - - o, (9.5)
k=20 15,21
’1+'“+‘k="
By induction we now show
[[6a)] < (9.6)

for all n. (9.6) is true for n=1, suppose (9.6) has been established for n <m. Then (9.4), (9.5),

and the inductive hypothesis establish (9.6) for n=m and hence for all n. Consequently

00 00
/8(z) = L lIbllz" < ¥ a2 = h(2)
n=] n==]
which proves our claim above that the measures b, do satisfy assumption (A2) and hence are the

kernels of a Volterra series operator which we naturally enough call B. From the formula (9.3)

for b, we conclude
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AB =1

B is thus a right inverse for A. This concludes the proof for the special case.

General Case: Suppose now that @, is invertible in B(R,). We will use the proof of the
special case presented above to prove the general case. Let b, € B(R, ) satisfy a;#b;=6. Let
A, be the Volterra series operator with first kernel a; and other kernels zero. A, is invertible,
with inverse A;} (which has first kernel b, and other kernels zero). Consider the operator A} A
whose kernels we could easily compute with the composition theorem. Its first kernel is 6, so
using the construction above find a local right inverse C to A;lA. Then B = CA;} is the local
right inverse of A, since

AB = A AACAR = A =1 (9.7)

Our final task is to show that the right inverse B is also a left inverse for A. Since the first
kernel of B is invertible (indeed it has inverse 4;) we can find a right inverse D for B. Then we
have

A=Al = A(BD)=(AB)D =ID = D (9.8)
(9.8) and BD = I shows

BA =1
which with (9.7) proves that B really is the local inverse of A at 0 and completes the proof of

theorem 9.1.[]

Remark 1: It a,€ (X, the subalgebra of B(R,) of those measures lacking singular continuous

part, then we have the criterion!®

A is invertible iff _inf |3,(s)] >0
Res>0
where 3,(2) denotes the Laplace transform of a,.

Remark 2: It is interesting to note that the Special Case considered above has the interpretation
of unity feedback around a strictly nonlinesr operator, which is an important system-theoretic

topic in its own right.
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10. Dynamical System Example

To illustrate the theorems of this section we now work an example.

Example: Consider the one-dimensional dynamical system:

z=f(z)+ g(u) (10.1a)
2(0) =0 (10.1b)
v =q(z) (10.1¢)

Suppose f, g and ¢ are analytic near 0, f(0)=g(0)=¢(0)=0, and f'(0)<0. Then the system is

exponentially stable at 0, and for ||u|| small there is a unique state trajectory z satisfying (10.1).
We will now show that the I/O map :u —y is a Volterra series operator.

Proof: We first use a loop transformation to reexpress equations (10.1a) and (10.1b) in terms of
Volterra series operators. (10.1a) and (10.1b) are equivalent to

z=e/"O 2(f,(z)+ g(u))
where f,(z)A f(z)-f'(0)z (the strictly nonlinear part of f). (See figure (2)). Let H,, be the
Volterra series operator with first kernel l(r)e"(o)’ and other kernels 0. Let F,,;, G, and @ be the
memoryless Volterra series operators associated with the functions f,,, g, and g, respectively,

eg. Qu(ry,...,7,)= n!1¢(")0)§(,)...4r,). Then the system equations (10.1) are equivalent to

z = Hy,(Feu(z)+ G(u)) (10.2a)
v =Q(z) (10.2b)

Since H,,, is linear
(I"Hlmpsm’)z = th Gu (10.3)

By the sum and composition theorems (I - H,, F,,/) is a Volterra series operator with first kernel
6. By the inversion theorem (I - H,, F,,) has a Volterra series local inverse (I - H,, F,, /) near 0.
Since as mentioned above (10.3) has only one solution z when ||u|| is small, it must be
z = (I—Fut Hy, )_l Gu
Thus for ||u|| small, the output y is given by a Volterra series operator in u:
y=20 (I—anl th)—l Gu
A few comments are in order. (10.1) may have multiple equilibria when u =0 (for example

it f(z)=-sinz), or even a finite escape time for some u’s (for example if f(z)=-z+ z%). We've
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(&) Ueo g(+) : X [1/s X at) .y
L £(-)
L £(0)
- 1°(0)
-[:'+ L £ () l
, X
(¢) Ue—yqg(-) +—I/(s-f(0)) >— q(+) -y

fenp ()

figure &
shown that as long as ||u]| is smalil enough, say less than K, then the state z and the output y
are given by a Volterra series in u. In particular ||u]| < K must keep the state z from leaving
the domain of attraction of O, for otherwise the Steady State theorem (see §1 chapter 3) or the

Gain Bound theorem would be violated. -






Chapter 3

Frequency Domain Topics

In this chapter we consider frequency domain topics, concentrating on the simplest case:
periodic inputs. As with linear systems, the frequency domain Volterra kernels can be given a
simple interpretation in terms of the steady state response to a periodic input. To put this notion
of steady-state response on sound footing, we start by proving the steady-state theorem for Vol-
terra series operators. We then establish the validity of a general formula for the spectrum of the
output in terms of the spectrum of a periodic or almost periodic input. We present two applica-

tions of the material in this and the previous chapter.

1. The Steady State Theorem

Theorem 1.1 (Steady state theorem): Let u and u, be any signals with
[lull, ||us|l < p=RadN, and suppose that u(t)—u () as t — oo.

Then Nu(t)— Nu,(t) as t = co.

Remark: This is a very different concept from N’s being continuous as a map from L®—L%®,
which tells us that if u, — u uniformly as n — oo, then Nu, — Nu (uniformly). In engineering
terms, continuity means that if the peak difference of two input signals is small enough, then the
peak difference of the corresponding outputs is small, whereas the steady-state theorem asserts
that if two input signals approach each other as time evolves, then the corresponding outputs
approach each other as time evolves. Indeed we will see in chapter 4 that there are simple TI

continuous operators :L°—L% for which the steady state theorem does not hold.

In fact the steady state theorem is implied by a stronger property of Volterra series opera-
tors, fading memory, which we will study in chapter 4. But the steady state theorem will suffice
to put the notion "periodic steady state” on a sound footing.

Proof: Suppose ||u|], [lu;||<p and u(¢)—u;(¢) as t = 00. Let v=1u,—u so v(t)—0 as ¢ — oo.
The proof is a modification of the proof of the incremental gain theorem, we simply break the

estimate into two parts, one due to the recent past only. For T>0
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(Nu, - Nu)(t) = (N(u+v)-Nu)(t) = I,(t,T) + IAt,T)

where

LET)AS [-- fh,(rl,...,f,,){ﬁus(t—r,)—f[u(t—r,)}dr,...dr,

nax] (0_ TI' 1==x]

1{t,T) & i R fh”(rl,...,r,,){fl us(t—f,)-f-llu(t—f,)}dr,...dr,,

n==lR* _[o, T 15m]

We now estimate I; and I, separately.

I(t,T) = if e fh,(r,,...,r,,){f](u+ v)(l—r,)—Ii[lu(l—r,)}dr,...dr,

n=l [o,T]* re==]

= if ce fh”(rl,...,r,.)é[Z]f[v(t—‘r,)dr, fl u(t-r,)dr,

n=x] o.T)* 1=x] sm=b41

using the symmetry of h,. Thus

IL(T) < X B0 Y (Gllollfrallul™*
n==} k=1

= S(lull+ ollg-r.0) - £(Ulu]))

30

{(1.1a)

(1.1b)

where ||v||;;-7,q means sup{|v(7)| | ¢-~-T <7<t } and f is the gain bound function of N. Note

that (1.1b) may be co for some ¢,T. But as ¢-T—00, ||v||;s_r,—0 50 (1.1b) eventually becomes

and stays finite and in fact converges to zero. Thus we conclude:
L(t,T)=0 a (-T—oo

Now we estimate [,

| 1o(t,T)| < i"hn“m'_p,r]-(”“sun'{"”“””)

where

”h"”R'—p.T]' = f e flhn(rl;...,fn)l dTl...dT,,
R"-jo,TJ"

(1.2)

(1.3)

(1.4)

For each n (1.4) decreases to zero as T increases to oo, since each k, is a bounded measure.

Hence each term in the sum in (1.3) decreases to zero as T increases to co. The righthand side of

(1.3) is always less than f(||u[])+ f(]|u]|]), so the dominated convergence theorem tells us that

the righthand side of (1.3), and hence /¢, T), converges to zero as T—oo.

If we now set T=1/2 then as {—o0 both T and {-T increase to co. Hence as t — o0

Nug(t)-Nu(t)=1,(t,t]2)+ I(t,t/2)—0.00



FREQUENCY DOMAIN TOPICS 31

Remark: unlike linear systems, the rate of convergence can depend on the amplitude of the input.

For example, consider N given by

O
Nu = Y u(t-k)*
b==]
N has radius of convergence one. Now consider step inputs of amplitude a, 0<a<1. As

increases to one, the time to convergence to within, say, 1% of the steady state grows like (1-a).

For linear systems the time to convergence is independent of the amplitude of the input.

Although in the steady state theorem u; can be any signal with ||u,|] < p, usually u, has the
interpretation of a steady state input, for example in
Theorem 1.2 (Perlodic steady state theorem): If the input u is periodic with period T for
t2>0 then the output Nu approaches a steady state, also periodic with period T. (Soon we'll
compute the Fourier Series coefficients of Nu).
Proof: Let u; be u extended periodically to t=-0c0. Clearly u(t)—u,(t) as ¢t — oo (indeed
u(t)=uy(t) for t>0) so by the steady state theorem Nu(t)—Nu,(t) as t — 00. Nu, is periodic
with period T since

(Nug())(t+ T) = N(us(+ T))(t) = Nug(t)

where the first equality is due to the time-invariance of N and the second equality is due to the
T-periodicity of u,. ]

Note in particular that Volterra series operators cannot! generate subharmonics. A related
application of the steady state theorem is:
Theorem 1.3 (Almost perlodic steady state theorem): If the input u is almost periodic for
t >0 then the output approaches an almost periodic steady state. (we’'ll compute the frequencies
and spectral amplitudes of the output in §A5).
Proof: The hypothesis simply means that there i2 some u, which is almost periodic and agrees
with u for ¢>0. By the steady state theorem we know y(t)— y,(¢)& Nu,(t) so we need only
show that Volterra series operators take almost periodic inputs into almost periodic outputs. The

proof of this, as well as the formula for the spectral amplitudes of the output, are in §A5. This
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last topic has been studied by Sandberg.”

2. Frequency Domaln Volterra Kernels

As with linear systems, it is often convenient to use the Laplace transforms of the kernels,

defined by
sy + -5, 7,)
H,(8y,...,8,) =f s fh,‘(‘r,,...,f,,)e dry..dr,

We call H, the nth frequency domain kernel or just kernel of the operator N. Since &, €EB(R}),
H, is defined af least in €] ( C} means { 8 | Res;>0 })- H, is symmetric, bounded and uni-
formly continuous there; it is analytic in €. We should mention that the unicity theorem for
Laplace transforms tells us that two measures in B(R]) are equal (h, =g, ) if and only if their

Laplace transforms are equal (H, = G,).

The formulas of §7 and §8 of chapter 2 are somewhat simpler in the frequency domain.
Using the notational convention that C, denotes the nth frequency domain kernel of a Volterra

series operator C, we have:

Theorem 2.1: Suppose A and B are Volterra series operators. Then the frequency domain ker-

nels of A+ B, A-B (pointwise product), and AB (composition) are given by:

(A+ B)a(81,..-,82) = Ap(81,--,8,) + Ba(21,...,8,)

n-1 n
(AB)y = Y, A;VB, ; ASYMY Ai(21,,8:)Baci (814 10--80)
k==

k=]

”
(AB)4(2y,....8,) = SYM ¥, Yy A(e+ ..+ 8 el 41t ot 8y )
k==l 4,0, 21
:1+...+1‘,—n

'Bll(ah-"s’:!) e Bik(aﬁ-lk+l!"'!8l)
These well-known formulas follow easily from the formulas of §7 and §8 of chapter 2.
3. Multitone Inputs; the Fundamental Frequency Domain Formula

We start with a simple calculation. Suppose that u(t) is a (real) trigonometric polynomiasl,

that is

M
u(t)= Y ae’v¥
=M
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where a_; = @;. Suppose also that ||u|| < p=RadN. Then

y(t) = Nu(t) = if . -fhn(rl,...,r,,)f[kzM:Makew«_n)dT, (3.1a)

Hwky+  +wk)t

}atl...ak.H,,(jwkl, ... ,jWk,,)C (3“))

n=l{—M§ Epmnk, <N

swky+ Fwk )t .

The term ay ...y H,(jwky, . . ., jwk,)e is often called an nth order (wk,,...,wk,)

intermodulation product. Since it is proportional to H,(jwk,, ..., jwk,) this suggests the
interpretation of H,(jwky, . ..,jwk,) as a measure of the (wk,,...,wk,) intermodulation distor-
tion of N.

Now we’ve already seen that the first sum in (3.1b) is an 1! sum, i.e. absolutely convergent.

In fact for each ¢,

J(wky+  rwk))t

< 7(lulh)

iit4s

}akl,..at_H,‘(jwkl, e Jwky)e

1 {-Ms kyeky, SM

where f is the gain bound function of N. Consequently we may evaluate the mth Fourier
coeflicient of y

2771

A w -
y(m)o—ﬂ- f y(t)e?v™ dt
T %

inside the first sum in (3.1b) as:

2xw-t
A &, . . k k
y(m) = Z 21 f Z atl...ak-H,,(]wlcl, ... ,ka,,)ej(u 1t T ")te""""'dl
nel ¢ 9 ) -M<kpnk, <M

Each integral is easily evaluated (the integrands are trigonometric polynomials) yielding

f/(m)=§{t Y S (k) Bk )H, (Gky, - . ., jwky) (3.2)

n=1) b+ +k=m
since u(k)=c; for |[k| <M and O for |k|>M (and thus the inner sum in (3.2) is finite). We
call (3.2) the fundamental frequency domain formuls since it expresses the output spectrum in
terms of the input spectrum. Of course we've only established it for inputs which are tri-
gonometric polynomials, but we will see that it is true for more general periodic inputs, and an

analogous formula holds for almost periodic inputs as well (see § A5).
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Remark: Suppose a trigonometric polynomial signal u is passed through a unit nth power law

device so that y(¢)=1u(¢)". Then

o

Hm)=1 (m)= (1 5,008

1t i mmm
A 'n A A
where 4 means the n-fold convolution u #i #..#4 (the sum in the convolution is finite here!).
The first equality makes sense: it is just the dual of the correspondence between convolution in the

time domain and multiplication in the frequency domain. The second equality makes the funda-

mental formula (3.2) seem quite natural; the nth term of (3.2) can be thought of as an n-fold con-
volution power of 4, weighted by H,(jwk,, . . ., jwk, )-

Before establishing the fundamental formula for more general periodic inputs, we have to
carefully examine the question of whether it even makes sense for more general periodic inputs.

Despite its resemblance to the composition formula and the fact that every sum and integral

encountered so far has converged absolutely, we have:

4. Fundamental Formula Doesn’t Converge Absolutely

Remarkably the fundamental formula is not absolutely convergent even for u as simple as a

two-tone input signal! That is

i{k Yy }Iﬁ(k,)...ﬁ(k,,)H,,(jwkl,...,jwlc,,)'

n=] + k, m=m

can equal co even in the case considered above, u a trigonometric polynomial (but our calculation
was correct).

Remark: Practically, this means that we cannot arbitrarily rearrange the terms in the sum above.
We must first perform the inner (bracketed) sum (which in this case is a finite sum), and then per-

form the outer sum over n.

Example: Let u = %(cost+ sin2¢). Then ||u]| can be shown to be

HERE )

which is about 0.978 < 1. Let N be the memoryless operator with H,=1 for all n, that is
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y(t)=u(t)/(1-u(t)). Then p=1 so y(t) makes sense and satisfies ||y|| < ||u||/(1-}|u[]) (Which is
about 45). According to the fundamental formula (3.2) of the last subsection, the D.C. term of y

is given by:

0)=3( ¥ }Q(kl)...ﬁ(k,,) (4.1)

nesl| b+ +k, =0

Now we claim that (4.1) does not converge absolutely. To see this,

na=] + k=0 neven) ky+  + k om0

i{z k)62 BT (k).

neven| ky+  + k=0

- ¥ }?z(k,)...?)(lc,,)

where v(t)2 %(cost+ cos2t) so that [ (k)| =7 (k) for all k.

2r
1 1
v — [o(t)"dt > Y, — =
l%{ﬂ 2 { n even 4"
since v(t)>1 for -.25<t<.25. Thus the fundamental formula isn't absolutely convergent in this
simple case.
It is surprising that the trouble in (3.2) occurs when the input is a simple trigonometric

polynomial signal; we might expect it to give us trouble only when, say, u does not have an abso-

lutely convergent Fourier series.
There is one obvious but rare case in which (3.2) does converge absolutely. Suppose 4 €1,

i.e. u has an absolutely convergent Fourier series, and in addition f(}|d][;) <co. Then |i|€

and |2 €1 with ||| % | "||; < ||E]])", thus we have the estimate

‘E{t ) }lﬁ(h)---ﬁ(kn)ﬂu(."wh,---,J'wk,.)lS il!ﬁlll"llhull=!(llﬁllx)

n=1} ky+  +h =m L
In conclusion, then, we must proceed with extreme care in establishing the fundamental for-

mula for more general periodic input signals.

6. Proof of Fundamental Formula for General Inputs

We start with some calculations. Suppose u is any periodic input with ||u|| < p. Recall
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that the Mth Cesaro sum of the Fourier series of u is defined by

M
w(t)= 3 0-LELjawes & 5 oy(ea e
k=M k
Uy is u convolved with an approximate identity and thus satisfies ||uy|| < ||u]| and Hup-ull,—0
as M —00.t?* From the first fact we conclude that Nuy  makes sense since
lluall < |lu]| < p=RadN. Using the Incremental Gain theorem for L'0,27w™] we conclude that
[|Nu-Nup]l; =0 as M — co. Hence (Nuy)" =73, converges uniformly to § as M — oo. Uy is a
trigonometric polynomial so we know the fundamental formula holds for Nuy,; putting all this

together we have shown

'ﬁ(m)=A}i_t’n i{ ¥ }u;;(kl)...uf,(k,,)H,,(jwlcl,...,jwk,) (5.1)
®© =) k. otk mm
=3 % }s(kx)...a(k,)rjlcu(k,)H,,(fwkl,...,fwk.) (5.2)

The dominated convergence theorem justifies the interchange of limit and sum in (5.1) since as we
have mentioned before the first sum in (5.1) and (5.2) is always absolutely convergent and

|Cy| < 1. Since A}im Cu(k)=1 for each k, if we knew that the inner sum also converged abso-
-+ Q00

lutely we could apply dominated convergence once again to conclude

00

= . ) }ﬁ(kx).--ﬁ(k,)ﬂ..(fwk,, e, Jwky) (5.3)

=] kl+ +k =m

which would establish the fundamental formula in the general case.

Unfortunately the inner sum

{ ) :3(k1)-.-ﬁ(k,.)ﬂ.(fwkl, e, Jwky) (5.4)

kyt. # b =m
is not always absolutely convergent (and thus does not always make sense). In such a case for-
mula (5.2) is as close as we can get to the fundamental formula. But in fact the inner sum is
absolutely convergent in almost all situations arising in engineering. We now present two condi-

tions which suffice:

T
t Fora T-periodic u, ||u||, means T“flu(r)[dr.
0



FREQUENCY DOMAIN TOPICS 37

Lemma 6.1: Suppose u has bounded variation over one period. Then

{k . b)) }lﬁ(h)---ﬁ(k,.)l <o

+E=m
In particular, the inner sum (5.4) in the fundamental formula converges absolutely. The proof is

given in §Al.

Lemma 5.2: Suppose that H,(jwk,, . .., jwk,)= O( ). Then the inner sum (5.4) is abso-

ky...k,
lutely convergent.

Remark: This condition can be interpreted as: N is strictly proper. For example the kernels of

the input/output operator of a dynamical system with vector field affine in the input have this
property.

The proof is in §A4. We summarize the results of this section in
Theorem 5.3 (Fundamental frequency domain formula): Suppose ||u]|<p and that either

(I)  the input u has bounded variation over one period, or

() the operator N is strictly proper, that is, Hy(juk, . . ., juky)= 0(5 1 =)
1oooFon

Then the fundamental frequency domain formula is valid, that is:

f,(m)=§{t y }Q(kl)...ﬁ(k,,)ll,(jwlc,,...,jwlc,,)

n=] +k =m
Proof: Theorem 5.3 follows from the discussion at the beginning of this section and the lemmas

above. []

8. Application: Uniqueness of a Basic Nonlinear Structure

In this section and the next we briefly present two applications of the preceding material.
The first is motivated by a question concerning modeling of nonlinear circuit elements, and the

second concerns the linearization of nonlinear systems.

Consider the problem of modeling a capacitor. If the capacitor is linear it can be described

by ¢= Cv+ go or i = Cv, which are equivalent. But suppose now the capacitor is not linear.



FREQUENCY DOMAIN TOPICS 38
We might model it as a voltage-controlled capacitor:

g =1/(v) (6.1)

where f is a function from R into R.

Alternatively we might use the model:

i = g(v) (6.2)
where g:R—R. We now make the following observation: (6.1) and (6.2) are never equivalent.
To see this, differentiate (6.1) to get f'(v)o = g(v), and consider the driving voltage v(t)=at.
Then f'(at)a ==g(a) for all ¢ and a and hence f'(z)=g(1) and g(z)=4(1)z for all z, contrad-

icting our assumption that the capacitor is not linear.

For the two capacitor models we have the block diagrams shown in figure 1.

V———» f(e) ——> S >

V ———> S ————» g(e) ——i

figure 1

Our argument above showed that unless g is linear (and [/ is affline) the two nonlinear operators
shown in figure 1 are never equal. We might say that the two structures shown in figure 1 yield

different operators.

Thus for a capacitor which is not linear, at least one of the models (6.1) or (6.2) is incorrec?,
which is in sharp contrast to the case of a linear capacitor, where both models are correct. This
example is a little unrealistic, since device physics would normally tell us which model is correct

(probably (6.1)), but it demonstrates the basic idea that the two structures shown in figure 1 are
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very different when the memoryless blocks are not linear. We will now establish a very strong

generalization of this idea.

Motivated by the example above, we consider what is perhaps the simplest interconnection
of LTI and memoryless operators, shown in figure 2, and ask the question: under what conditions

could two such systems have the same [/O map?

C(s) B(e) A(s)
— ——
LTL memoryless LTI
figure 2

Some coanditions are easy to think of, for example we can rescale the operators or distribute any
delay in A and C arbitrarily between them. Thus if A=aexp(-sT)A, C=1exp(sT)C, and

B(z)=a'B(y'z), then ABC = A B C (see figure 3).

figure 8

We will now show that these are the only ways two such systems could have the same I/O opera-

tor.

Theorem 6.1 (Sandwich structure unlqueness theorem): Suppose A4, 1, C, C are nonzero
LTI operators, B and B are memoryless operators, at least one of which is not linear. If

ABC::XEE, then there are real constants a, 4, T such that:
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X(a)=aexp(—sT)A(s) 5(a)=7exp(aT)C(s)
B(z)=a"'B(y'z)
That is, systems of the form in figure 2 which are not linear have a unique representation of the

form in figure 2, modulo scaling and delays.

Proof: Under the hypotheses of the theorem, the two systems have the same kernels

Hn(alv""gn) = A(81+ Tty )B,,C(81)C(82) e 0(8,,) (6'33)
= A(s,+ - - +8,)8,0(8,)C(s2) - - - C(s,) (6.3b)

Consider now any n>1 for which H, is not identically zero (and there is at least one such n).

Find an open ball D in €} on which H,50. On D define Q=
- logP,(C/g)(sl) o (C/c")(a,)] (6.43)
= log[g,,(X/A)(el-F ce 4 a,)] (6.4b)

Any branch of log will do. Then on D,

3%Q
38,88, 0 (6:5)
when calculated from (6.4a) and
5Q A 1
Do Doy [log(A JA))'! (814 + 8,) (6.6)

when calculated from (6.4b). Note that n>1 is crucial; this is where the requirement that at least

one of B or B be not linear enters. From (6.5) and (6.6) we conclude for some 5 and T,

log(/'f/A Nert - +e&)=n-T(s+ - - +8,)

on D and hence everywhere in CJ. Thus

A(3) = cexp(-sT)A(s) (6.7)
for s € €, where a=expn. From A(F)=A(s) we conclude a and T are real. Substituting (6.7)
into (6.3a) and (6.3b) yields

C(2) = rexp(sT)C(s) (6.8)
where 7"=0, B ;la”! and as above 4 real. Thus we have B «=a'B,7*, which remains true for

those n for which B, =§,,=0, hence

5(3) = o 'B(y'2) (6.9)
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and the theorem is proved. []

Actually the theorem is true under more general conditions than we have shown, for exam-
ple if A(s)=g, which is not a LTI Volterra series operator in the sense of this thesis (see Boyd
and Chua|25]). We have also established a more general result which applies to nonlinear systems
and networks which contain one memoryless nonlinearity (as in figure 2), but possibly in a feed-

back loop.?® We give a few interesting corollaries of the sandwich structure uniqueness theorem:

Corollary 6.2: Systems of the form HN are completely disjoint from systems of the form NH,

where H is LTI nonconstant and N is memoryless and not linear.

Corollary 6.3: Given any operator N with at least two nonzero kernels, the only LTI operators

which commute with N are delays (or delays and negation, if N is odd).

Corollary 6.4: Chua has defined algebraic circuit elements as those with constitutive relations of
the form ®(v(®), i¥)=0 (where f(®) is the ath derivative, or integral if a<0, of f ).27 Nonlinear
resistors, capacitors, and inductors are examples. Under weak conditions our theorem shows that
if such an element is not linear its order (e, f) and its characteristic curve &(z,y)=0 are unigue,
that is, such elements have only one description as algebraic elements. This explains our capaci-

tor modeling problem above.
Our theorem has other simple applications, for example

Application: Consider a communications system consisting of N cable-repeater sections, each
with frequency response R(s). Suppose the output stage of the kth repeater drifts off bias and
starts distorting slightly. The faulted system I/O operator is then RN f(-)R*, where ()
represents the nonlinear output stage: see figure 4. The sandwich structure uniqueness theorem
tells us that from I/{O measurements alone (of the whole system) we can locate the faulty
repeater,

This should be compared to a linear fault: suppose an element in the kth repeater amplifier drifts
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(a) - cable repeaterl— o
(b} -+— R(s) cee — 1 R(s) e
N
(C) R(S)"—'°' R(S)F—-f(o)—ooo-——‘ R(S)+
®
(d) —’-—'R(S)'—- LA ‘ﬁ(S)-—ooo—‘ R(S)b’——
&
figure 4

in such a way as to, say, halve the bandwidth of the repeater. The kth repeater is still linear, but
with frequency response l?(a). I/O measurements alone cannot locate this fault, since the

system'’s linear (and only) frequency response is R(a)‘v"i?(a) no matter where the fault is.

7. Application: Linearization of Nonllnear Systems

Often we would like to make a nonlinear system linear, or at least more linear than it was.
One very successful technique is to use strong negative linear feedback around the system; this is
used for example in amplifiers. But in some cases it is not possible to use this technique, since the
requirement of closed-loop stability limits the amount of feedback possible. This would be the
case if the system had a delay d, where d™! is on the order of (or smaller than) the bandwidth
over which we'd like the closed-loop system to be nearly linear. In this case a linearizing pre- for

post-) compensator might be more appropriate. Let us define three different problems:
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Pre-compensator Problem: Given a Volterra series operator P, find a Volterra series operator

@pre such that PQ,,, is linear.
Post-compensator Problem: Given P, find @, such that @, P is linear.

Pre- and Post-compensator Problem: Given P, find Q,,, and @, such that Q,,,PQ,, is

linear.

The pre-compensator problem would be appropriate if P were an electro-mechanical actua-
tor (we envision @ realized electronically); similarly if P were a mechanico-electrical sensor the
posf,-compensator problem is appropriate. If P is, say, a communications channel, then we might
be able to use both a pre- and a post-compensator, and we have the third problem. It should be
mentioned that the problem of finding a feedback which linearizes P can be shown to be

equivalent to the pre-compensator problem.

To see that these three problems are in fact different, consider the three operators with
block diagrams shown in figure 5. The memoryless nonlinearity is /(:)Q.expz—l, which has

inverse g(z)=Ilog(z+ 1).

P — ) 1 $5
s-|
P2 "l s+l > fle)
s-|
P3-_——b f(o) o S+| 2 q f(o)

figure 5
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It can be shown that for P,, the pre-compensator problem is solvable (take @ = g(-)) but the
post-compensator problem is not. For P,, the post-compensator problem is solvable, but the pre-
compensator problem is not. For Pj, neither the pre- nor post-compensator problems is solvable,
but the pre- and post-compensator problem is (take Q,,, = Q.5 = g(')).

We do not know general conditions on P under which any of these problems is solvable.
But we will show how the ideas of §9 of chapter 2 can be used to construct Q,,,, if only its first
kernel @,,.; is known. Suppose that P@Q is linear, that is

(PQ)(8) = Py(s)@i(s), (PQ)y =0, n>1

Using the composition formula we have for n > 1:

0= (PQ)n(31,..82) = SYM ¥ Y Pi(srt ..t 8, o s8ay b1t ot 2, )
bl { Vg 21
it ety =

'Qll(al!'"v’sl) Tt ka(sn-lk-b-l"'-x’n)

This is precisely the situation we had in the Inversion theorem, and the same recursive procedure

determines @, for n > 2:

n
Q,,(31,...,8,|) = —P1(3x+ ot 8y )-1 SYM E E Pg(81+ ot 8,1,...,8",,‘_+1‘+ ..t 8,,)'
k=2 ‘l"""kzl
s1+...+:‘,-=n

'in(sly---v’sl) v Qx‘,(an-tk-i-l,---;’n)

Note that the right-hand side of this equation refers only to @, for j < n, since k¥ > 1.

This observation is by no means a solution to the pre-compensator problem, just a humble

start.






Chapter 4

Approximating Nonlinear Operators with Volterra Series

The main purpose of this chapter is to make precise two folk theorems. The first is that any
time-invariant continuous nonlinear operator can be approximated by a Volterra series operator,
and the second is that the approximating operator can be realized as a finite-dimensional linear

dynamical system with a nonlinear readout map.

The usefulness of Volterra series hinges on their ability to model a very wide class of non-
linear operators. Two general approaches can be taken to establish this. First, one can directly
demonstrate that many explicitly described systems have 1/O operators given by Volterra series.
In chapter 2 we used the various interconnection theorems to show that a simple dynamical sys-
tem had a Volterra series I/O operator; using the more general results of Sandberg! one can estab-
lish that a wide class of systems have I/O operators which are given by Volterra series, the
requirement being, roughly speaking, that the nonlinearities are analytic. Thus an op-amp (with
transistors modeled by the Ebers-Moll equations, which are analytic) has an 1/O operator expres-

sible, at least for small inputs, as a Volterra series.

But many common nonlinear systems are modeled with non-analytic nonlinearities. For
example the I/O operator of a control system containing an ideal saturator, that is, a memoryless
nonlinearity with characteristic

SAT(a) A {Sig';(") s

>1

<1

(which of course is not analytic) can easily be shown not to have a Volterra series representation
valid for any inputs for which the saturator threshold is exceeded.t One could reasonably argue
that even though the I/O operator of such a control system does not have an ezact representation
as a Volterra series operator, it could be approzimated by one, for example by replacing the
saturator with a polynomial approximation. But exactly what do we mean by approzimate here,

that is, over what set of signals and in what sense can the I/O operator be approximated by a

t The Uniqueness theorem (theorem 5.2 of chapter 2) implies that a Volterra series operator which is linear
for amall inputs is in fact linear for all inputs.

45
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Volterra series operator? This is one of the questions addressed in this chapter.

The second approach to establishing the generality of Volterra series is aziomatic in style,
and conceptually more satisfying. Here one demonstrates that under only a few physically reason-
able assumptions about an operator N (sﬁch as causality, time-invariance, and some form of con-
tinuity) there is a Volterra series operator K which approximates, in some sense, N. No assump-
tion whatever is made concerning the internal structure or realization of V.

The idea of such an approximation is not new, and in fact is discussed in the original work
of Volterra,?® who cites Frechet.?® Even in this early work one can find the basic idea (clouded by
archaic mathematics): there is an analogy between ordinary polynomials and finite Volterra series,
and hence some analog of the Weierstrass approximation theorem should apply to approximating
general nonlinear operators with finite Volterra series.

Wiener rekindled interest in this problem at MIT in the forties and fifties, 3054 and since
then various researchers have considered the problem.31:32.33,34 A clear discussion of a typical
approximation result can be found on pages 34-37 of Rugh's book.® The result presented there is:
Theorem: Let K be a compact subset of L’[0,T] and suppose N: K — C[0,T] is a TI causal con-

tinuous operator. Let ¢ > 0.

Then there is a Volterra series operator N such that for all u €EKand0<t<T
INu(t) - Ru(t)) < e (0.1)
Roughly speaking, all of this work has the following problems:
(1) The input signals are nonzero only on a bounded time interval [0,7],
(2) The approximation is always on a compact subset of the input space,
(3) The approximation only holds over a bounded time interval [0, T].

While demonstrating that Volterra series operators cam, at least in a very weak sense,
approximate a general TI causal continuous operator, these results are not really satisfying. (1),
(2) and (3) are severe restrictions: we would really like an approximation which allows input sig-

nals defined on unbounded time intervals and which approximates the operator N over an
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unbounded time interval. (1)-(3) preclude, for example, periodic forcing signals which start at
t=0. Rugh concludes his discussion with the following comments concerning (2): ~...I should
point out that the main drawback is in the restrictive input space K. The compactness require-

ment rules out many of the more natural choices for K.”

The compactness requirement (2) and the finite time interval requirements (1) and (3) come
from the use of the Stone-Weierstrass theorem, which underlies all of these approximation results,
and so might seem unavoidable. Indeed we will see an example which demonstrates that without
additional assumptions we cannot find an approximation for which (0.1) holds for all t € R. But
we will demonstrate that all of these drawbacks can be overcome if the usual continuity assump-
tion on N is strengthened slightly to ensure that N has fading memory. In particular, our
approximation results (I) will hold over useful (noncompact) sets of signals, possibly nonzero for
all t €R, and (II) will hold for all time, not just on an interval [0,T].

The structure of this chapter is as follows: §1 contains the preliminaries, §2 introduces the
fading memory concept, and §3 and §4 contain the main approximation theorems. In §5 we give
discrete-time approximation results, one of which concerns approximation by nonlinear moving-
average (NLMA) operators. In §6 we consider a simple illustrative example, and in §7 we give

two other applications of the notion of fading memory.

1. Notatlon, Definitions and Preliminary Discussion
In this chapter it will be convenient to consider only continuous input signals. C(R) will

denote the space of bounded continuous functions :R — R, with the usual norm ||u||é‘sg&|u(l)|

R_ will denote {t|t <0}, and C(R_) will denote the space of bounded continuous functions on

R_, with the usual norm Hullé‘sg%h(t" A function F from C(R_) into R is called a func-

tional on C(R_), and a function N from C(R) into C(R) is called an operator. As in chapter 2
we will usually drop the parentheses around the arguments of functionals and operators, writing

e.g. Fu for F(u) and Nu(t) for N(u)(¢).
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U, will denote the r-second delay operator defined by
(Uu)(t) A u(t-1)
We say an operator N is time-invariant (TI) if U,N = NU, for all r€ R.
N is causal if u(7)= v(r) for 7 < ¢ implies Nu(t)= Nuv(t).
N is continuous if it is a continuous function :C(R)— C(R).

With each TI causal operator N we associate a functional F on C(R_) defined by

Fu A Nu,(0) (1.1)
for u € C(R_), where

w023 §59
is just a continuous extension of u to C(R) (any other would do). In words, F maps the past
inpul to N (which is an element of C(R_)) into the present output of N (which is in R). N can
be recovered from its associated functional F' via:
Nu(t) = FPU_,u (1.2)
where P:C(R)— C(IR_) truncates an element u € C(R) into an element of C(R_):
Pu(t)A u(t) for t <0 (1.3)
It’s easy to see that N is continuous if and only if F is, so equations (1.1) and (2.1.2) estab-
lish a one-to-one correspondence between TI causal continuous operators N and continuous func-
tionals F on C(R_). For this reason we often see nonlinear functionals studied, where we are
really interested in their associated TI operators. This has caused some confusion; some authors

have mistakenly used the word functional to refer to what are really operators.
We can reexpress causality and continuity as follows:

A TI operator N is causal and continuous iff for each u € C(R) and ¢ > 0 there is a §> 0 such

that for all v

?g%]u(t)—v(t)l < 8§ — [Nu(0)-Nv(0)] < ¢ (1.4)
That is, a TI operator N satisfying (1.4) is causal and continuous, and a TI causal continuous

operator satisfies (1.4).
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A Volterra series operator N is TI causal continuous on 3,, where p is its radius of conver-

gence.

2. The Fading Memory Concept

Roughly speaking, an operator is continuous if input signals which are close (meaning, the
peak deviation of the signals over all past time is small) have present outputs which are close. We
will see that a slight strengthening of continuity is much more useful. Intuitively, an operator has
fading memory if two input signals which are close in the recent past, but not necessarily close in
the remote past yield present outputs which are close. In §1 of chapter 3 we encountered a simi-
lar notion: the Steady State theorem for Volterra series. For dynamical systems, fading memory

is related to the notion of a unigue steady-state (see §9).

The concept of fading memory has a history at least as long as Volterra series themselves.

Indeed we find it in Volterra[28, p188]:

A first extremely natural postulate is to suppose that the influence of the (input) a long
time before the given moment gradually fades out.

and in Wiener|[30, p89):
We are assuming (the output) of the network does not depend on the infinite past. If the
response of this apparatus depends on the remote past, then the Brownian motion is not
a good approzimation because we shall always have to consider the remote past. So we

ere considering networks in which the output is asymptotically independent of the
remote past inpul...

and in various other work over the years.!2.5 The fading memory assumption, then, is by no
means a new stronger restriction on the operators to be approximated. It is simply an old
assumption whose full power has not, until now, been used.

How should we define fading memory? The problem is that in (1.4) we want Nu(0) to
depend less and less on the input when elapsed time —¢ is large. To do this we simply introduce a
weight in (1.4).

Definition: N has Fading Memory (FM) on a subset K of C{R) if there is a decreasing function

w:R, —(0,1], ’Iim w(t)=0, such that for each u € K and € > 0 there is a §> 0 such that for all
—0
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vEK

§g|u(1)-v(t)|w(—t) <6 — |Nu(0)-Nv(0)] < ¢ (2.1)
(This should be compared to (1.4)).

w will be called the weighting function; we will say that N has a w-fading memory, for
example if w(t)= ' then we might say N has a A\-exponentially fading memory on K. Note
that since w(t)<1, an operator with FM is continuous, so FM is indeed stronger than con-
tinuity.t

The FM property can be clearly expressed in terms of the functional F associated with N as
follows: On C(R_) define the weighted norm

llully & llu()w(-0)l = suplu(t)uw(-t)| (2.2)
Then N has FM on K if and only if F is continuous with respect to the weighted norm ||'||, on
PKA{Pu|u€K).
Remark 1: As in (1.4) above, if a TI N has fading memory, then N is causal.
Remark 2: It is interesting to note that this is very close to Volterra's "definition” of fading
memory given on p.188 of [28] (which unfortunately is not clear enough to be a real definition).
Remark 8: For LTI operators, having a fading memory is equivalent to having a convolution
representation; see §8.1.
Remark 4: By modifying the proof of the Steady State theorem it can be shown that all finite
Volterra series operators have fading memory on any ball in C(R).
Remark 5: 1f N has FM, then the steady state theorem holds for N. We may conclude, for
example, that if N has FM and u(f)=al(t), then Nu(t) = Na which is a constant (by time-
invariance). To cite another property, N can have no subharmonic response.

Perhaps the best way to appreciate the notion of fading memory is to consider an example

of a continuous operator which does not have fading memory.

t Our requirements on the weighting function w are more stringent than necessary. All we really need is
© >0 and lim w(t)=0; our additional assumptions simplify some of the proofs in the sequel.
t—00
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Example (Peak-Hold Operator): Define N,;:C(R)— C(R) by

Nyu(t) & :sl_?tu(r)

that is, N,; is a peak-hold operator. N,; is continuous, since for all u, v € C(R)

|Noe s = Nyev]] < [lu - o]

Nevertheless N,; does not have a fading memory.$

Let us consider the problem of approximating N, by a Volterra series operator N. Con-

sider the signal

1-{¢ 11 <1
w2 {1 [

Then

0 t<-1
Npk"o(t)= {1 t>0

Now for any Volterra series operator N we have
ﬁluo(i) =hy fort<-1
and
lim Nuo(t) = hy
t—00
(This is a consequence of the Steady-state theorem). Hence for any Volterra series operator N
1

2

Thus we may conclude no Volterra series operator can approximate N, within 0.1 over all time,

| Vot o - Nuol| > max{|hq, |1-hof} >

even for the single input uy. In fact the same argument holds for any operator N with fading

memory, if we substitute NO (which must be a constant) for h,. In particular, N, itself does not
have fading memory.

This example suggests that approximation results which rely only on the continuity of the

operator, and no fading memory assumption, will be very weak. In particular, the approxima-

t There are also continnous LTI operators which don’t have fading memory, but they are quite pathological;
see §AS.
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tions need not hold for all time, even on compact sets of signals (in this example, the signal set
has only one element, u,, and so is compact). And yet a very strong approximation is possible for

operators with fading memory.

3. Approximation by Volterra Serles

Theorem 3.1 (Approximation by Volterra serles): Let ¢ > 0 and

Ké{uecm)

lu]l € My, ||Ust - u|| < My for 1'20} (3.1)
Suppose that N is any TI operator with fading memory on K. Then there is a finite Volterra
series operator N such that for all u €K

[|Nu - Nuf| < ¢ (3.2)
Remark 1: The assumption on N is extremely weak. As mentioned earlier, it does not in any

way concern the internal structure or realization of N. For example N could arise from a non-

linear PDE, but even this is not necessary.

Remark 2: We can reexpress K as

K= {u €C(R) ||u(t)] <My, u(s)-u(t) S M s-t)fort <s }

Thus K can be described as those signals bounded by M, and having Lipschitz constant M, that
is, slew-rate bounded by M,.t
Remark 8: The signals in K are not "time-limited” (i.e. zero outside of some interval such as
[0,T]), and the approximation ]Nu(t)—ﬂlu(t)] < ¢ holds for all t ER, not just in some interval
[0, T} (cf Rugh’s theorem, (0.1)).
Remark 4: K is not a compact subset of C(R)!

Before starting the proof of theorem 3.1, we state the Stone-Weierstrass theorem in a con-

venient form (see, e.g. Dieudonne!® ).

t In fact K can be any bounded equicontinuous set in C(R); see §12. The K defined in (3.1), while far from the
most general, has a nice engineering description.
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Suppose E is a compact metric space and G a set of continuous functionals on E which
separate points, that is, for any distinct u, v € E there is a G € G such that Gu 3£ Gv. Let F be
any continuous functional on E and ¢>0. Then there is a polynomial p:R™ - R and

Gy, ...,Gy€Gsuchthatforallu €F

|Fu - p(Gu, ...,Gyu)| < ¢

Proof of theorem 3.1: Suppose K is given by (3.1) and N has fading memory on K, with
weighting function w. Let F be the functional associated with N, given by (1.1), and define

K_APK, that is

K = {Pu u€ K}
(P is the projection (1.3)).
Lemma 3.2: Consider the weighted norm ||'||, on C(R_) defined above in equation (2.2). K_is
compact with the weighted norm ||| .

The proof uses the Arzela-Ascoli theorem and a diagonal argument and is in the appendix,
§A6. Since lemma 3.2 is the key to obtaining approximations valid for all time and on noncom-
pact sets, some discussion is in order. Note that K_is not compact with the standard norm || ||.
To see this, let

uo(t) & max{0,M,- M.jt|}

and consider the sequence v, a PU_,uqin K_ (see figure 1).

Vn : Vi Vo

e o o

t=—n t=-1 t

-
i} ==

figure 1
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With the standard norm, this sequence has no convergent subsequence, and hence K_ is not com-
pact in C(R_). Yet intuitively, to a device with fading memory the sequence v, should appear to
be converging to zero, and this is indeed true: ||v,||, — 0 as n —co. The idea of lemma 3.2 is

that the fading memory makes K_ "appear” compact to our functional F.
Continuing our proof, we define a set of functionals G on K_ which are continuous with

respect to the weighted norm |||,

oo oo
G& {G l Gu = [g(nu(-ndr, [|g(n|w(r)ldr< oo} (3.3)
) )
Note that since 0 < w(t) <1, the condition g/w € L'(R,) implies g EL'(R,). The fact that

any G €G is continuous with respect to the weighted norm ||°|],, follows from

|Gu - Gv| £ {[la(t)IW(f)")(Iu(—t)—0(-1)IW(t))d¢

00 [+ o]
< suplu(-t)-v(-t)|w(t) flg()w(t) at = |Ju - vl [lo(t)|w(t) dt
2 ° 0
Lemma 3.3: The functionals G separate points in K _.

Proof: Let u, v€EK_, u 7% v. Define

9olt) & (u(-t)-v(-t))w(t)e*
Then
{Iao(l)lw(f)"dt < ulf + o]l < o0

so let G, be the functional in G associated with g, as in (3.3). Then

00
Gou - Gov = [(u(-t)-v(-t))2w(t)etdt > 0
0
since u and v are continuous and u 3¢ v. This proves lemma 3.3. []
Now by lemmas 3.2 and 3.3 and the Stone-Weierstrass theorem, we conclude that there is a

polynomial p:R¥ <R and G,, . . ., Gy €G such that for all u €K_

| Fu - p(Gu,...,Gyu)| < € (3.4)
Explicitly writing out p:

K
p(Gry,..Gyu)=ao+ Y}, Y o ;G u.G u

nod gy, SN
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= ho+ if co byt )u(-ny) . u(-ra)d . dT,
n =]

where hog ag and

K
h"(Tl,...,T,,)nA- E E all l.gtl(rl)"'gl.(rﬂ)

nad 1y, SM

and the g, are the kernels of the functionals G as in (3.3).
We mentioned above that the g,'s are in L'(R,), so &, ELY(R]), and thus they are the

kernels of a finite Volterra series operator which we call N. We finally show that N is the desired
finite Volterra series approximator of N. Let u €K and t ER. Then PU_;u € K_, hence by (3.4)

|FPU_yu - p(G,PU_yu,...GyPU_yu)| = |Nu(t) - Nu(t)] < ¢ (3.5)
Since (3.5) is true for all ¢t €R, we conclude for all u € K

[INu - Ru]| < e
which proves theorem 3.1. []

4. Approximation by Dynamical Systems

The block diagram of N is shown in figure 2. Note that it consists of a single-input multi-
output linear time-invariant operator followed by a multi-input single-output memoryless non-
linearity. One question arises immediately: can the LTI block be realized as a finite dimensional

linear dynamical system? We will now show that it can.
In the proof of the approximation theorem we used only two properties of the set G of func-
tionals: first, that each G € G has a w-fading memory, and second, that G separates points in K_.
Let’s examine the first property. For a functional G on C(IR_) given by
o
Gu = fy(r)u(—r)dr (4.1)
o

(where g €L'(R.,.)) the necessary and sufficient condition that it have w-fading memory, that is,

be continuous with respect to the the w-weighted norm, is

{ lg(w(r)dr < o0 (4.2)

Now we make the observation that if a TI operator N has a w-fading memory, then it has a -
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Single=Input Multi—Output Multi—Input Single-=Output

LTI Memoryless Nonlinearity

figure &
fading memory for any weighting function & which dominates w (i.e. w(t)> w(t)). By using the
weight
T(t) & max{w(t), (1+ t)*}
(and relabeling it w) we may simply assume that the weight satisfies w(t)'< 14 t. Under this
assumption it follows that every G which comes from s finite dimensional (ezponentially stable)
linear dynamical system has a w-fading memory, since the integrand on left hand side of (4.2) is

exponentially decaying, that is

T]g(r)]w(r)“drs 7Me‘“(1+ t)dt < oo

0 0 _
if Jg(t)] < Me™'. In the next subsection we will show that the G's which come from finite-
dimensional linear dynamical systems separate points in C(R_). From this discussion we con-
clude:
Theorem 4.1 (Approximation by ﬂnltedlmenslo-nal dynamical systems): Let ¢ > 0 and K

be given by (3.1). Suppose that N is any TI operator with fading memory on K. Then there is a

finite Volterra series operator AN such that for all u €K
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[|Vu-Nul] < ¢

where A is the I/O operator of the dynamical system

z=Az+ bu y=p(z) (4.3)

where A4 is an exponentially stable A X A matrix and pRYSRisa polynomial.

We have shown that under one extremely weak condition on a TI operator, namely that it
have fading memory, it can be approximated in the strong sense of theorem 3.1 by the I/O opera-
tor of a finite-dimensional linear dynamical system with a nonlinear (indeed, polynomial) readout

map, as shown in figure 3.

xl
X2

A

. N

2 (SI-A) b p(*) “ .

.
[ J
Xm

Linear Memoryless Nonlinear

Dynamic System Readout Map

figure 8

In principle, then, a dynamical system of the form (4.3) can always be used as a macro-model3S of
a complicated or large-scale nonlinear system, as long as the system has a fading memory.
Whether an acceptable approximation is possible with M reasonably small is, of course, a harder

question.

The idea that a system of the form (4.3), shown in figure 3, could be used to approximate a
very wide class of Tl operators is not new. Wiener considered the case where the LTI block in

figure 3 consists of a set of Laguerre filters, that is,
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r
1 1-¢ (1-g)!
I+  (1+8)2" 777 (14 8

which Lee realized with the lattice filter shown in figure 4 (see Wiener[30,p92]). t

(o -A)Y = V2

(4.4)

+ 4-\/ + + +
J’zﬂ:_(t)@) X, X, X3 X
/\ e o o —_—0

figure §

To see that Wiener’s Laguerre system can approximate any TI causal operator with fading
memory in the strong sense of theorem 3.1 or 4.1 (a result evidently unknown to Wiener and his

coworkers), we need to establish that the Laguerre functionals {L,,L,,...} given by

Liu & }ol,(t)u(—t)dl

where 7,(s) = v2(1-#)*}(1+ s)*, separate points in C(R_). If not, there are u; # uy€ C(R.)
such that for all k¥ Lyu,=L,u, Let u=1u,-uy so that L,u =0 for all k. We will show that
v =0, which will prove that the Laguerre functionals separate points in C(R_). Note that

(t)e'?€LYR,) and u(-t)e*2€LYR,) and

Ly = })(lt(t)e‘/ﬁ] (u(-t)e*?)dt =0
0
for all k. But the span of the functions lt(t)e'/"’ is dense in LZ(R+),TT so we conclude
u(—t)e"/?=0 and hence u =0. This proves that the Laguerre functionals separate poin'ts in
C(R_); since they are a subset of the functionals which come from Bnite-dimensional linear
dynamical systems, a fortiori these functionals separate points, a fact used in the previous subsec-

tion. Of course there are many other sequences of functionals which separate points in C(R.).

t The only real diflerence between (4.4) and (4.3) is that in (4.4) we require the minimal polynomial of A to
be (s+1)¥, since a change of coordinates can change the numerator polynomials. Seee.g. §8.2.

t1 See §A11 for a self-contained proof of this fact.
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6. A Note on Approximation by Bllinear Systems

The dynamical system approximator (4.3) can be realized as a bilinear system, that is, one
of the form
z=FEz + Fzu + Gu (5.1)

y=H: (5.2)
where z €R’ (usually r is much larger than M of theorem 4.1) and 2(0)=0. In fact this is a

special case of an exercise in Rugh’s book|6,p130]; here is a simple way to see it: Suppose the

polynomial p in (4.3) is of degree n.

Let z be a vector consisting of all r = E [M+kk—l] monomials of degree <n formed from

k=0
Zy, ...,Iy. Clearly we can write y = p(z) in the form (5.2), where H contains the coeflicients of
p.
We will now verify that z satisfies an equation of the form (5.1). Consider the {th com-
ponent of z, say z; = z;‘ s z;}’, where i1+ ...+ 1y < n. Then
: M .. 'y s -1 'y
=Y inZpz)' 2y 2y (5.3)
m==]
M . 12 Inl1 W
= Y ipomzez 2y oz + (5.4)
m, k=]
M . 5 s -1 ‘'
+ Yimzaz) cczm Izl bpu (5.5)
m =]

using (4.3). Since each monomial in (5.4) and (5.3.5) has degree (in x) <n, we can reexpress this

as:

T [
é/ = EEI’Z, -+ ZF,,z,u + G',u

p=l p=i
which is of the form (5.1).

In (5.1) the readout map is linear, but the vector field contains the product term Fzu (cf
(4.3)).

Approximation by bilinear systems has received much attention, but in a context different
from that considered here. Usually (but not always) the systems to be approximated are dynami-

cal systems with analytic vector fields. The approximation is generally not in an I/O sense, but
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rather in the sense of a perturbational expansion of z in u, meaning the input-to-state maps agree

to order r in u. See, for example, Fliess,3 Sussman,3 or Brockett.!3

The discrete-time analog of bilinear systems are stale-affine systems, which have been used

to model complicated processes, e.g. in [38].

6. Approximation by Discrete-Time Volterra Serles

In this section we present analogous results for discrete-time systems. Z will denote the
integers, Z  (Z_) the nonnegative (nonpositive) integers. Our signal space C(R) is replaced by
1%, the space of bounded sequences (i.e. functions :Z — R) with norm

llull & suplu(k)
The definitions of time-invariance, causality, and fading memory for discrete-time systems require
only notational changes. For example a TI operator N:1® — 1 has fading memory on a subset K

of 1™ if there is a decreasing sequence w:Z . — (0,1], klim w(k)=0, such that for each ¥ € K and
Q0
€ > 0 there is a § > 0 such that for all v €K
i%lu(k)-v(k)]w(-k) <& — |Nu(0)-Nv(0)] < ¢
(cf. (2.1)).

A (finite) discrete-time Volterra series operator N:1° — 1% is one of the form

Nu(/c)=ho+\f) T ha(ineerin)u(k-iy)...u(k=s,)

B==11y,.41, >0

where h, €1(Z "), that is,

T | Baliyein)] < 00
:1,..,1.20

(cf. (2.1)).

Theorem 6.1 (Discrete-time approximation theorem): Let ¢ > 0 and

x&luer|jlu<m)
Suppose that N is any TI operator :1° — 1% with fading memory on K. Then there is a finite

Volterra series operator N such that for all u €K
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[|Nu-Nu|| < e

Remark: In the discrete-time theorem there is no "slew-rate” limit on the signals in K: K here is

just the ball of radius M, in I,

In the next section we will see a stronger form of theorem 6.1, so we omit the proof.

7. Approximation by Nonlinear Moving-Average Operators

As in §4, the discrete time Volterra series approximator N can be realized as a finite-
dimensional LTI dynamical system with a polynomial readout map. But for discrete-time systems
we can choose the LTI dynamical system to have a particularly simple form: its transfer function

can be simply

T
Hy(z)= [l,z", - ,z“‘”“]

(This should be compared to the Laguerre system described in §5.2) The approximator has the

block diagram shown in figure 5; Nis simply a nonlinear moving-average operator.

ooo——-—wZ"'

p(e)

Z>
c

figure 5

To summarize:
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Theorem 7.1 (NLMA approximation theorem): Let ¢ > 0, K be any ball in 1°, and suppose

N is any TI operator :1° — 1® with fading memory on K.

Then there is a polynomial p:R¥—=R such that for all y € K

[INu - Nul] <

where N is the NLMA operator given by

Nu(k) & p(u(k)u(k-1),...,u(k-M+1))

The proof is in §A7. Note that this theorem implies theorem 6.1, since every NLMA opera-

tor with polynomial nonlinearity is also a finite Volterra series operator.

8. A Simple Example

In this section we consider a simple example, one which illustrates some of the previous
ideas and results. We consider the simple RMS detector N shown in figure 6a, and show how a
Volterra series approximation and a Laguerre system approximation can be found. More pre-

cisely, N is given by

3 2 1/2
Nu(t) & {O.If e”"('*)[?e'("‘)u(s)ds] dr}
0 0

We chose this example for several reasons. First, N has no Volterra series representation.
To see this, suppose N were a Volterra series operator with kernels 4,. Let u(¢)=a, a constant.
For any Volterra series operator N, Na is also a constant, in fact an analytic function of a (see
§5 of chapter 2). But in this case Na=|al, which is not even differentiable at a =0, let alone
analytic. So our RMS detector N is not given (exactly) by a Volterra series. Yet it can be shown
to have a fading memory on any set K of the form (4.1), and hence our approximation theorems

hold for this N.

Another reason for choosing this example is that it is typical of the operators for which the
Laguerre system approximation requires very many terms, that is, N is hard to approximate with
a Laguerre system. Roughly speaking, this is because N has its nonlinearity near the input, and

we seek to approximate N with a system with nonlinearity at the oufput.
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figure 6

8.1. Finding a Volterra Serles Approximatlon
To find a Volterra series approximation of N on the set K given by (4.1), we find a polyno-
mial g(z) such that | g(z)-V[z[| <efor |z] < M?.t

The mean-square operator N, shown in figure 6b is a Volterra series operator, its only

nonzero kernel

hdrr) = 197 (M7 _ ) (ndD (7.1.1)
It follows that the operator N ut shown in figure 6¢ is a Volterra series operator, whose kernels

could be computed, if desired, from (7.1.1) and the composition formula. For u € K we have

t For example, let gy be the even polyzomial of degree 2M which agrees with V|s| at the points
O,Mf/M, Ceey Mf. Then for M large enough, ¢ will work.
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0< N u<M? and hence:

INu-Nyul] <e foruek

8.2. Finding a Laguerre System Approximation

We will now show how a Laguerre approximation to N can be found. It will suffice to find
a Laguerre system approximation to the mean-square operator N, shown in figure 6b, since pass-
ing its output through a polynomial ¢(-) which approximates the squareroot operator will yield a

Laguerre system approximation of the overall operator N, as in the previous subsection.

I X
S+l
I .
2 2
(S+1) A
Y ple) Nigg
. .
[ J [ ]
(M=1)! <
—_— M
(S+nM
figure 7

Consider the system N,,g shown in figure 7, where the readout polynomial p is homogeneous
of degree two, that is
M
P(zl,---,zu) = E ﬂuztz;
t,)==l
This ﬂl,,, can be transformed to a Laguerre system via the change of coordinates 7 = Tz,
where T is the (constant, invertible) matrix such that
(1+ ) - (1+8)!

T : =2 _
(M-1)1(1+ o)™ (1-2)M (14 o)™
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&Ia; is a Volterra series operator whose only nonzero kernel is

M
x"’(’1’72) = E B, 7;-174-18—(q+1,_.)

1,y==1

We will now show that by proper choice of p (that is, M and the B,,’s) ﬂ/,,, approximates N on

K. Define

a(r,m) = 19’1(5”““{’1”2} _ l]e'("*"ﬁ/z

so that hjfr,r)=gq(r,)exp-(r,+ 7;)/2. Since ¢ EL¥RZ) and the span of the functions

7i7dexp—(7y+ 7,)/2 is dense in L3R ), we can find M and B,,’s such that

< £

M
1,01, k72
a(rm) - 3 Byitegte 4
. M

1,1=l1

(7.2.1)

Now we claim that for u € K we have ||N,u -N,“u” <e. To see this:

Nyu(t) - Nigyu(t) = [[hdry,r) - Borr)) u(t-ry)u(t-rx)drdr,

fodd M 1. 1. T
= ff[q(flvfz) - 38, ,1'-175—13'( w ?)/2][6_( l'..72)/2“(‘-"1)“(‘—"’2)]‘”1‘”2
00

=1

so by (7.2.1) and the Cauchy-Schwarz inequality:

LS‘

[ Nyu(t) - Nu(t)] < -A;—l,le-("+"),2u(¢-rl)u(l—12)

since

I Ic-(qu.@/zu (¢

~n)u(t-rg) ||, < M,

Thus for u € K we have ||[Nyu - N u]|<e

9. Linear Time-Invariant Operators and Fading Memory

We have seen that the notion of fading memory is quite useful in establishing various
approximation theorems. In this section and the next, we discuss briefly two other topics which

involve fading memory.

There is a folk theorem that every LTI causal continuous operator has a convolution

t See §A11 for a simple proof of this fact.
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representation. Unfortunately this folk theorem is false, since there are LTI causal continuous
operators which have no convolution representation. But in fact these operators are unlikely to
occur in engineering; for example they do not have fading memory (see A8 for an example of

such an operator).
However if "continuous” is strengthened to "FM™, our folk theorem becomes true.
Theorem 9.1 (Convolution theorem):

(I) A:C(R)— C(R) is LTI FM iff A has a convolution representation

0o
Au(t) = [u(t-1)h(d7) (9.1)
0
where A is a bounded measure on R .

(II) A1®*—=1*is LTIFM iff A has a convolution representation

Au(n) = ?h(k)u(n-k) C(99)
where h €1'(Z ).

Remark: (9.1) may be more familiar to the reader in the form

e}
Au(t) = [h(r)u(t-r)dr
0
where in this equation A is to be interpreted as a measure, e.g. may contain &functions.

The proof of theorem 9.1 is in §A9. Theorem 9.1 shows that for LTI causal systems, having

a fading memory is equivalent to having a convolution representation.

10. Fading Memory and Unique Steady-State in Dynamical Systems

The notion of fading memory is strictly an input/output property, that is, it refers only to
the operator V which maps inputs into outputs; the realization of N (there need not even be one)
is irrelevant. But if N does have a realization as a dynamical system, then the fading memory
property is related to the unigue steady state property3® for dynamical systems. In this section we

elaborate this point.
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Consider the system

z = f(z,u) (10.1)
z(0)=0 (10.2)
where z({)€R", v €C(R,), and f:R"XR—R". Suppose f is such that (10.1) and (10.2)

define an operator N:C(R,)— C(R,)" given by z = Nu.

Theorem 10.1: Suppose N has FM on C(R,.), and f is such that all of R" is reachable from
the origin.

Then the system (10.1), (10.2) has a unigue sfeady-state.

More precisely, let zo, o€ R", and let z and 7 denote the solutions of (10.1), but with initial

conditions z, and 7, respectively. Then

lim ||2(t)-Z(t)]] = 0
t—0o0
Thus the fading memory assumption implies that the state will be "asymptotically indepen-

dent” of the initial condition, to use Wiener's phrase.

The proof of theorem 10.1 is in §A10. We have presented theorem 10.1 only to demonstrate
that there is a connection between the ideas of fading memory and unique steady state; far
stronger theorems can be proved.

The conditions under which a dynamical system has a fading memory is a very important
topic itself. To mention perhaps the simplest condition, if an equilibrium point is well-behaved
(meaning, the vector field is continuously differentiable there and the linearized system is
exponentially stable and controllable) then for inputs small enough the input-to-state map will

have a fading memory.

11. Coneclusion

We have shown that any operator with fading memory can be approximated in a strong
sense by a (finite) Volterra series operator which can be realized as a finite dimensional linear
dynamical system with a polynomial readout map. For discrete-time systems, the approximating

operator can simply be a nonlinear moving-gverage operator. The approximation holds over any
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bounded set of signals K; in the continuous-time case we must add a slew-rate limitation as well.

The approximation is in the sense of peak error, worst case for all signals in K.

Since the original work of Volterra there has been much research on this topic, but none has
yielded the strong approximations presented here. The reason is related to a remark in §2.1 con-
cerning the difference between TI causal operators and functionals on C(R_). Intuitively it would
seem that this correspondence implies that an approximation of a functional (perhaps, via the
Stone-Weierstrass theorem) should also yield an approximation of the corresponding T/ causal
operator. This is true, if the set of signals K C C(R_) over which the approximation holds is also
time-invariant, i.e. UK =K for all ¢ > 0. But here's the catch: TI subsets of C(R_) are gen-
erally not compact,t and hence the Stone-Weierstrass theorem can’t be used to approximate the
functional. Our solution to this problem was to observe that while a set such as K_, although not

compact, should "appear” compact to an operator whose memory fades with elapsed time.

We close with some remarks concerning the practical application of the material presented
in this chapter. While the approximations are certainly strong enough to be useful in applications
like macro-modeling of complicated systems or in universal nonlinear system identifiers, we know
of no general procedure, based only on input/output measurements, by which an approximation

can be found. Perhaps an adaptive scheme can be made to work in practice.

12. A Mathematical Formulation

It is possible to generalize the results of this chapter to a clean and simple mathematical
form, at the cost of some engineering intuition. First, we extend our definition of fading memory
to:

N has fading memory if its associated functional F is continuous with respect to the
compact-open topology.

For continuous-time systems, this is the topology of uniform convergence on compact sets; for

discrete-time systems, this is the topology of pointwise convergence. The definition of fading

t For example if K contains at least one compactly supported element, then it is not compact. There are TI
compact subsets of C(IR_), for example {U,f | ¢ >0}, where [ is almost periodic.
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memory given in this chapter, in terms of a weighting function w(-), implies fading memory in
this sense. Our lemma 3.2 can be generalized to:

A closed bounded equicontinuous subset of C(R_) s compact in the compact-open topol-
ogy.

For the discrete-time case:
A closed bounded subset of 1° is compact in the compact-open topology.

Since in 1® the compact-open topology is the weak-* topology, this last assertion is just an

instance of a classic theorem of functional analysis: the closed unit ball is weak-* compact.40

With these extended definitions, all of the approximation theorems presented still hold.






Chapter &

Measuring Volterra Kernels

Volterra series have appeared in the engineering literature for forty years now, and yet rela-
tively few attempts have been made, outside the biological areas, to actually measure Volterra
kernels. In this chapter we will discuss practical techniques for measuring the Volterra kernels of
a weakly nonlinear system. In this context, a weakly nonlinear system simply means a system
which is well described by its first few Volterra kernels; more precisely, the error bound function
(see corollary 2.2 of chapter 2) for the Volterra series truncated after a few terms should be small

for the maximum signal amplitudes of interest.

We assume that the nonlinearities may be subtle (i.e. distortion products 40db or more
down) and that the measurement noise is low (or that the necessary signal averaging has been
done). Examples of such systems are some high quality transformers, electromechanical and elec-
troacoustic transducers, simple communications systems; not included are e.g. devices with dead
zone, hard saturation or hysteretic nonlinearities. While the problems of kernel measurement in
biology are quite different, involving stronger nonlinearities and very poor S/N ratios, much of the

following is still relevant.

Related work includes that of Narayanan and Meyer et al.4%.45.48.47 who have studied IM
distortion in transistor circuits; Weiner and others have done similar work for simple communica-
tions systems.8.49 In these studies a model of a tranmsistor or modulator is assumed and expres-
sions derived for the various kernels; then certain distortions such as 2f,-f, are measured at a
few frequencies and input levels and checked against the model’s predictions. Certain recent work
by Ewen and Weiner 8 assumes a specific (but important) form for the Volterra kernels and gives
methods to solve the resulting parameter identification problem. In contrast to these studies we
make no assumption about the form of the kernels. These measurements are thus useful in sys-

tems of such complexity that no simple model is obvious, and for model validation when one is.

We have chosen frequency domain Volterra kernels over time domain Volterra kernels and

Wiener kernels for two reasons. The first is that it is easier to accurately measure frequency

70
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domain kernels than time domain Volterra kernels when the nonlinearities are subtle. Second and
more important, we are usually interested in frequency domain Volterra kernels precisely because
they have an intuitive interpretation: for example Ho(jw,,~jw,) is 2 measure of the second order
difference intermodulation of w; and w,. While a similar interpretation exists for time domain
Volterra kernels, no such simple interpretation can be given to the Wiener kernels, whose apparent
advantage is "ease” of measurement with white noise®0.51,52,53 Concerning this last "advantage”,
we feel that in many applications the advent of microcomputers, D/As and A/Ds has outmoded
the use of white noise/correlation techniques. With only a few inexpensive components it is now
possible to generate very complicated multitone signals with all distortion products near the noise
floor, often 70db or more down. Signal processing too has gone far beyond Y. F. Lee’s Laguerre
lattice filter (see §4 and figure 4 of chapter 4). These practical considerations allow us to make a

more direct attack on the measurement problem than was possible twenty five years ago.

The organization of this chapter is as follows: in §1 we discuss resolving the output into its
homogeneous components, in §2 we cover the basic multitone method of measuring the kernels, in
§3 we introduces a new quick method of measuring the second kernel, and in §4 we describe a

simple experimental example.

We will use trigonometric polynomial input signals, that is, input signals of the form:

M
u(t) = l(t)tzua,,e""“

where a_, = a;.
Recall from chapter 3 that for input signals of this form the output y approaches a steady-

state y, as {—00, ys(t)= Y yn(t), where

na=]

Vou(t) = ) ap,...ap H,(jwky,...,jwk,)e’@H7 * ok
‘MSH---J’, SM .

Note that the nth order component of y, is a sum of exponentials whose frequencies are sums of

n input frequencies, negative frequencies included.

We will assume that the steady state output spectrum (i.e. the Fourier coeflicients of y,(t))
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is measured. For notational convenience we will assume w=1 and drop the qualifier "steady-

state” in the sequel.

1. The Problem of Kernel Separation

In general the output y due to u has components of all degrees, though in the systems we
consider their amplitudes fall off quickly, that is, only a few are significant. One step in measur-
ing the kernels is to estimate the components y,,... of y. What we need is a stable method of

estimating

1 &

Yn=—r

n! da”

(see chapter 2). While N(au)(t) is in general an analytic function of a, for the systems we con-

N(au)|

sider it is close to a low order polynomial in a, with coefficients y,. Thus the problem of estimat-
ing the different order components is in practice one of estimating the coeflicients of a noisy poly-
nomial. There are many ways to do this. We'll first describe the simplest, which we call the

interpolation method.

Consider the fact that y, is homogeneous of degree n in u. Thus if our input is reduced
6db, y, falls 6db, y, 12db and so on; if —u is applied, the odd degree components change sign
while the even ones do not. Suppose that the components of degree five and higher are negligible,
i.e. buried in the measurement/quantization noise. Let us apply the signals «, u(t) to the device
and call the resulting responses r,(t), where a,, i=1,..4 are some wisely chosen nonzero distinct

constants. Then we have

8! ay af af of Y1 €y
ret __ |2 o af al V2 c2
rsl T las af af of| |us M €3
T @ o a afl W 2

where the e, contain measurement noise and terms of degree five and higher. The matrix A
above is a Vandermonde matrix, and is invertible since the a, are distinct and nonzero. Approxi-
mating e=0 and solving this equation gives us an estimate of the components y, in terms of the

measurements r,. This is just a simple polynomial interpolation and is mentioned in Simpson and
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Power 53 and Halme.!®

Sometimes we know apriori that only certain y, appear; the other y,’s may then be dropped
from the y vector and the corresponding columns from the A matrix. For example if we know
only even order responses occur, the equations above can be replaced with a two by two system

involving just y, and y,. This is of course equivalent to interpolating with an even polynomial.

The a, must be chosen carefully. Choosing the a, large has the advantage of making
{l47Y|| small, so the error in our resulting estimates is small. The disadvantage is that to estimate
the components at some reference level we apply a larger signal, perhaps overloading the device
(that is, operating the device where it is not weakly nonlinear in our strict sense). The «, should

alternate in sign and not be too close, to keep ||47!|| small.

But even with careful choice of the a,, the interpolation method is in general sensitive to
measurement error. To see this consider estimating y, and y, with a;=1, az=-1. We average r,
and r; to get y,, and since r, is very nearly -r, (y2 is generally much smaller than y1) we have
committed the cardinal sin of subtracting nearly equal quantities. Of course this example is
oversimplified, but it conveys the basic idea. A more formal explanation is that the absolute error
in y is bounded by ||A“c||, but yz,ys ... are generally much smaller than y, so the relative error
in these entries may be huge. Rescaling the equations, perhaps using y,,10y,,100y, - * - instead

of y1, Y2 ... simply makes A~! blow up.

One improvement is to take additional measurements and use the least squares solution of
the resulting overdetermined equations as our estimate of y. This is the method we used, and
although it is an improvement over the simplest interpolation method, it still gives poor estimates
of the higher order components: estimating the rapidly decreasing coeflicients of a noisy polyno-
mial is inherently difficult. What we can say is this: we can get a good estimate of the first
coeflicient appearing, a poorer estimate of the next, and a very poor estimate of the small high
order coefficients. This observation suggests that our measurement method should arrange for the
component we need to estimate at some frequency to be the first (i.e. lowest order) component

appearing at that frequency. We call this frequency separation.
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The simplest and oldest use of frequency separation is as follows: suppose the input frequen-
cies are all odd. Then the odd and even order responses occur at odd and even order frequencies,
respectively. To isolate a second order response at some even frequency we need only remove the
4th, 6th, etc. order responses, that is, estimate the z? coefficient of an even polynomial. We could
use the interpolation method, modifying the matrix and y, but the estimate will be very accurate
since the second order response we seek is not swamped by a larger first order response; it is the
first large response occurring at that frequency. Moreover by applying the signal at three levels
we can approximately remove the eflects of the components through degree six, as opposed to
degree three for the general case. This trick is widely known, the requirement is simply that the

input signal be odd, i.e. have the inverse-repeat property as it is sometimes called.

It should be mentioned that complete separation of the components of different order by fre-
quency separation is impossible. For whenever w is an nth order response frequency, it is also an

n+ 2,n+ 4, ... order response frequency, at least.

2. The Multitone Method (*Harmonic Probing”)

In this section we discuss the actual measurement of the kernels. Suppose we apply a two
tone signal u(t)=cos(n,t)+ cos(not), n;>ny>0. Then Y(n,+ ny)=1/4H(jn,,+ jn;)+ terms of
order 4, 6,... and for certain values of n, and n,, additional terms of order 3, 5,... Applying the
signal at two or three levels and using the interpolation method to estimate the second degree
component of §(n,+ n,) yields an accurate measurement of Hy(jn),jn;) and Hy(jn,,~jn,). At the
same time we can measure Hy(jn,,jn;) and Hy(jn,jn,) but these are of less interest since they
always lie on the line w;=w, . We simply repeat this procedure until a sufficient number of
points has been measured.

A variant of this method can be used to measure the third and higher order kernels. Sup-
pose a three tone signal is applied. Third degree responses occur at up to 22 different (positive)

frequencies, three of which are the input frequencies n; ,n,,ns.t If we choose integer triplets such

t They are:

%), Wy Wy 3m;, Smy Smy |yt oty
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that the full 22 frequencies appear (the “general” triplet has this property), estimation of y,
yields a good estimate of 19 points of Hs. The four points Hy(jn),+ jno,+ jns) are of more
importance than the remaining 15 which lie on planes where two frequencies are equal. Note that

12 points of H, can be measured from the same experiment.

3. A New Method

Unfortunately, measuring kernels by the multitone method can be quite slow. For example
to measure H, at only 100 points (relatively few) requires at least 100 experiments, each experi-
ment consisting of generation of a signal, waiting for steady state, sampling the output, and then
computation (FFT, kernel separation). One may have to wait through half of these before decid-
ing the input level is too low or high or that another frequency range might be more interesting.
We've developed a method for getting a quick estimate of the second kernel. We use this method
to make decisions about input level, frequency range, etc. before using the slower but more robust

multitone method.

It is perhaps surprising that many points of Hy(jw,,jw,) can be simultaneously measured
since methods for simultaneously measuring many points of H(jw) for a linear device (pseu-
donoise, impulse testing) rely very heavily on linearity. The idea is simple: arrange the second

order IM tones to lie on distinct frequencies which don’t include the input frequencies.

We start with two relatively prime integers p and ¢, ¢ odd. The probing signal will have
two parts: one with frequencies p, 2p,...p(g-1)/2 and the other with frequencies ¢,2g,...q(p-1).
We claim that the part one- part two intermodulation tones are distinct. These IM tones occur at
frequencies np+ mg, 0<|n|<(g-1)/2, 0K m<p-1; the input tones are precisely the n=0 or
m=0 cases. Suppose that fip + iig = np+ mgq, where 0< 7@, n < (¢-1)/2 and 0 < 7, m < p-1.
Taking residues mod ¢, we have 7=n modg, and thus i=n considering the inequality in 7, n
above. Hence m=m as well. This shows that the part one -part two IM tones are distinct and

do not include any input frequencies. They also do not include any part one(two) -part one(two)

|2myt maf,  [2m,2 mg|, [2mpt wy|, [2mptws], [2matm,], [2mat g
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intermodulation tones since these are all Omodp (modg); here we use the inequality in 7, m.
The conclusion is that at the part one -part two IM frequencies, there is no first order component
and only one second order contribution. Let us take p=7, ¢=>5 as an example. We make a

table as follows:

14 19 24 29 34 39 44
7 12 17 22 27 32 37
0 6 10 15 20 25 30

-7 2 3 8 13 18 23

-14 9 4 1 6 11 16

The left column and center row (in bold) are input frequencies; the other entries are the part one
-part two IM frequencies and it is easily checked that at these frequencies there is no first order

and just one second order contribution.
A quick estimate of H, is now easy: we apply this multitone signal u at, say, six different
levels and use a least squares interpolation to estimate J, . Almost every entry of 3, gives us a

value of H, : in our example above ,(8)=H,(155,-75)a B where & and 5 are the complex ampli-

tudes at 15 and 7 in u. This should be compared to the multitone method where only two or four
of the entries of 'ﬁz are used and in fact the efliciency of using the FFT is questionable.

We should make one comment concerning the choice of the complex amplitudes of the fre-
quencies in the probing signal. While it is tempting to make them all one, this is the worst choice
possible. This results in sin(0N/2)/sin(6/2) type signals with very high crest factors; the signals
spend most of their time down where the quantization step is significant. For a given peak level
(to keep from clipping the device, perhaps) the amplitudes are small, and the second order distor-
tions we are trying to measure are extremely small (i.e. small squared). To avoid these problems
we simply let an optimization routine adjust the phases to minimize the peak.5 The practical
result of this is to pack as much probing signal (L2) as possible into a given peak. For signals
with frequencies f, 2f, ...Kf near optimal phases are §;,=(7k?)/(K+ 1);} our optimization rou-
tine used these as starting points. For the quick tests we used (7<p,q<25), we were able to

reduce the peak by more than 10db and thus realize a 20db gain in measurement sensitivity.

t D. J. Newman, personal communication.
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This is not far from the bound peak)»’K?? for a K tone unit amplitude signal:+4
2

K LTI ottt 6) dt = |[ul)2
7 = 2 {Seosthr+ ) at = iz

k=1
K 2
) = 2
< ossilgz'{;:icos(kt+ 5,)} lu]2
To illustrate this figure 1 shows two 7-5 quick test signals: the first (darker) with optimized phases
and a peak of about 4, the second with all phases zero and a peak of 8. In this case the peak has

only been reduced about 6db (representing a 12db gain in second kernel measurement sensitivity),

but in more realistic cases the improvement is greater.

1: sig(x,theta)

10 21 siglzero,thetal
3 : ' o1
4 i ; ce2
7F
o F
o
g
-2 H
9 theta
) ST TS WS S WA SHE UHE Wi GH W SN T 1 I S S U WY S S TS N
~4.8 0.0 2.8 4.0

figure 1

We have now arrived at probing signals which at first glance resemble the white noise we com-

plained about in section one, but we hope the reader will appreciate the difference.

tt Incidently this technique of choosing the phases of a multitone signal to minimize the crest factor of the
probing signal is readily applicable to Lnear maltitone testing, and as far as the aunthor knows, has never beea
used before.
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4. An Example

In this section we briefly describe our test set up and illustrate some of the above with an
example. We used a small 8085 based microcomputer to generate the probing and trigger signals
and do all computation except the FFT; an HP3582A spectrum analyzer collected and

transformed the responses. We built several reference nonlinear devices with known kernels like

6.4 0.064
Hi(s)=— =
is) 1+ 8 /8, Hefsy,22) (14 8,/ 30)(1+ 22/ 20)
H,=0, n>2 2,=27350 | V.l <1V

and used them to check the algorithms above. Note that the distortion is at most 19, i.c. at least
40db under y,. The values of H, measured by the multitone and quick methods were within 2%
and 79, respectively, of the prédicted values. Figure 2 shows the magnitude of H, measured by

the multitone method; it is indistinguishable from the graphs based on either the quick test meas-

urement or the expression above.

TH21Uf1,¢2) 1 (db)

228t e A
-3. .1
R £ 2N
\ (757 SOOI
T O X OSSR
5080001 T >
e RRIRRISIERT v
2.080e+3 RSN REE 111" 1.e0eeea
1.800043 "‘""4-_".__1‘5 llfl""““j; vee
e.800 .
-1.808e43
1(Hz) -z.eeoo‘oa ;2-90"" f2(H2)

figure 2

The example we give is an electro-acoustic transducer, a JBL 2441 compression driver on a
Northwest Sound 90 degree radial horn, measured 0.5m on axis. We chose this example because

it has no simple modelt and as far as we know these measurements have never been made before.

t An accurate model would involve at least: nonlinear fux-coil linkage, nonlinear support compliance, and
thermodynamic nonlinearity (distributed!).
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To illustrate frequency separation and the fact that N(au) is indeed close to a low order (even)
polynomial in a, figure 3 shows the real part of the output at 800Hz versus the input amplitude of
a 400Hz signal. The interpolation method correctly estimates a large second order, small fourth
order, and nearly zero first and third order components at 800Hz. A plot like figure 3 can warn us
that a device is not well-described by its first few Volterra kernels if it is not close to a low order

polynomial.

2.ax1872 ReG@OHz (ampl(y, 1v ~20Pa)
) -
=
6.6:\ /
4.0fF
z.aE 4
-
o amp
F )
1N ] A PPN B e —aa . d
-g8.0 -4.0 8.0 4.0 8.0

figure 8

Figures 4 and 5 show typical input and output spectra for this transducer during a 13-11

quick test.
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figure 4

In figure 5 one can see clearly the large first order responses at the input frequencies and the

smaller higher order responses.
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figure 5
The responses on the right which are about 8db higher are mostly second order part II -part II
intermodulation. Measurements of the second kernel of the transducer by the quick method and
the two-tone method agreed within 5%. Figure 6 shows the magnitude of the second kernel meas-
ured by the quick method. The peak distortion here is only 2%. Some features are recognizable,
for example the "trough” along the line f;+ f.=0 suggests a linear high pass filter (horn cut-off)

following a nonlinear operator.
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Appendices

Chapter 2 Appendices

Al. Volterra-Like Series

In the study of (linear) convolution operators in engineering it is common to consider only a
subalgebra of the bounded measures, for example the subalgebra of measures lacking singular con-
tinuous part.!® This algebra is large enough to capture all of the commonly occurring distributed
systems such as distributed transmission lines, transport delays in control systems, etc. Similarly
in the study of Volterra series operators only certain types of measures occur in practice; the
singular kernel 1(r,)1(r)e” '&(r—75) of exar;lple 2 of 81 is typical. Sandberg calls series with ker-
nels of this form Volterra-Like;3 the idea occurs as early as 1953 in L. Zadeh's paper.5®

In a Volterra-like series we index the series not by the order n but by a multi-index
i =(ny...ny) (n,>0). k is called the length of #; the degrec of ® is defined by

of = n+ ..+ n;.
Nu(t) = Lyalt)

w(t) = f e f;;‘(r,,...r,)u(t—r,)"‘...u(t—r,,)"’drl...dr,

where now the kernels A, are ordinary L' functions instead of bounded measures. Each

Volterra-like kernel A, can be turned into an equivalent Volterra kernel hm by:

hi(Tireea) B SYMbi(r,7y 41 Tnon 41)8(11 7). (T =T ). 8(T 1T )
We call hyy the associated Volterra kernel of the Volterra-like kernel k. Collecting the associ-
ated Volterra kernels by degree
R =m
yields a Volterra series equivalent to the Volterra-like series. Via this associated Volterra series,

Volterra-like series inherit the concepts of gain bound function and radius of convergence.

Note that hm is supported on the k-dimensional set given by+

1t We appeal to the reader’s intuitive notion of dimension.
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Cy = {(rl,...rﬁ)r ny of the 7's are z;, - - - n, of the 7's are z, }

Thus the associated kernel is singular (with respect to Lebesgue measure) unless 7 = (1,...1).

We extend the notion of SYM to Volterra-like series by:

1
SYM’XV(TI,...T‘) = Tr E ha'ﬂ(ral!"'fdl‘)

aest

where 0% =(n,y,...n,;); we say h, is symmetric if SYM£h, =h,. This agrees with our earlier
notation if we think of the old order n as the n-long multi-index (1,...1), since o(1,...1)=(1,...1).
Note that SYM# involves not just the Volterra-like kernel A, but all Volterra-like kernels of the
form 7 =of. We say 4 and 7 have the same {ype in this case. A Volterra-like series thus has
P(n) different types of kernels of degree n, where P(n) is the number of partitions of n.t If the
Volterra-like series is symmetric then the kernels of the same type have identical associated ker-
nels and are simply related by:

hy(ry,...7¢) = hog(ye. 1) = hy(751y--Tot)

This extension of SYM will also be useful in the study of multi-input Volterra series.

Theorem Al.1 (Uniqueness theorem for Volterra-like serles):

Suppose N and M are Volterra-Like series operators with kernels h; and g, respectively. Then
N=M it SYMh,=SYMy, for all 7.

Proof: The "if” part is clear. By the Uniqueness theorem (theorem 5.2) we know A, = g,, where
h, and g, are the kernels of the associated Volterra series (given in (A1.1) above). We will finish

the proof by showing that A, determines the Volterra-like kernels SYMha,.

Theorem Al.2 (Decomposition theorem for Volterra-like serles):

Suppose h, are the kernels of the Volterra series associated with a Volterra-like series with kernels

he. Then h, uniquely determines the Volterra-like kernels SYMA_,.

Thus if a Volterra series comes from a Volterra-like series, then each kernel can be uniquely

decomposed into the 2"~! symmetric Volierra-like kernels with which it is associated. Another

t There is no nice formula for P(n). For those interested it is asymptotic to (4\/§n)“exp1rv2u/3.
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way to think of the Decomposition theorem is: the (linear) map of the symmetric Volterra-like

kernels into the associated Volterra kernels (given by formula (A1.1)) is injective.

Before starting the proof, let us consider a simple example which illustrates the idea. The

second kernel of the associated Volterra series is:

1 1
ho(r,me) = A+ bpey = baanm) + ?h(2)(71)5(71'72) + —2°h(2)(72)5(7’r72)
Decomposing h; is easy: the terms Ay, and hy1,4) are mutually singular measures (The first is

supported on the line {r;==7,} and the second is absolutely continuous). To be quite explicit we

have the formulas:

h(x,x)("v’z) = hy(n,m) for n57,
Lo I8 L 31

. 1
h(z)(f) = ‘]‘_’}},m,{ '_L hr,r)dndr,
The proof of the Decomposition theorem uses the same idea: the associated kernels of h,

and A, are mutually singular unless #’ and m are of the same type. To prove this, note that the

associated kernel of A, has all its mass in the set

Cqp= { (T1,0.7a)T l n, of the 7's are z,,...n; of the 7's are z; ; z, are distinct }

This is no more than the assertion that

[ Ihslnerdu(t-r) " (t-r) Y drdry = [ - - [ho(ryere)u(t-n) " u(t-n) " dry..d 7,
7. distinet

(remember that k is an L' function).

The sets C; and C5 are disjoint if # and # are of different type, and equal if the types are
the same. This establishes the claim that the associated kernels are mutually singular unless the
multi-indices are of the same type. The L! function hy(ry,...,7¢) is determined by the integrals

f .. -fha.(rl,...,r,)u1(1,)...u,(‘r,)drl...dr, (Al.2)

where the u,, s=1,....k are in L®. According to the discussion above we have

f fh,,(rl,...,r.)ul(rl)...ul(r,l)uz(r,,I_H)...u,(r,)drl...dr.
c

=K[--- fh,(r,,...,r,)ul(r,)...u,(r,)drl...dr,
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where K is the number of Volterra-like kernels with the same type as #. Thus the integrals
(Al.2), and hence the function h,, are determined by h,. This proves the Decomposition
theorem.

Remark: The Decomposition theorem is not so obvious as it might seem. For example consider
the consequence that (nonzero) operators of the form

y(t) = ffh(zg)(fnfz)“ (“71)2“(“7'2)2‘1 ndr,

can never be put in the form

y(t)= ffh(,,s)(r,,rz)u(t-rl)u(t—rz)sdrldrg
This is so even though the associated kernels are both supported on two-dimensional sets. The
frequency domain version of the example above is: Suppose Hgo8),8,5) and H(; 5(8,,85) are the
Laplace transforms of symmetric functions in L'(R%). The Decomposition theorem says we can

extract H, o and H(, 5) from the fourth order frequency domain kernel

H4(81,...84) = SYM{H(gyg)(sl-é- 89, 83+ 84)+ H(I,S*sl! 82"” 83+ 84)}
(which has nine terms!) There are explicit formulas which effect this decomposition, but we will

not give them here.

Corollary A1.3: If h, are symmetric, then

[hall =32 lAgll
dF=m
Thus the gain bound function, which we originally defined via the associated Volterra series, is

simply given by:

1 (z) = YlIa:l| ="
*

A2. Incremental gain theorem for L’

To demonstrate the difficulty of a theory of Volterra series operators for L?, p <oo, which is
unadulterated by reference to |[u]|, consider just the memoryless operator Nu(t)==f(u(t)). If
N is to be defined on any open subset of L” then we must have Rad N = p=00. It is not hard to

show that N maps L? back into L’ if and only if f is sector bounded, i.e. |f(z)]<K]z|.
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Sandberg has recently shown that if N has a Frechet derivative at 0 (as an operator from L’ into
L?) then [ is in fact linear!?

We now give the proof of

lemma 3.4:

ull+||vi]) - u
¥t 0)-Nall, < ol ZUEHA=TUED. <y, o ragie o)
(Remember that unmarked norms are co-norms).
Proof: The conclusion is, if anything, sharpened, if we assume the kernels are symmetric (see §5)

so we will assume they are. Then:

(N(u+ v)- Nu)(t) = if o () Ii(u+v)(t—r,)—ﬂu(t—f,)}drl...dr, =

= Z‘f e fh”(rl,...,r,)‘é[';}f[v(t-r,)dr, f[ u(t-r,)dr,

1=] r=zk+41
Thus

| N(u+v)-Nu|(t) <
< 58 Ul {f - [lbalrra) . fl ot 4

n=] k==

As in theorem 3.3 the bracketed expression is a measure in 7, with norm ||4,]|, so we have!®

19+ 9)=Nally < ol 35 1ol 3 (Mol = popy, LAl Lol =7l
L] k==l

The last inequality in the conclusion of lemma 3.4 follows from the mean value theorem.

A3, Taylor Series Which Aren't Volterra Serles
In §5 we showed that the Volterra series operators are simply Taylor series of TI operators
:L® — L%, but noted that the Volterra series are not all of the Taylor series. In this section we

discuss this point in more detail.

Much of the theory of Volterra series holds for the more general Taylor series

Nu = gP,(u)= 3 Ma(u,u)

n==]

where M, is the bounded TI n-linear map :L® —L* given by M, =(n!)"'D(*)N(0). With the
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gain bound function f(z)=Y ||M,||z* only notational changes are required to prove all the
results of §7-§9. For example, such an N has a Taylor series inverse near 0 if and only if M, is
invertible.

The differences between our formulation of Volterra series and a more general formulation

based on Taylor series are:
(I) Not all bounded TI n-linear maps :L™" — L™ have a convolution representation
M, (uy,...u,) =f <. fh,,(n,...,r,.)ul(l—rl)...u,.(l—r,.)dr,...dr. (A3.1)
with A, € B(R]).
(II) The norm we use, ||A,]|, is not equivalent to the norm || ||,z on L,(L®,L%), it is stronger

(larger). That is (with some abuse of notation)

Uhallse & s0p (1] ba(ricra)ult=r)c(t=r )l < Il
and the ratio of the two is not bounded away from zero. Indeed we will give an example where

the ratio is zero.

(I) is true even for n=1. We now give an example. Consider the subspace of L™ of those

u’s with a limit at {=-00, that is

{ u €L® l lim u(t) exists }
t——oco
On this subspace we define F(u ).A.‘lim u(t). F is clearly a LTI bounded functional on this sub-
—-0

space. Using the Hahn-Banach theorem and the Axiom of Choice F can be extended to a LTI
bounded functional on all of L™, which we denote LIM (see Kantorovich|56,p58] or Rudin[11]; see
also §A3). LIM can also be thought of as a bounded LTI operator :L® — L™ (though its range is
just the constants).

For any u which vanishes for ¢t <O we have LIMu = 0. This establishes that LIM is causal,
and that LIM has no representation as a convolution with a measure. It also shows that the
Steady State theorem does not hold for LIM. To mention just one more bizarre property of LIM,

it is a bounded LTI operator which maps sinusoids to constants!
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Clearly this example is absurd from an engineering point of view. LIM’s perfect memory of
the infinitely remote past (and indeed, total amnesia for the finite past) contradicts our intuition

that bounded LTI physical devices and systems should have a fading memory (see chapter 4).4

n
Let us now give an example of (II). For n>1 []LIMuy, furnishes an example of a bounded
=]

multilinear operator not given by a convolution as in (A3.1). Less bizarre examples can also be
given for n>1. For example we can have a convolution representation with A, an unbounded

measure. 1t Consider the kernel

bl ) = () it

Then |[hj| = [|hy(r;,7)| drid7,=oc0. Nevertheless this kernel induces a bounded bilinear map
:L®?—~ L™, First we have to say what we mean by the convolution since the integral in (A3.1) is
not absolutely convergent with this A,. We mean

TT
Mg(ul,uz)(t)é }i_{x‘l)offhg(rl,rg)ul(t—rl)u;;(t-rg)drldrg
0

To see that this limit exists and that M, is bounded, we rewrite this as

oo T
e uo(t-75) } —iryry Ua(E-1y)
= Th_{nw_[ {—-1-;?1(1‘-12) Re{e -Wdrl dr, (A3.2)

As T — oo the lefthand bracketed expression in (A3.2) converges in L? to the L? function
1(r2)ug(t-75)/(1+ 72); by the Plancherel theorem the righthand bracketed expression in (A3.2) con-

verges in L? to the L? function

ul(t—') A
Re [Tf-(—‘)-] (12)
where by 7 we mean here the Plancherel transform of f €L2 Consequently the limit in (A3.2)

exists and is bounded by

uZ() U1(') A
o) < || ) “R[IT(‘) ,

t Moral: don’t fiddle with the Axiom of Choice.
{1 In the literatare this is often stated: 'f cee f]h,(rl,...,r_)| dry...dr, <oois a sufficient but not necessary
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< 2o
= 3
which establishes || M|, < 2V27/3. This example was suggested by D. J. Newman. Like the

I allool[w2lloo

first example LIM above, it is rather forced.

There are thus at least three costs associated with generalizing Volterra Series operators to

arbitrary Taylor series:

(1) We lose the concrete convolution representation (A3.1);

(2) The norm ”h,,||=f <o flh,, |d7 ...d7, is replaced by ||M,]|az Which is nearly impossible
to compute;

(3) We include clearly nonphysical operators such as LIM.

It is the authors’ feeling, and we hope the examples above have convinced the reader, that the

mathematical elegance and completeness of a general Taylor series formulation is not worth (1)

(3).
Chapter 3 Appendices

A4. Absolute Convergence of the Inner Sum

In §5 we established the Fundamental Frequency Domain Formula under the hypothesis

that

{ ) }m(k,)...a(k, \H, (jwky,...,jwk, ) (A4.1)

flf, +k.-m
be finite. In this section we give two simple conditions which ensure that (A4.1) is finite, the first

a condition on the input signal u, and the second a condition on the kernel H,.

A4.1 Conditions on the Input Signal

We seek conditions which ensure that

) }Iﬁ (ky)... 0 (k)| (A4.2)

Ey+ . +k mmm

condition for BIBO stability of a second order Volterra operator.” An incorrect example is given in[57).
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is finite. This of course implies that (A4.1) is finite, since |H,| < ||A,|]. Note that (A4.2) is sim-
ply (A4.1) when N is the simplest possible n-order operator: the memoryless n-power law device
Nu(t)=u(t)".

Since u € L*[0,27w7'], u €L%0,27w™Y], s0 & €1°. Thus for n=2 (A4.2) is just a convolution

of two sequences in 1Z and thus is finite by the Cauchy-Schwarz inequality:

00
Y 1S k)a(kdl = 35 1S (k)] [ 9(m-k)] < 11 llzllgll (A4.3)
kit kg £=1
Since the convolution of two 1 sequences is not, in general, in 12, the finiteness of (A4.2) already is
dubious for n=3. On the other hand if & €1', then convolution iterates of u make sense and are
still in 1': (A4.2) is then bounded by [|3]|;".

It is a remarkable fact that for most u (A4.2) is finite, even when # is not in 1'. It is not

true for all u € L®[0,27w™], cos(1/t) is a counterexample.+

Theorem A4.1.1 Suppose that 4 (k)= O(1/k). Then (A4.2) is finite, that is

) }lﬁ(kl)-uﬁ(k,.)l <o

ky+ 4k m=m

Proof: Suppose that % (k)= O(1/k). Then there is a constant § such that |% (k)| < A0 (k) where

A All k=0
LCEY I
Since v €17, it is indeed the Fourier series of some L? function which we will call, surprisingly

enough, v. In fact

v(t) =1 - log2 - log(1—cost)

the verification of which we will spare the reader.

Now

¥ |8 (ky)...6 (k)| < B Y V(k,y)...9(k,) (A4.4)
e Fme) {

1t t k= ky+  + b -

so it will suffice to show that the righthand side of (A4.4) is finite. We break up the proof of this

t D. J. Newman, personal communication.
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into three lemmas:
Lemma 1: Suppose f and g are in L2 Then (fg)" =1 4.
Even though this is well known we give a short proof here for completeness.

Proof: We have already seen in equation (A4.3) that the convolution 7 converges absolutely.

Recall that (Plancherel theorem)

M
lo- ¥ 9(B)e*" |, =0 as M—o (A4.5)
k=M

By the Cauchy-Schwarz inequality

2rwt

M N
2% [ 1@)Ma()- X 5(R)er e mdt | < NIfllzllg- 3 G(k)e’® |l (A4.6)
0 b=m-M =M
By (A4.5) the righthand side of (A4.6), and therefore the lefthand side of (A4.6), converges to O as

M—o0o0. But the lefthand side of (A4.6) is just

M
(79)"(m) - 3 G(k)] (m-k)

kM
Letting M — o0 yields the conclusion. []

Lemma 2: v(t)" €L’ for all n. (That is, v €L’ for all p <co).

Proof: Clearly we need only worry about the singularity at ¢=0, that is v(¢)" €L if and only if
(log(1-cost))" is integrable near t=0. This is true iff (log?)" is integrable near ¢=0, which is true
since

1 ~logr
[ ogt|*dt = [ e*z"dz < n!
3 0

which establishes lemma 2. []

Lemma 3:

{ b)) }?’(kx)---?)(k.) = (v")"(m) (A4.7)

kit +k m=m
Proof: By induction on n. Suppose we have established (A4.7) for n. By lemma 2 v* and v are

in L? so applying lemma 3.1 we have (v**!)* = (v*)" #7; using the inductive hypothesis
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(v"“)"(f"ﬁ)=2{ ) }?’(h)---?}(kn)?f(ﬁ—m)={ ) }Nh)---?}(k..ﬂ)

m |kt +hmm kyt +h ==X
the change of order valid since the summand 48 positive (Fubini theorem). This completes the

proof of lemma 3. []

We can now finish the proof of theorem A4.1.1. From (A4.4), (A4.7), and lemma 2 we have

byt th ym=m

{ ) }lﬁ(h)---a(h)l < A (") (m) < lv"[h < o0
establishing theorem A4.1.1.[J

One useful condition which implies % (n)= 0(1/n) is that u have bounded variation over

one period.

Lemma 5.1: Suppose u has bounded variation over one period. Then

y }lﬁ(k,)...ﬁ(k,)l <

k14~ + k =m
Proof: If u has bounded variation over one period then %(n)= 0(1/n)2* (the proof is essentially

integrating by parts the formula for ﬁ(n)) and thus theorem A4.1.1 proves lemma 5.1. []

A4.2 Conditions on the Kernel H,

Lemma 5.2: Suppose that H,(jwk,,...,jwk, )= O( ). Then (A4.1) is finite, that is:

ko F,

{ v }]ﬁ(kl)...ﬁ(lc,,)H,.(jwkl,...,jwk,,)l < o

k1+ + b w—m
Proof: Suppose H,(jwky,...,jwk,)==O(1/k,...k,). Then H,(jwky,...,jwk,) € I}(Z"). Since

4 €1% U(k,)...u(k,) € 1(Z") with norm || ||] so the Cauchy-Schwarz inequality yields

Y |8 (ky)... U (k) Ho (Gwkyyeoyjwky)] € Y5 (k). 0 (k) Ho (Fwky,e.. fwky )]

byt k= byyeurky

< (k). B (kN Ha Gk, jok )z = G2 | Ha (F0ky,.... swka)ll2

which proves lemma 5.2. []
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A5, Almost Perlodic Inputs

Recall that 7 is said to be an e-translation number for u if ||u(-}-u(-+ 1)]| < €. u is almost
periodic if for all €>0 there is an L such that all L-long intervals contain at least one &«
translation number for u. Formally

Ye>03L Va Fr(s <r<s+L and |Ju(-}-u(-+1)|<¢)

These definitions and a concise discussion can be found in Wiener|[58] or Corduneanu[59).

Theorem AB.1: Suppose u is almost periodic and ||uf]<p=RadN. Then Nu is almost
periodic.
This extends some results of Sandberg, who established theorem A5.1 under the assumption

that u has an absolutely convergent Fourier series with small enough coeflicients.”

Proof: Let €>0. Choose r with ||u|]| < r <p. By the Incremental Gain theorem (theorem 3.2 of
chapter 2) there is a K such that on B, || Nu-Nv|| < K||u-v||. For any 7, |Ju(-+ 7)|| < r, hence if
7is an e-translation number for u then

IVu(}-Ne(+ 1l < Kllu(}u(+ )l < Ke

so 7is a Ke-translation number for Nu.

Now to finish the proof: Since u is almost periodic find L such that all L-long intervals con-
tain at least one e¢/K-translation number for u. From the discussion above these translation

numbers are e-translation numbers for Nu, thus Nu is almost periodic. []

Remark: 1t is not hard to show that any continuous time-invariant operator from L™ into L*®
maps almost periodic functions into almost periodic functions. To see this, we first give a modern
(less concrete) definition of almost periodic functions: u is almost periodic iff it is continuous and
the set of its translates {u(-—t)} is compact in L°.5° Now if u is almost periodic and N is time-
invariant and continuous :L® — L%, the translates of Nu are {Nu(-—t)}, which, being the con-

tinuous image of a compact set, is compact. Hence Nu is almost periodic.
We will now establish the analogous fundamental formula for almost periodic inputs.

Theorem A5.2 (Fundamental frequency domain formula for Almost Perlodle Inputs):
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Suppose that u is almost periodic and |{u|| < p==RadN, and in addition

{ ) m}lﬁ(“’kl)wa(wk_ JH, (jwiyenjwi )] < 00 (A5.1)

W + tw
1 s

Then for any w€R

(Nu)™ (w) = "i{ i y }3 (w,x)...ﬁ(wk_ JH, (Jwi,enjwi) (A5.2)

"‘Ut -y
Proof: Due to the similarity to the case of periodic inputs, we give a shortened proof. As in §3

we first assume that the input has the form

M
u(t)= Y o’
bua-M

We will call such a u a mullitone signal. It is easily verified that for multitone signals

r { o v (A5.3)

: 1 -jut —_—
Tlllnw?{u(t)c Mt = 0 otherwise

The limit in (A5.3), which can be shown to exist for any almost periodic function and any v € R,

is denoted i (r). The same argument as in §3 establishes

(Nu )A (w) = i { E }a(wkl)"'a(wk‘ )Hl(jwk""'rjwl‘.) (A54)

n==] w,l«t +w*.==w
for the case of u a multitone signal. We now use the fact that almost periodic functions are pre-
cigely the uniform limits of multitone signals. 8 Thus there is a sequence of multitone signals uy,

with |fuy]l < p and ¥y — u uniformly as M — co. By the Incremental Gain theorem Nuy — Nu

uniformly as M — co. Hence for any v in R (Nuy)” (v)— (Nu)”(v). Since formula (A5.4) above

holds for multitone signals we have

(Nu) (@) = 3 T }uﬁ(w,l)...u;}(w,- VHy (jwp ooy, (A5.5)

lim
ud”"w{wtl-r Sty =
Since upy — u uniformly, uy(w)— @(w) uniformly. Dominated convergence and hypothesis (AS.1)

yield

W + tw, wmy
by IR

= i { )) }a (w,l)...a(w,. JH, (jwi e dwy ) (A5.6)
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which is the conclusion of theorem A5.2. []
Chapter 4 Appendices

A6. Proof of Lemma 3.2

We must show that

K. = {u €EC(R))

lu(t)] € My, [u(e)-u(t)| < Ma—t) for ¢ < s 50}
is compact with the weighted norm ||'||, in C(R_.). Let u,, n=1,2,... be any sequence in K_.
We will find a uo€ K_ and a subsequence of {u,} converging in the ||'||, norm to uy, which will

establish Lemma 3.2.

Let K_[-n 0] denote K _ restricted to [-n,0], that is

K|-n0] & {u EC[-n,0] [|u(t)] S My, |u(e)-u(t)| S M s-t)for-n<t < s 50}

For each n, K_|-n,0] is uniformly bounded (by M,) and equicontinuous (by the slew-rate limit
M;), hence compact in C[-n,0] by the Arzela-Ascoli theorem (see e.g. Dieudonne|18]). Since
K_|-1,0] is compact in C|-1,0], we can find a u{? € K_[-1,0] and an infinite subset IN; C IN such
that
-l§u$o|u,(t)— uf(t)) =0 asn = o0, nEN,
Viewing {u, | n €IN,} as a sequence in K_[-2,0], we conclude that there is a uf? € K [-2,0]
and an infinite subset IN, C IN, such that
A Solu,,(t) —uf(t)) =0 asn = 00, nEN,
Clearly u§® extends ulY, that is, ué’)(t)= uf")(t) for-1<t<0.
Continuing in this way we find a uo€ K_ and a decreasing sequence of infinite subsets

N DO N; D - such that for each &
_kssu solu'(t) —ugft)) =0 asn =+ 00, n EN, (A6.1)

We now choose any increasing subsequence n; such that n, €EIN;. Then from (A6.1) we

have for each &,
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-k:élyso'u'*(!) - up{t)) -0 as k - o

that is, the sequence u,, converges to uo unformly on compact subsets.
Now we claim that u, converges to ug in the weighted norm, that is, }im ||u,,‘— tol| o =0.
—+C0

To prove our claim, let ¢>0. Since w(t)—0 as t - oo and w is nonincreasing, we can find

ko € IN such that w(ky) < ¢/2M,; since Uy, 4o€ K_we have

Sup [un () - uolt)|w(-t) < 2M w(ko) < € (A6.2)
S 4o
Now use (A6.1) to find k, such that

_t:gysolu,*(t) -uoft) <€ fork2>k (A6.3)
From (A6.2), (A6.3) and w(t) <1 we conclude

Hun-volle < € for k2> k

which concludes the proof of Lemma 3.2.[]

A7. Proof of NLMA Approximation Theorem
We start with the discrete-time analog of Lemma 3.2:

Lemma:

xaluer@)|lu<m)
is compact with the weighted norm |||, given by

llullo & sup |u(k)lw(-k)
Proof: We give an abbreviated proof since it is similar to, and in fact simpler than, the proof of
lemma 3.2 given in §AS6.

Let {u)} be a sequence in K_. Since |u(")(0)] < M,, find a subsequence along which u(*)0)
converges; let us call the limit u(°)(0). Now find a subsequence of this subsequence along which
u("X-1) converges; call this limit u©(-1).

Just as in the proof of lemma 3.2 we continue this process, defining the element v® € K_ as

("t)

we go. Take a diagonal subsequence n;; v *' converges pointwise to u® as k — oo, and exactly
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as in lemma 3.2 we can show
||u(”’)— v, =0 ask — o0
which proves that K_is compact. [J

Now consider the set of functionals

ca {GO,GI,...}
where G, u éu(—lc), that is, G; is the functional associated with the k-delay operator U; (transfer
function z7¥).
It is easy to verify that the G;’s are continuous with respect to the weighted norm ||-||, and
that G separates points in 1°(Z_). Applying the Stone-Weierstrass theorem as in theorem 3.1

yields an approximation by a NLMA operator.

A8, Causal Continuous LTI Operator with no Convolution Representation
Here is a brief description of one such operator (see Kantorovich|56,p58| for details). It is
possible to find a linear functional L/M:1*° — R such that
[LIMu| < {u]]
and if kEr_!:ou(k) exists, then LIMu =kgu_:ou(k). Thus LIM assigns a "pseudo-limit” LIMu to
every element of 1 (the vast majority of which do not converge as k — —00). Consider the opera-
tor A:1° — 1% given by

Au(n) = LIMu

Thus for every u €1%, Au is the constant sequence LIMu.

A is LTI causal continuous, but has no convolution representation since its response to a
unit sample is zero, and yet it is not the zero operator. Note that A is a LTI causal operator
which does not have fading memory. Of course, an operator like A is not likely to occur in

engineering.
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AS9. Proof of Theorem 8.1 (Convolution theorem)
We will prove (II), and then indicate some of the changes necessary to prove the
continuous-time version (I).

First suppose Au = h*u where h €1'(Z ). We will show that A has fading memory (that

it is LTI causal is clear). Consider the weighting function

1/2

w(n) A u»ur"?{ﬁ p(e) (A9.1)

We claim that A has a w-fading memory. As in (5.1.2) we need only establish

SA& S h(n)w(r) < o
n=0

In fact S < 2, which we now prove. Define

6(n) & ﬁlh(k)l

so that

2B 8(n)-8(n+1
S = (o2 uw__l
O )
00
=1+ §(0)2Y 6(n+1)(6(n+ 1)V/2-8(n)/?) (A9.2)
n =0
Since 0 < 6(n+ 1) < 6(n) we have
8(n+1)(6(n+ 1) /2-6(n) Y2} < 6(n)/2 - 6(n+ 1)1/2 (A9.3)
(the ratio of the two is V&(n+ 1)/6(n) < 1). From (A9.2) and (A9.3)
00
S <14 602 (6(n)2-6(n+1)V?) =2
» =0
which proves that A has a w-fading memory.

Remark: If h happens to be exponentially decaying then we may use the weight w(n)=(1+ n)?,
but of course not all A €1}(Z_) are exponentially decaying, and then the more complicated weight

(A9.1) is necessary.

Now we prove the converse. Let A be any LTI operator with, say, a w-fading memory.t

t This v has nothing to do with the v defined in (A9.1).



CHAPTER 4 APPENDICES

Let b be the response of A to a unit sample, i.e. h(n)2 Ae(n) where ¢(n)= 6,,.

100

We will show (1) A €1'(Z ;) (at the moment we know only  €1°(Z . )), and (2) Au = h#y

for all u €1%.

Let F be the functional associated with A via (1.1). Using linearity and FM we conclude

there is an M < oo such that for all v €1°(Z_)

|Fu| < Mllull,
Now for any u:Z _— R define

wnlk) = {*fF) HSESO

We now use a standard argument. From time-invariance and linearity we have

N N
Fuy = Y h(B)uy(-k) = ¥ h(k)u(-k)
k=0 k=0

Consider u(k)& w(k)signh(k); from (A9.4) and (A9.5) we conclude

N
S w(ky AR < M
E=0
for all N and thus hw™ €1(Z ), which implies h €1}(Z ).
Now (2): for any u €1°(Z _) we have from (A9.4)
|Fu - Fuy] < M]lu-up|le < Mw(N+1) =0 as N—oo
Thus (noting that A(-)u(—)€1Y(Z,))
00
Fu = lim Fuy = Y h(k)u(-k)
N—oo =0

which finishes our proof. []

(A9.4)

(A9.5)

To show that a LTI operator A:C(R)— C(R) which has a convolution representation (8.1)

has a fading memory, we use the weight

-1/2

w(t) 2 {[a(en] {}:Ih(dr)l}m

Then by a change of variables we have

{|h(dt)|w(t)" =2
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so that A has a w-fading memory.

To prove that a LTI FM operator has a convolution representation is technically more

involved since we cannot directly apply an impulse input &t). But the idea is the same.

A10. Proof of Theorem 10.1
Assume the hypotheses of theorem 10.1. Since z; and Z, are reachable from the origin, let
T €R and u,, &', € K be such that

Nuy(T)=zo N&,(T)=%,

Thus, u; and &, steer z from O to z, and %, respectively, over the interval [o,T].

Define

and similarly

~nal Ts(t) o<e<T
2+ T) T>T

In fact z(t)=Nv(t+ T) and Z(t)= Nv(t+ T), since the left-hand and right-hand sides satisfy
the same differential equation and agree at ¢==0.

Let € > 0. Using our assumption that N has fading memory, there is a §> 0 such that for

allteR
oiugtlv(t)—ﬁ(t)]w(t—r) <& — [|Nv(t)-Nv(t)]] < ¢ (A10.1)
_'—
Since v(t)=T7(t)for t > T,
ossl{;étlv(t)—v(t)lw(t—r) < 2Mw(t-T)
Using w(t)—~0 as t » oo, find To> T such that w(Ty) < §/(3M,). Then for ¢ > T, the right

hand side of (A10.1) is satisfied and hence

Hz(¢) - Z(t)ll <€ fort > T,
which proves theorem 10.1. []
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All.

In this section we give self-contained proofs of two simple facts used in §4 and §8.
Fact 1: Span {/;(t)e'/?} is dense in LAR,).
(Recall that /;(t) is the kth Laguerre function, 7;(s)= v2(1-2)*(1+ s)*.)

Proof: Suppose h € LR ) and for all &

Ju(t)etn(t)dt =0 (A1L1)
Now
(he'H)™(s) = li(s-1/2) = \/E% (A11.2)

Using (A11.1), (A11.2), and the Parseval equality we conclude for all k

s Y-l
[hGuliiw)de = [3(Go)CLEIT 4, 2 o
(1/2-jw)
These integrals are easily evaluated; for example for k=1 we have 278(1/2)=0 and thus

%(1/2)=0 (recall that h € LR, ) and so % is analytic in C,, in fact § € HY( C,)). In general

e 00" g
n=o (n!)*(k-n-1)

from which a simple inductive argument yields
)
2 @/2)=o0
for all k and hence # =0in C,. Thus h =0 and Fact 1 is established. []

Fact 2: The span of

{titse P ez, (A11.3)

is dense in L{IR}).
Proof: The set (A11.3) is just the tensor products of the functions

{t'e'RlieZ,) (A1L.4)
so we need only show that the span of (A11.4) is dense in L{R,.).

Note that for each k

-1
L(t)e!* = Yattet?
s==0
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for some coeflicients a,,. By Fact 1, then, the span of (A11.4) is dense in L}R..). [J
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