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Abstract|We present a method for optimizing and

automating component and transistor sizing in CMOS

operational ampli�ers. We observe that a wide variety

of performance measures can be formulated as posyno-

mial functions of the design variables. As a result, am-

pli�er design problems can be expressed as geometric

programs, as special type of convex problems for which

very e�cient global optimization methods exist. A side

bene�t of using convex optimization is that a sensitiv-

ity analysis is obtained with the �nal solution with no

additional computation. This information is of great

interest to analog circuit designers. The method we

present can be applied to a wide variety of ampli�er

architectures, but in this paper we apply the method

to a speci�c two-stage ampli�er architecture.

I. Introduction

Operational ampli�ers (op-amps) are an essential
block of many mixed-mode systems. The folded-
cascode op-amp is a widely used op-amp in high-
frequency switched capacitor �lters because of its
many advantages. In particular, it provides a large
gain, it is easier to frequency compensate (the load
capacitor is also the compensation capacitor) and un-
like the two stage op-amp it does not su�er from fre-
quency degradation of the power supply rejection ra-
tio.
There has been extended research in the area of

computer-aided design of analog circuits. Some of the
previous approaches to automated design of analog
circuits have relied on classical optimization methods
like NPSOL [1] and DELIGTH [2]. Although these
methods can solve a wide variety of problems, they
have several disadvantages: they can only �nd lo-
cally optimum points; even if a solution exits, conver-
gence is not guaranteed and, they can be very slow.
Knowledge-based methods (like IDAC [3]) share the
same advantages and disadvantages of the previous
methods. Furthermore, they must be customized for
each design. Global optimization methods have also
been used (branch and bound in [4], simulated an-
nealing in FRIDGE [5]). These methods are very
slow and generally become impractical for large prob-
lems.
In this paper we show how we can pose to folded-

cascode ampli�er design problem as a geometric pro-
gramming problem, a special type of convex problem.
The method has been applied previously [6] to the

design of a two stage operational ampli�er. The fact
that the design problem can be formulated as a con-
vex problem o�ers a series of advantages: it converges
to a globally optimal solution; infeseability of the de-
sign is unambiguously detected; the �nal solution is
independent of the starting point; a sensitivity analy-
sis provided with no additional computation and the
solution is found very fast. The disadvantage of this
method is the reduced 
exibility in the types of con-
straints and of circuits models that it can handle.

The sensitivity analysis is a valuable tool for the
circuit designer. It allows to classify the constraints
in order of importance. The designer knows which
constraints are worth trading-o�.

In xII, we describe geometric programming. In xIII
we show that a variety of performance measures can
be written in posynomial form. In xIV-A, we give a
speci�c design example, including a sensitivity anal-
ysis. In xIV-B, we perform a trade-o� analysis of the
circuit. In xV, we give our concluding remarks.
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Fig. 1. Folded cascode operational ampli�er

II. Geometric Programming problems

Geometric programming is a special type of convex
problem. In a convex problem the objective function
and the constraints are convex functions. The advan-



tages of solving convex problems is that global opti-
mum solutions are found with great e�ciency. Ge-
ometric programming has been used before in wire
sizing for digital circuits (TILOS [7]).
Let f be a real-valued function of n real, posi-

tive variables x1; x2; : : : ; xn. It is called a posynomial

function if it has the form

f(x1; : : : ; xn) =

tX
k=1

ckx
�1k
1 x�2k2 � � �x�nkn

where cj � 0 and �ij 2 R. When t = 1, f

is called a monomial function. Thus, for example,
0:7 + 2x1=x

2
3 + x0:32 is posynomial and 2:3(x1=x2)

1:5

is a monomial. Posynomials are closed under sums,
products, and nonnegative scaling.
A geometric program (see [8]) has the form

minimize f0(x)
subject to fi(x) � 1; i = 1; 2; : : : ;m;

gi(x) = 1; i = 1; 2; : : : ; p;
xi > 0; i = 1; 2; : : : ; n;

(1)

where fi are posynomial functions and gi are mono-
mial functions. If f is a posynomial and g is a mono-
mial, then the constraint f(x) � g(x) can be ex-
pressed as f(x)=g(x) � 1 (since f=g is posynomial).
From closure under non-negativity, constraints of the
form f(x) � a, where a > 0 can also be used. Sim-
ilarly, if g1 and g2 are both monomial functions,
the constraint g1(x) = g2(x) can be expressed as
g1(x)=g2(x) = 1 (since g1=g2 is monomial).
In general, posynomial functions are not convex.

A simple change of variables converts the posynomial
objective functions and constraints into convex func-
tions. We de�ne yi = logxi, and take the logarithm
of a posynomial f to get

h(y) = log (f (ey1 ; : : : ; eyn)) = log

 
tX
k

ea
T

k
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where aTk = [�1k � � ��nk] and bk = log ck. It can be
shown that h is a convex function of y. This trans-
formation converts the standard geometric program
(1) into the convex program:

minimize log f0(e
y1 ; : : : ; eyn)

subject to log fi(e
y1 ; : : : ; eyn) � 0; i = 1; : : : ;m

log gi(e
y1 ; : : : ; eyn) = 0; i = 1; : : : ; p:

(2)

This is the exponential form of the geometric pro-
gram. Since this problem is convex, we can use e�-
cient interior-point methods [9] to solve it. The e�-
ciency is close to that of current interior-point meth-
ods for solving linear programs. This means that very

large problems can be solved very quickly. The most
important feature of geometric programs is that they
can be globally solved with great e�ciency. The algo-
rithm also determines whether the problem is infea-
sible (i.e., no design can meet all constraints). Also,
the starting point for the optimization algorithm does
not have any e�ect on the solution.

A. Sensitivity analysis

Consider the problem,

minimize f0(x)
subject to fi(x) � eui ; i = 1; 2; : : : ;m;

gi(x) = evi ; i = 1; 2; : : : ; p;
xi > 0; i = 1; 2; : : : ; n:

(3)

This problem is the same problem as (1) with modi-
�ed constraints.

We can analyze the variation of the optimal ob-
jective value, f0(x

�), of the modi�ed geometric pro-
gram (3) as a function of u and v (for small u and v)
using the logarithmic sensitivities

Si =
@ log f0(x

�)

@ui
; Ti =

@ log f0(x
�)

@vi
; (4)

evaluated at u = v = 0. Si and Ti are automatically
obtained as a byproduct of the interior-point method
(see [10]).
A sensitivity analysis gives tremendous insight to

the circuit designer. For example, Si = 0 means
that the ith inequality constraint is not active (i.e.,
slightly tightening or loosening the ith constraint will
not change the optimum point) and Si = �� (� > 0)
means that a fractional increase in the ith inequality
constraint will be magni�ed � times in the objective.

III. Design equations for the

folded-cascode amplifier

In this section we show that the design equations
for the folded-cascode op-amp are posynomial. The
reader can refer to [11] for details in the derivation.
We have used a square law model for the transistor.
In this case the device transconductance and out-
put conductance are monomials. More complicated
posynomial models for the transistors can be derived
(see [6]). We only cite some of the most important
performance speci�cations for the op-amp.

� Quiescent Power

P = (Vdd + Vss) (Ibias + 2I1 + 2I3) (5)

Note that the quiescent power is a posynomial func-
tion of the design parameters.



� Open loop gain

Av =
gm1

go1+go3
gm2

ro2
+ go4

gm5
ro5

: (6)

The inverse of the gain, i.e., 1=Av is a posynomial

function of the design parameters.
� Unity-gain frequency
Typically the output pole is made a dominant pole
and the unity-gain frequency becomes

!c �
gm1

CL

(7)

where CL is the total load capacitance at the output
node. Note that the expression for the unity-gain
bandwidth is an inverse-posynomial. Thus, we can
impose a minimum required unity-gain bandwidth.
� Phase margin
For small phase shifts we have arctanx � x and a
simple posynomial expression for the phase margin
can be obtained

PM =
�

2
� arctan

�
!c

p2

�
�

�

2
�
!c

p2
: (8)

where p2, the non-dominant pole at the drain of M3

is given by

p2 =
gm2

Cdb3 + Cgd3 + Cdb1 + Cgs2 + Cbs2

: (9)

� Input-Referred Noise
The equivalent input-referred noise power spectral
density Sin(f)

2 (in V2=Hz, at frequency f assumed
smaller than the 3dB bandwidth), can be expressed
as

S2
in = 2S2

1 + 2

�
gm3

gm1

�2

S2
3 + 2

�
gm5

gm1

�2

S2
5 ; (10)

where S2
k is the input-referred noise power spectral

density of transistor Mk. These spectral densities
consist of the input-referred thermal noise and a 1=f
noise:

Sk(f)
2 =

�
2

3

�
4kT

gm;k

+
Kf

CoxWkLkf
:

Thus equation (10) is a posynomial equation and we
can impose a maximum input-referred noise power
spectral density.
� Other constraints
One must also include constraints that guarantee
that all transistors will remain in saturation. These
conditions are posynomial conditions (see [6]). Other
constraints such as area, minimum device sizes, min-
imum overdrive voltages, PSRR : : : can also be be
written as posynomial constraints and can therefore
be handled by geometric programming (see [6]).

IV. Experimental results

A. Sensitivity example

In the design example, the positive supply voltage
was set at 5V and the negative supply voltage was
set at 0V. The op-amp was designed for a load of
5pF. The technology used in the simulations is 0:8�m
CMOS.
We have implemented (in MATLAB) a crude pri-

mal barrier method for solving the geometric pro-
gramming problems (see [10]). Despite the simplic-
ity of the algorithm and the MATLAB overhead, each
op-amp design is obtained in one to two seconds real-
time on an ULTRA SPARC-1, 170MHz.
In Table I we show the performance speci�cations

required in the �rst column, the performance ob-
tained in the second column, the HSPICE veri�cation
results and the sensitivity to each constraint in the
fourth column. This design was obtained in one sec-
ond real time. It is interesting to note that many con-
straints are in fact active, which hints to the global
optimality of the obtained design.
One can see that there is close agreement between

the predicted performance and the simulated perfor-
mance with HSPICE.
The sensitivity results can be interpreted as fol-

lows. There are six active constraints (those with
sensitivities not zero): minimum device length, min-
imum device width, area, maximum output voltage,
quiescent power and phase margin. We can classify
the constraints on how binding they are. For exam-
ple, the minimum device length is the most binding
since a 10% decrease in the minimum device length
will produce an increase of 4.7% in unity-gain band-
width. However, a 10% decrease on the minimum
device width will only improve the unity-gain band-
width by 0.16%.

B. Trade-o� analysis

Another advantage of posing the design problem
as a geometric programming problem is the ability
to quickly obtain trade-o� curves between several
performance speci�cations/constraints. Other CAD
methods may also be able to provide trade-o� curves
but it would take them a very long time.
For the next designs the default value of the spec-

i�cations are shown in Table I.
In Figure 2 we plot the maximum unity-gain band-

width versus power for di�erent maximum input-
referred noise speci�cations at 1kHz. We can see that
for a tight noise speci�cation, the maximum achiev-
able bandwidth is only 65MHz. However for only a
25% increase in the admissible input-referred noise,
we can improve the bandwidth by almost 40%.



Speci�cation/Constraint Requirement Program HSPICE Sensitivity

Mininimum device length � 0:8�m :8�m :8�m -0.4752
Mininimum device width � 2�m 2:0�m 2:0�m -0.016
Area � 1000�m2 1000�m2 1000�m2 0.2133
Maximum output voltage 3:75V 3:75V 3:72V 0.1287
Minimum output voltage 1:25V 1:2V 1:2V 0
Quiescent power � 1mW 1mW 1:02mW �0:4311
Open-loop gain � 100dB 102dB 102dB 0
Unity-gain bandwidth maximize 52MHz 50MHz -
Phase margin � 60� 60� 62� 0.3466
CMRR � 100dB 130dB 130dB 0
Slew rate � 10V=�s 28V=�s 26V=�s 0

Input-referred spot noise, 1kHz � 200nV=
p
Hz 169nV=

p
Hz 166nV=

p
Hz 0

TABLE I

Sensitivity analysis for the design example.
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Fig. 2. Maximum unity-gain bandwidth versus power for dif-
ferent noise speci�cations.

V. Conclusions

We have shown that most op-amp performance
measures are posynomial functions. This allows us
to pose the design problem as a geometric program.
A globally optimal solution can be e�ciently com-
puted for each speci�c case. Because large problems
can be solved quickly, it becomes practical to obtain
trade-o� curves involving several performance con-
straints. In addition to computing e�ciency, other
advantages of geometric programming are that it pro-
vides a feasibility proof and that it provides informa-
tion on how sensitive is the optimal point to every
constraint. This can in turn be used to better under-
stand the speci�c architecture.
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