
Embedded Convex Optimization for Control

Stephen Boyd Akshay Agrawal Shane Barratt

Stanford University

December 14, 2020



About this talk

I ideas, sloppy math

I opinions (some controversial)

I covers lots of work done by others with no explicit attribution

I sadly, no fun videos or cool examples

2



Outline

Convex optimization control policies

Why?

Tuning

Technology

Conclusions

3



Convex optimization control policies

I many control policies are based on solving a convex optimization problem

I we call these convex optimization control policies (COCPs)
I examples

– linear quadratic regulator (LQR), Kalman filter (KF)
– convex control
– approximate dynamic programming (ADP)
– model predictive control (MPC) / receding horizon control (RHC)
– single and multiple period (financial) trading
– actuator allocation
– real-time resource allocation

I a few of these are analytically solvable; we focus on the others

4



Traditional quadratic control

I dynamics xt+1 = Axt + But + wt , wt IID zero mean

I convex quadratic stage cost xTQx + uTRu

I minimize expected average stage cost

I optimal (LQR) policy has form

ut = argmin
u

(
uTRu + (Axt + Bu)TP(Axt + Bu)

)
i.e., find ut by minimizing a convex quadratic function

I analytically solve to get ut = Kxt

5



Convex control via dynamic programming

I dynamics xt+1 = f (xt , ut , ωt), ωt IID, f affine in x , u

I stage cost g convex in x , u

I minimize expected average stage cost

I optimal policy is

ut = argmin
u

E
(
g(xt , u, ωt) + V (f (xt , u, ωt)

)
I V is (convex) value or Bellman function

I ut obtained by minimizing a convex function

6



Approximate dynamic programming

I use dynamic programming form with approximate value function

I ADP policy is

ut = argmin
u

E
(
g(xt , u, ωt) + V̂ (f (xt , u, ωt))

)
I V̂ is (convex) approximate or surrogate value function

I V̂ chosen to

– capture general shape of V
– make optimization problem tractable, i.e., convex in u

I requires only that f is affine in u, g is convex in u

7



Model predictive control

I dynamics function f affine in x , u, stage cost g convex in x , u

I MPC policy: solve

minimize
∑t+H

τ=t g(xτ , uτ , ω̂τ |t)
subject to xτ+1 = f (xτ , uτ , ω̂τ |t), τ = t, . . . , t + H − 1

and take ut as control

I xt is given; xt+1, . . . , xt+H are variables

I ω̂τ |t is forecast of ωτ made at time t

I plan full trajectory xτ , uτ over τ = t, t + 1, . . . , t + H; use only ut

8



Multi-forecast model predictive control

I use multiple forecasts ω̂i
τ |t , i = 1, . . . ,K

I interpret as K different scenarios or contingencies

I MF-MPC policy: solve

minimize
∑K

i=1

∑t+H
τ=t g(x iτ , u

i
τ , ω̂

i
τ |t)

subject to x iτ+1 = f (x iτ , u
i
τ , ω̂

i
τ |t), τ = t, . . . , t + H − 1, i = 1, . . .K

u1
t = · · · = uKt

and take u1
t as control

I plan for all contingencies, but require first action to be the same for all

9



Single period trading

I wt is (given, current) asset allocation weight in period t, 1Twt = 1

I w̃t is post-trade allocation, chosen by maximizing

αT
t w̃t − γw̃T

t Σtw̃t − φhld
t (w̃t)− φtc

t (w̃t − wt)

(risk and cost-adjusted expected return) subject to 1T w̃t = 1

I αt is forecast return, Σt is return covariance, γ > 0 is risk aversion

I φhld and φtc are convex holding and transaction cost functions
(can be +∞ to encode constraints)

I readily extended to multi-period (MPC)

10



Actuator allocation

I higher level control policy produces desired forces and torques ft
I actuator allocation: choose actuator values ut by solving

minimize gt(u) + λ‖u − ut−1‖2
2

subject to u ∈ Ut , Atu = ft

I gt is convex cost function (fuel use, energy, . . . )

I second objective term encourages smooth actuator values, λ > 0

I Ut is actuator constraint set

I At maps actuator values into net forces and torques

I gracefully handles actuator failure, degradation, varying effectiveness

11



Resource allocator

I m resources to be distributed across n agents or tasks

I at ∈ Rm
+ is available resources

I action is resource allocation ut ∈ Rm×n

I choose ut by solving
maximize Ut(u)
subject to u ≥ 0, u1 ≤ at

I Ut is concave utility, usually separable across tasks

12



Convex optimization policy: General form

convex optimization control policy (COCP): action ut is solution of

minimize f0(xt , u, θ)
subject to fi (xt , u, θ) ≤ 0, i = 1, . . . ,m

A(xt , θ)u = b(xt , θ)

with variable u (and possibly others, not shown)

I fi are convex in u

I xt is the state or context

I θ ∈ Θ are parameters that flavorize the policy

13



Outline

Convex optimization control policies

Why?

Tuning

Technology

Conclusions

14



Procedural versus declarative policies

I procedural policy:

– designer explicitly specifies what to do in given context
– e.g., ut = −KPet − KI

∑t
τ=0 eτ

I declarative policy:

– designer articulates what she wants and requires
– and lets the optimization solver figure out how to do it

15



Advantages (non-controversial)

COCPs

I are interpretable; we understand exactly what they do

I respect constraints better than simple projection / clipping

I can incorporate (almost never active) safety constraints

I gracefully handle changing dynamics / availabilities / failures

I can be effectively tuned (more later)

a non-disadvantage:

I COCPs can be made fast, totally reliable, even division free in some cases

16



Advantages (possibly controversial)

I COCPs never do anything crazy, like characterize a stop sign as a banana

I parametrizing COCP is better than raw controller or policy
(stated in LQR context since 1960)

17



Outline

Convex optimization control policies

Why?

Tuning

Technology

Conclusions

18



Design flow

1. build high fidelity simulator, using real historical data, generative model, etc.

2. implement code that evaluates true performance objective(s)

3. choose a parametrized convex optimization based policy

4. tune the parameters until you’re OK with the simulated performance

19



Traditional tuning / tweaking

I typically done by hand for a few parameters that scale objective terms
I the method:

1. start with a reasonable value for θ
2. simulate and evaluate performance objective
3. update θ by hand (typically one parameter at a time)
4. repeat until (happy ‖ bored ‖ out of time)

I alternative: fire up a derivative free method, then go to lunch

20



Auto-tuning

I compute ∇θL(θk)

I L is true performance objective evaluated via simulation

I update θk+1 = ΠΘ

(
θk − tk∇θL(θk)

)
I L often not differentiable

I follow NN tradition and ignore

I use automatic differentiation to compute “∇”L(θk)

I θ can contain more than a few parameters

I use different test and validation simulations to avoid over-tuning

21



Example: ADP for box-constrained LQR

I xt+1 = Axt + But + wt , wt ∼ N (0, I )

I actuator limit ‖ut‖∞ ≤ 1

I cost is average value of xTt Qxt + uTt Rut
I ADP policy: ut is solution of

minimize uTRu + ‖θ(Axt + Bu)‖2
2

subject to ‖u‖∞ ≤ 1

I we’ll compare to clipped LQR and LMI-based upper- and lower-bounds

22



Auto-tuning ADP for box-constrained LQR

0 20 40 60 80 100
iteration

80

85

90

95

100

co
st

COCP

clipped LQR

LMI

lower bound

23



Example: Single period trading engine

I wt ∈ R7 are weights on 7 ETFs

I post-trade allocation w̃t is solution of

maximize αT
t w − γtwTΣtw − γhld

t 1T (w)− − γtc
t ‖w − wt‖1

subject to 1Tw = 1, ‖w‖1 ≤ 1.5, w ≤ 0.5

I αt and Σt depend on VIX (volatility index) quintiles

I 15 parameters: (γ, γhld, γtc) for each of 5 VIX quintiles

I simulations on (realistic) log-normal returns conditioned on VIX index,
0.1% transaction costs, 0.02% shorting costs

24



Tuning objective

I Sharpe ratio: annualized return / annualized volatility
I drawdown at time t is dt = (ht − vt)/ht = 1− vt/ht

– vt is portfolio value
– ht = maxτ=1,...,t vτ is previous high value

I tuning objective: maximize Sharpe ratio minus average drawdown %

I initialize with γ = 5 and true costs

I we’ll compare to a policy that ignores VIX, uses common α and Σ

25



Tuning results

policy return volatility Sharpe drawdown objective

common 9.2% 7.9% 1.2 2.6% -1.4

initial 13.5% 7.1% 1.9 1.3% 0.6

tuned 17.3% 6.7% 2.6 1.0% 1.6

(average of eight 750-day simulations, not used for tuning)

26



Tuning progress

0 10 20 30 40 50

iteration

−30

−20

−10

0

10

20

30

p
er

ce
n
ta

g
e

ch
a
n
g
e

return

risk

drawdown

(average of eight 750-day simulations)
27



Wealth trajectory

0 100 200 300 400 500 600 700

days

1.0

1.2

1.4

1.6

1.8

2.0

p
o
rt

fo
li
o

v
a
lu

e

tuned

initial

common

(one simulation)
28



Drawdown

0 100 200 300 400 500 600 700
0.00

0.05

d
ra

w
d
o
w

n

tuned

0 100 200 300 400 500 600 700
0.00

0.05
d
ra

w
d
o
w

n
initial

0 100 200 300 400 500 600 700

days

0.00

0.05

d
ra

w
d
o
w

n

common

(one simulation)
29



Outline

Convex optimization control policies

Why?

Tuning

Technology

Conclusions

30



Domain specific languages for convex optimization

I DSLs make it easy to specify and solve convex problems

I grammar and semantics based on a single rule from convex analysis

I examples: YALMIP, CVX, CVXPY, Convex.jl, CVXR

I basic deal:

– you accept strong restrictions on the problems you can specify
– in return, your problem is solved globally and efficiently

31



CVXPY example

import cvxpy as cp

x = cp.Parameter((n, 1))

theta = cp.Parameter((n, n))

u = cp.Variable((m, 1))

x_next = cp.Variable((n, 1))

objective = cp.sum_squares(theta @ x_next) + cp.quad_form(u, R)

constraints = [x_next == A @ x + B @ u, cp.norm(u, "inf") <= 1]

cocp = cp.Problem(cp.Minimize(objective), constraints)

cocp.solve()

32



How they work

three steps:

1. canonicalize your problem description into a standard form

2. solve the standard form problem

3. retrieve solution of your problem from the standard form solution

normal people do not need to know this; they just call the solve() method

can view as three-step mapping from problem parameters to solution

parameters C S R solution

33



Differentiating through a convex optimization problem

I if you accept some additional restrictions on how parameters enter the problem
description, canonicalization and retrieval maps can be linear

I parameters-to-solution map is RSC , where R and C are sparse matrices

I eliminates canonicalization / retrieval cost when you solve for different parameters

I derivative of parameters-to-solution map: R(DS)C

I can be chained to automatically and efficiently compute ∇θL(θ)
(even when L(θ) involves solving many convex problems)

34



CVXPY layers

from cvxpylayers.torch import CvxpyLayer

layer = CvxpyLayer(cocp, parameters=[theta, x], variables=[u])

cost = 0.

for t in range(100):

u_t, = layer(theta_torch, x_t)

cost += stage_cost(u_t, x_t)

x_t = dynamics(x_t, u_t)

cost.backward()

gradient = theta_torch.grad

35



Bonus: Code generation

I CSR form gives easy method for code generation

I compute R and C explicitly as sparse matrices

I canonicalization, retrieval now super fast

I link to suitable embedded solver like OSQP

36



Outline

Convex optimization control policies

Why?

Tuning

Technology

Conclusions

37



Conclusions (non-controversial)

COCPs

I are simple and interpretable

I we understand how they work

I will never do anything crazy

I handle constraints, changes, failures gracefully

I can be safety fenced with constraints

I can be effectively tuned, quasi-automatically

there are or will soon be high-level tools to design and implement such controllers

38



Conclusion (controversial)

I tuned COCP is the PID controller of the 21st century

39


	Convex optimization control policies
	Why?
	Tuning
	Technology
	Conclusions

