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ABSTRACT: Physical design problems, such as photonic
inverse design, are typically solved using local optimization
methods. These methods often produce what appear to be good
or very good designs when compared to classical design
methods, but it is not known how far from optimal such designs
really are. We address this issue by developing methods for
computing a bound on the true optimal value of a physical
design problem; physical designs with objectives smaller than
our bound are impossible to achieve. Our bound is based on
Lagrange duality and exploits the special mathematical structure
of these physical design problems. For a multimode 2D
Helmholtz resonator, numerical examples show that the bounds
we compute are often close to the objective values obtained using local optimization methods, which reveal that the designs are
not only good, but in fact nearly optimal. Our computational bounding method also produces, as a byproduct, a reasonable
starting point for local optimization methods.
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Computer-aided design of physical systems is growing
rapidly in several fields, including photonics1 (where it is

known as inverse design), horn design,2 and mechanical design
(aerospace, structures).3 These design methods formulate the
physical design problem as a constrained nonconvex
optimization problem and then use local optimization to
attempt to solve the problem. Commonly used methods
include gradient descent, with adjoint-based evaluations of the
gradient,4 methods that alternate optimizing over the structure
and over the response,5 and the alternating directions method
of multipliers (ADMM),6 among others. These methods can
be very effective, in the sense of producing what appear to be
very good physical designs, for example, when compared to
classical design approaches.
Because they are local optimization methods, they do not

guarantee that a globally optimal design is found, nor do we
know how far from optimal the resulting design is. This paper
addresses the question of how far a physical design is from
globally optimal by computing a lower bound on the optimal
objective value of the optimization problem. A lower bound on
the objective value can be interpreted as an impossibility result
since it asserts that no physical design can have a lower
objective than a number we compute.
These computational bounds can also be used to quickly

rule out objectives and constraints with poor performance, that
is, constraints for which no physical device can achieve a good
objective value. For example, there are often cases where we
want to find a device with good performance on a given
objective with some constraints that, at first glance, appear
reasonable. Currently, to find if such a device exists, one would
generate several initial designs and perform local optimization

in hopes of finding a device with good performance. However,
if several rounds of optimization do not lead to devices
achieving a given goal, the designer does not know if this is a
result of missing a good design (e.g., due to choices of
initialization) or if there really does not exist a device that both
satisfies the constraints and has good performance. The
bounds we are deriving provide a definite answer to the
question: a certificate that no physical device can achieve good
performance on the objective while also satisfying the required
constraints.
Our bound is similar in spirit to analytical lower bounds,

which give lower bounds as simple formulas in terms of gross
quantities like temperature and wavelength, based on very
simplified models and objectives, for example, the Reynolds
number,7 the Carnot efficiency limit,8 or the optical diffraction
limit.9 There has been some additional work in bounding some
other quantities and figures of merit for optical systems,
including the local density of states10,11 for different types of
materials, via fundamental physical principles. In contrast, our
method computes a (numerical) lower bound for the
optimization objective for each design problem.
In this paper, we derive a parametrized family of lower

bounds on the optimal objective for a class of physical design
problems, using Lagrange duality. We can optimize over the
parameter, to obtain the best (largest) lower bound, by solving
the Lagrange dual problem, which is convex even though the
original design problem is not. We illustrate our lower bound
on a two-dimensional multimode resonator. Our lower bound
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is close to the objective obtained by a design using ADMM,
which shows that the design, and indeed our lower bound, are
both very close to the global optimum.

■ PHYSICAL DESIGN
Physical Design Problem. In physical design, we design a

structure so that the field, under a given excitation, is close to
some desired or target field. We parametrize the structure
using a vector θ, and we denote the field by the vector z. In
photonic design, for example, we choose the index of refraction
at each rectangle on a grid, within limits, to achieve or get close
to a desired electromagnetic field.
We can express this as the following optimization problem:

θ

θ θ

− ̂

+ =

≤ ≤

W z z

A z b

minimize
1
2

( )

subject to
( diag( ))

0

2
2

max
(1)

with variables z ∈ Rn (the field) and θ ∈ Rn, which describes
the physical design. The data are the weight matrix W ∈ Rn×n,
which is diagonal with positive diagonal entries, the desired or
target field ̂ ∈z Rn, the matrix A ∈ Rn×n, the excitation vector b
∈ Rn, and the vector θmax of limits on the physical design
parameter θ. The constraint equation (A + diag(θ))z = b
encodes the physics of the problem. We let p* denote the
optimal value of (1).
We can handle the case when the lower limit on the physical

parameter is nonzero, for example, θmin ≤ θ ≤ θmax. We do this
by replacing the lower limit by 0, the upper limit by θmax −
θmin, and replacing A with A + diag(θmin). Additionally, the
construction extends easily to the case where the field z, the
matrix A, and the excitation b have complex entries.
When the coefficient matrix in the physics equation (A +

diag(θ))z = b is nonsingular, there is a unique field, z = (A +
diag(θ))−1b. In some applications, however, the coefficient
matrix is singular, and there is either no field that satisfies the
equations, or many. In the former case, we take the objective to
be +∞. In the latter case, the set of solutions is an affine set
and simple least-squares can be used to find the field that
satisfies the physics equation and minimizes the objective.
An important special case occurs when we seek a mode

(eigenvector) of a system that is close to ̂z. To do this, we take
b = 0 and subtract λI from the coefficient matrix, where λ is the
required eigenvalue. We can handle the case of unspecified
eigenvalues by a simple extension described later in problem
14, where λ also becomes a design variable, subject to a lower
and upper bound.
In the problem 1, the physical design parameters enter in a

very specific way: as the diagonal entries of the coefficient
matrix of the physics equation. Many physics equations have
this form for a suitable definition of the field z and parameter θ,
including the time-independent Schödinger equation, Helm-
holtz’s equation, the heat equation, and Maxwell’s equations in
one dimension. (Maxwell’s equations in two and three
dimensions are included in this formalism via the simple
extension given in problem 13.)
Boolean Physical Design Problem. A variation on the

problem 1 replaces the physical parameter constraint 0 ≤ θj ≤
θj
max with the constraint θj ∈ {0,θj

max}, which limits each
physical parameter value to only two possible values. (This
occurs when we are choosing between two materials, such as

silicon or air, in each of the patches in the structure we are
designing.) We refer to this modified problem as the “Boolean
physical design problem”, as opposed to the continuous
physical design problem 1. It is clear that the optimal value of
the Boolean physical design is no smaller than p*, the optimal
value of the continuous physical design problem.

Approximate Solutions. The problem 1 is not convex
and generally hard to solve exactly.12 It is, however, biconvex,
since it is convex in z when θ is fixed and convex in θ when z is
fixed. Using variations on this observation, researchers have
developed a number of methods for approximately solving
problem 1 via heuristic means, such as alternating optimization
over z and θ on the augmented Lagrangian of this problem.6

Other heuristics can be used to find approximate solutions of
the Boolean physical design problem. These methods produce
what appear to be very good physical designs when compared
to previous hand-crafted designs or classical designs.

Performance Bounds. Since the approximate solution
methods used are local and therefore heuristic, the question
arises: how far are these approximate designs from an optimal
design? In other words, how far is the objective found by these
methods from p*? Suppose, for example, that a heuristic
method finds a design with an objective value of 13.1. We do
not know what the optimal objective p* is, other than p* ≤
13.1. Does there exist a design with an objective value of 10 or
5, or are these values of the objective impossible, that is,
smaller than p*?
The method described in this paper aims to answer this

question. Specifically, we will compute a provable lower bound
L on the optimal objective value p* of problem 1. In our
example above, our method might compute the lower bound
value L = 12.5. This means that no design can ever achieve an
objective value smaller than 12.5. It also means that a design
with an objective value of 13.1 is not too far from optimal,
since we would know that L = 12.5 ≤ p* ≤ 13.1.
A lower bound L on p* can be interpreted as an

“impossibility result”, since it tells us that it is impossible for
a physical design to achieve an objective value less than L. We
can also interpret L as a “performance bound”. The lower
bound L does not tell us what p* is, it just gives a lower limit
on what it can be. (An upper limit U can be found by using any
heuristic method as the final objective value attained.)
We note that the lower bound L we find on p* also serves as

a lower bound on the optimal value of the Boolean physical
design problem, since its optimal value is larger than or equal
to p*.

■ PERFORMANCE BOUNDS VIA LAGRANGE
DUALITY

In this section, we explain our lower bound method.
Lagrangian Duality. We first rewrite problem 1 as

θ

θ

∥ − ̂ ∥ +

+ =

W z z I

A z b

minimize
1
2

( ) ( )

subject to ( diag( ))

2
2

(2)

where I is an indicator function, that is, I(θ) = 0 when 0 ≤ θ ≤
θmax and +∞ otherwise. The Lagrangian of this problem is

θ ν θ ν θ= || − ̂ || + + + −z W z z I A z b( , , )
1
2

( ) ( ) (( diag( )) )T
2
2

(3)

where ν ∈ Rn is a dual variable. The Lagrange dual function is
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ν θ ν=
θ

g z( ) inf ( , , )
z,

(see Chapter 5 of ref 12). It is a basic and easily proved fact
that, for any ν, we have g(ν) ≤ p* (see Chapter 5.1.3 of ref
12). In other words, g(ν) is a lower bound on p*. While g(ν)
always gives a lower bound on p*, the challenge for nonconvex
problems such as problem 1 is to evaluate g(ν). We will see
now that this can be done for our problem 1.
Evaluating the Dual Function. To evaluate g(ν) we must

minimize θ νz( , , ) over z and θ. Since for each θ, θ νz( , , )
is convex quadratic in z, we can analytically carry out the
minimization over z. We have

ν θ ν

θ ν

ν θ

θ ν ν

=

= − ∥ + − ̂ ∥

− + ∥ ∥̂ +

= − ∥ + − ̂ ∥ − + || |̂|

θ

θ

θ θ

−

≤ ≤

−

i
k
jjj

y
{
zzz

g z

W A W z

b Wz I

W A W z b Wz

( ) inf inf ( , , )

inf
1
2

(( diag( )) )

1
2

( )

inf
1
2

(( diag( )) )
1
2

z

T

T

T T

1 2
2
2

2
2

0

1 2
2
2

2
2

max

(4)

We can see that this is true since the minimizer of the only
terms depending on z,

ν θ∥ − ̂ ∥ + +i
k
jjj

y
{
zzzW z z A zargmin

1
2

( ) ( diag( ))
z

T
2
2

can be found by taking the gradient and setting it to zero
(which is necessary and sufficient by convexity and differ-
entiability). This gives that the minimizing z is

θ ν= ̂ − +−z z W A( diag( ))2
(5)

which yields eq 4 when plugged in.
The expression in eq 4 is separable over each θi; it can be

rewritten as

∑

∑

∑

ν ν νθ ν

ν νθ ν

ν ν νθ ν

= − + − ̂ − + || |̂|

= − + − ̂ − + || |̂|

= − { − ̂ + − ̂ } −

+ || |̂|

θ θ

θ θ

≤ ≤ =

−

= ≤ ≤

−

=

−

i
k
jjjjj

y
{
zzzzz

g
n

W A W z b Wz

n
W A W z b Wz

n
W a W z a W z b

Wz

( ) inf
1
2

(( ) )
1
2

inf
1
2

(( ) )
1
2

1
2

max ( ) , ( )

1
2

j
jj

T
j j j jj j

T

j
jj

T
j j j jj j

T

j
jj j

T
jj j j

T
j j jj j

T

0
1

2 2 2
2
2

1
0

2 2 2
2
2

1

2 2 2 max 2 2

2
2

j j

max

max

(6)

where aj is the jth column of A. In the last line, we use the basic
fact that a scalar convex quadratic function achieves its
maximum over an interval at the interval’s boundary.
With this simple expression for the dual function, we can

now generate lower bounds on p*, by simply evaluating it for
any ν. We note that g is also the dual function of the Boolean
physical design problem.
Dual Optimization Problem. It is natural to seek the best

or largest lower bound on p*, by choosing ν that maximizes
our lower bound. This leads to the dual problem (see Chapter
5.2 of ref 12),

νgmaximize ( ),

with variable ν. We denote the optimal value as d*, which is
the best lower bound on p* that can be found from the
Lagrange dual function. The dual problem is always a convex
optimization problem (see Chapter 5.1.2 of ref 12); to

effectively use it, we need a way to tractably maximize g, which
we have in our case, since the dual problem can be expressed as
the convex quadratically constrained quadratic program
(QCQP)

ν

ν

ν νθ

− − + || |̂|

≥ − ̂ =

≥ + − ̂ =

−

−

t b Wz

t W a W z j n

t W a W z j n

maximize (1/2)1 (1/2)

subject to
( ) , 1, ...,

( ) , 1, ...,

T T

j jj j
T

jj j

j jj j
T

j j jj j

2
2

2 2 2

2 max 2 2

(7)

with variables t and ν. This problem is easily solved and its
optimal value, d*, is a lower bound on p*.
The dual optimization problem 7 can be solved several ways,

including via ADMM (which can exploit the fact that all
subproblems are quadratic; see ref 13), interior point methods
(see Chapter 11.1 of ref 12), or by rewriting it as a second-
order cone program (SOCP; see ref 14), this can also be done
automatically by modeling languages such as CVXPY15) and
then using one of the many available SOCP solvers, such as
SCS,16,17 ECOS,18 or Gurobi.19 We also note that the dual
problem does not have to be perfectly solved; we get a lower
bound for any value of the dual variable ν.
In this paper, we used the Gurobi solver to solve a (sparse)

program with n = 63001, which took approximately 8 min to
solve on a two-core Intel Core i5 machine with 8 GB of RAM.
By further exploiting the structure of the problem, giving good
initializations, or by using less accurate methods when small
tolerances are not required, it is likely that these problems
could be solved even more quickly for larger systems.

Initializations via Lagrange Dual. The solution of the
Lagrange dual problem can be used to suggest starting points
in a heuristic or local method for approximately solving
problem 1.

Initial Structure. Let ν* be a solution of the dual problem 7.
We can take as initial structure θ0, which minimizes problem 4,
that is,

θ ν ν θ∈ + − ̂
θ θ∈{ }

* *a W zargmax ( )j j
T

j j jj j
0

0,

2 2

j j
max

This choice of initial structure is feasible for problem 1 and,
in fact, is feasible for the Boolean physical design problem as
well.

Initial Field. One way to obtain an initial field is to simply
solve the physics equation for θ0, when the physics coefficient
matrix is nonsingular. When it is singular, but the physics
equation is solvable, we compute z as the field that minimizes
the objective, subject to the physics equation. This gives a
feasible field, but in some cases the resulting point is not very
useful. For example when b = 0, and the coefficient matrix is
nonsingular, we obtain z0 = 0.
Another possibility is to find the minimizer of the

Lagrangian with the given structure and an optimal dual
variable value, that is,

θ ν= *z zargmin ( , , )
z

0 0

The value is already given in eq 5:

θ ν= ̂ − +− *z z W A( diag( ))T0 2 0
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This initial field is not feasible, that is, it does not satisfy the
physics equation, but it seems to be a very good initial choice
for heuristic algorithms.
Multiscenario Design. In this section, we mention an

extension of our basic problem 1, in which we wish to design
one physical structure that gives reasonable performance in N
different scenarios. The scenarios can represent different
operating temperatures, different frequencies, or different
modes of excitation.
We will index the scenarios by the superscript i, with i = 1, ...,

N. Each scenario can have a different weight matrix Wi, a
different target field ̂zi, a different physics matrix Ai, and a
different excitation bi. We have only one physical design
variable θ, and N different field responses, zi, i = 1, ..., N. We
take as our overall objective the sum (or average) of the
objectives under the scenarios. This leads to the problem

∑

θ

θ θ

− ̂

+ = =

≤ ≤

=

W z z

A z b i N

minimize
1
2

( )

subject to
( diag( )) , 1, ...,

0

i

N
i i i

i i i

1
2
2

max
(8)

with variables θ (the structure) and zi (the fields under the N
different scenarios).
Our bounding method easily generalizes to this multi-

scenario physical design problem.
Dual Optimization Problem. As before, define aj

i to be the
jth column of Ai and allow νi to be the Lagrange multiplier for
the ith constraint, then the new dual problem is

∑ ∑

∑

∑

ν

ν

ν ν θ

− − + || ̂ ||

≥ − ̂ =

≥ + − ̂

=

= =

=

−

=

−

t b W z

t W a W z j n

t W a W z j

n

maximize (1/2)1 ( ) ( ) (1/2)

subject to

( ) (( ) ( ) ) , 1, ...,

( ) (( ) ( ) ) ,

1, ...,

T

i

N
i T i

i

N
i i

j
i

N

jj
i

j
i T i

jj
i

j
i

j
i

N

jj
i

j
i T i

j
i

j jj
i

j
i

1 1
2
2

1

2 2 2

1

2 max 2 2

(9)

which is also a convex QCQP. This new dual optimization
problem can be derived in a similar way to the construction of
problem 7.
Initial Structure and Fields. Similar initializations hold for

eq 8 as they do for eq 1. We can find an initial θ0 given by

∑θ ν ν θ∈ + − ̂
θ θ∈{ }

− * *
i

k
jjjjjj

y

{
zzzzzzW a W zargmax ( ) (( ) ( ) ( ) ( ) )j

i
jj
i

j
i T i i

j j jj
i

j
i0

0,

2 2 2

j j
max (10)

while we can find feasible initial fields by solving the physics
equations for each scenario, or as the minimizer of the
Lagrangian,

θ ν= ̂ − +− *z z W A( ) ( ) ( diag( )) ( )i i i i T i0 2 0
(11)

for i = 1, ..., N, which gives infeasible fields (often, however,
these fields are good initializations).

■ NUMERICAL EXAMPLE

Physics and Discretization. We begin with Helmholtz’s
equation in two dimensions,

ω∇ + =
i
k
jjjjj

y
{
zzzzzf x y

c x y
f x y( , )

( , )
( , ) 02

2

(12)

where f:R2 → R is a function representing the wave’s
amplitude, ∇2 = ∂x

2 + ∂y
2 is the Laplacian in two dimensions,

ω ∈ R+ is the angular frequency of the wave, and c:R2 → R+ is
the speed of the wave in the material at position (x,y), which
we can change by an appropriate choice of material. For this
problem, we will allow the choice of any material that has a
propagation speed between 0 < cmin(x,y) ≤ c(x,y) ≤ cmax(x,y),
such that f is close to ̂f , some desired field.
Throughout, we will also assume Dirichlet boundary

conditions for convenience (that is, f(x,y) = 0, whenever
(x,y) is on the boundary of the domain), though any other
boundary conditions could be similarly used with this method.
We discretize each of c, f, and ∇2 in eq 12 using a simple

finite-difference approximation over an equally spaced recti-
linear grid. (More sophisticated discretization methods would
also work with our method.) Specifically, let (xi,yi) for i = 1, ...,
n be the discretized points of the grid, with separation distance
h (e.g., yi+1 − yi = xi+1 − xi = h). We then let z and ̂z, both in
Rn, be the discretization of f and ̂f , respectively, over the grid,

= ̂ = ̂z f x y z f x y( , ), ( , )i i i i i i

Using this discretization, we can approximate the second
derivative of f at the grid points as,

∂ ≈
+ − + −

= Δf x y
f x h y f x y f x h y

h
z( , )

( , ) 2 ( , ) ( , )
x i i

i i i i i i
x

2
2

for some matrix Δx and similarly for ∂y
2, whose finite

approximation we will call Δy. We can then define a complete
approximate Laplacian as the sum of the two matrices,

Δ = Δ + Δx y

We also similarly discretize c(x,y) as

θ =
c x y

1
( , )i

i i
2

where θ ∈ Rn. The constraints on c(x,y) become

θ θ θ= ≤ ≤ =
c x y c x y

1
( , )

1
( , )i i

i
i i

min
max 2 min 2

max

We can now write the fully discretized form of Helmholtz’s
equation as

ω θΔ + =z( diag( )) 02

or, equivalently,

ω
θΔ + =i

k
jjj

y
{
zzzz

1
diag( ) 02

So the final problem is, after replacing θ with θ−θmin,

ω θ θ

θ θ θ

∥ − ̂ ∥

Δ + + =

≤ ≤ −

W z z

z

minimize
1
2

( )

subject to
((1/ ) diag( ) diag( )) 0

0

2
2

2 min

max min

This has the form of problem 1, with
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ω
θ= Δ + =A b

1
diag( ), 02

min

Note that the design we are looking for, one that supports
nonvanishing modes at each frequency, will, in general, have a
singular (or indeterminate) physics equation. More specifically,
the final design’s physics equations will each have a linear set of

solutions, from which we pick the one that minimizes the least-
squares residual in the objective.

Problem Data. In this example, we will design a 2D
resonator with modes that are localized in the boxes found in
Figure 1, at each of three specified frequencies. More
specifically, let Si be the indices at frequency i corresponding

Figure 1. Three target resonator regions.

Figure 2. (Left) Initial design suggested by the dual solution. (Right) Optimized physical design.

Figure 3. (Top row) Fields suggested by solution to the dual problem. (Bottom row) Fields in ADMM physical design. Columns show the three
frequencies (30π, 40π, and 50π).
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to the 60 × 60 boxes shown in Figure 1. We define the target
field for frequency i as

̂ =
∈

∉

l
m
ooo
n
ooo

z
j S

j S

1,

0,
j
i

i

i

We set the weights within the box containing the mode to be
one and set those outside the box to be larger:

=
∈

∉

l
m
ooo
n
ooo

W
j S

j S

1,

5,
jj
i

i

i

We specify three frequencies (i.e., N = 3),

ω π π π= (30 , 40 , 50 )

at which to generate the specified modes by picking the
propagation speed of the wave at each discretization point of
the domain. We constrain the allowed propagation speed by
picking

θ θ= = =j n1, 2, 1, ...,j j
min max

Our discretization uses a 251 × 251 grid, so n = 2512 = 63001,
with h = 1/n.
Physical Design. We use ADMM to approximately solve

the physical design problem, as in,6 using penalty parameter ρ
= 100. We initialized the method using the feasible structure
and fields from eqs 10 and 11, though similar designs are
achieved with simple initializations like θ = θmin and zi = 0, for i
= 1, 2, and 3. We stop the algorithm when the physics
constraint residual norm drops below a fixed tolerance of 10−2.
The resulting locally optimized design is shown in Figure 2 and
the associated fields are shown in Figure 3. In particular, after
local optimization, we receive some θ and z with

θ θ θ θ≤ ≤ || + − || ≤ −A z b, ( diag( )) 10min max
2

2

and then evaluate

∑= || − ̂ ||
=

p W z z
1
2

( )
i

i i i

1

3

2
2

which gives p = 5145.
Our nonoptimized implementation required around 1.5 s

per iteration and took 332 iterations to converge to the
specified tolerance, so the total physical design time is a bit
under 9 min on a 2015 2.9 GHz dual core MacBook Pro. Our
implementation used a sparse-direct solver; an iterative CG
solver with warm-start would have been much faster.
Dual Problem. We solved problem 9 using the Gurobi19

SOCP solver and the JuMP20 mathematical modeling language
for Julia.21 Gurobi required under 10 min to solve the dual
problem, about the same time required by the physical design.
This time, too, could be very much shortened; for example, we
do not need to solve the dual problem to the high accuracy
that Gurobi delivers.
The optimal dual value found is d* = 4733, with the initial

design and fields suggested by the optimal dual solution shown
in Figures 2 and 3, respectively. This tells us that

= ≤ ≤ =* *d p p4733 5145

which implies that our physical design objective value is no
more than (5145−4733)/4733 ≈ 8.7% suboptimal. (We

strongly suspect that p* is closer to our design’s value, 5145,
than the lower bound, 4733.)

Further Extensions. There are several straightforward
extensions of the above problem, which may yield useful
results in specific circumstances. All of these problems have
analytic forms for their Lagrange dual functions, and all forms
generalize easily to their multifrequency counterparts. Addi-
tionally, we explicitly derive the dual functions for some
extensions which require a little more care.

Equality-Constrained Parameters. Sometimes, it might be
the case that a single design parameter might control several
points in the domain of z, for example, in the case of Maxwell’s
equations in two and three dimensions (see the appendix for
more details) or when the domain’s grid size is much smaller
than the smallest features that can be constructed.
Let Sk ⊆ {1, ..., n} for k = 1, ..., m be a partition of indices, {1,

..., n}. In other words, we want Sk for k = 1, ..., m to satisfy,

∪ = { }
=

S n1, ...,
k

m
k

1

and ∩ = ̷S S 0k l whenever k ≠ l. These sets Sk will indicate the
sets of indices which are constrained to be equal, conversely,
indices that are not constrained to be equal to any other
indices are represented by singleton sets.
We can then write the new optimization problem as

θ

θ θ

θ θ

|| − ̂ ||

+ =

= ∈ =

≤ ≤

W z z

A z b

i j S k m

minimize
1
2

( )

subject to

( diag( ))

, for all , , 1, ...,

0

i j k

2
2

max
(13)

To compute the Lagrange dual, let I′ be an indicator
function with I′(θ) = 0 whenever 0 ≤ θ ≤ θmax and θi = θj for
all i,j ∈ Sk for k = 1, ..., m. Otherwise, I′(θ) = +∞. We can write
the new problem as problem 2 with the same Lagrangian as the
one given in problem 3, replacing I with I′ in both expressions.
Minimization over z is identical to problem 4 and

minimization over θ is similar minus the fact that for each k,
the indices found in Sk are all constrained to be equal. Since
the sum of convex quadratics is still a convex quadratic and, as
before, since convex quadratics achieve minima at the
boundary of an interval, we have

∑ ∑

∑

ν ν

ν νθ ν

= − − ̂

+ − ̂ − + ∥ ∥̂

= ∈

−

∈

−

l
m
ooo
n
ooo

|
}
ooo
~
ooo

g
m

W a W z

W a W z b Wz

( )
1
2

max ( ) ,

( )
1
2

k j S
jj j

T
jj j

j S
jj j

T
j j jj j

T

1

2 2 2

2 max 2 2
2
2

k

k

as the final Lagrange dual function. The corresponding dual
problem can be written as a convex QCQP.

Field Constraints. In the case where problem 1 has field
constraints, that is,

θ

θ θ

∥ − ̂ ∥

+ =

− ≤ =

≤ ≤

W z z

A z b

z h z j n

minimize
1
2

( )

subject to

( diag( ))

( ) ( ) , 1, ...,

0

j j j

2
2

2 max 2

max
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for some h ∈ Rn, the construction also parallels the one given
for eq 6. The resulting dual optimization problem, in
comparison to problem 7, cannot be written in a standard
form as a QCQP; it is, instead, a more general SOCP.
Regularizers. It is also possible to add a separable

regularization term for θ, the parametrization of the device;
for example, in the case where we would want to bias specific θj
toward either 0 or θj

max.
If we have a family of concave functions, rj:R → R such that

our regularizer can be written as a function of the form

∑θ θ→
=

r ( )
j

n

j j
1

(one such example is a linear function of θ), then the problem
becomes

∑ θ

θ

θ θ

|| − ̂ || +

+ =

≤ ≤

=

W z z r

A z b

minimize
1
2

( ) ( )

subject to
( diag( ))

0

j

n

j j2
2

1

max

By using the fact that rj is concave and therefore achieves a
minimum over an interval at the boundary of the interval, it is
possible to derive a bound that parallels eq 6.
Parameter Perturbations. In some cases (e.g., when

considering temperature perturbations), it might be very
natural to have a physical constraint of the form

θ+ =A D z b( diag( ))

where D ∈ Rn×n is a diagonal matrix that is not necessarily
invertible. In other words, our new problem is

θ

θ θ

|| − ̂ ||

+ =

≤ ≤

W z z

A D z b

minimize
1
2

( )

subject to
( diag( ))

0

2
2

max

Directly applying the method for deriving eq 6 yields a
similar, explicit form for g.
Indeterminate Eigenvalue. In the case where we want z to

be a mode of the device with some unspecified eigenvalue λ
with upper and lower limits λmin ≤ λ ≤ λmax, we can write the
problem as

λ θ

λ λ λ
θ θ

∥ − ̂ ∥

+ + =

≤ ≤
≤ ≤

W z z

A I z b

minimize
1
2

( )

subject to

( diag( ))

0

2
2

min max

max
(14)

To construct the dual, note that the Lagrangian of this
problem is similar to the Lagrangian of problem 1,

θ λ ν θ

ν λ θ

= ∥ − ̂ ∥ +

+ + + −

z W z z I

A I z b

( , , , )
1
2

( ) ( )

(( diag( )) )T

2
2

We will define the partial Lagrangian, p to be the infimum
of with respect to z and θ, leaving λ and ν as free variables.
The solution to the partial minimization of is given in eq 6,

∑

λ ν θ λ ν

ν λ θ ν ν

=

= − + + − ̂ − + || |̂|

θ

θ θ=

−

∈{ }

z

n
W a W z b Wz

( , ) inf ( , , , )

1
2

max ( ( ) )
1
2

p

z

j
jj j

T
j j jj j

T

,

1

2

0,

2 2
2
2

j j
max

As λ ν( , )p is a concave in λ, it achieves its minimum at the
boundaries of the domain of λ. So, since

ν λ ν=
λ λ λ≤ ≤

g( ) inf ( , )p
min max

we can write,

ν λ ν=
λ λ λ∈{ }

g( ) min ( , )p

,min max

which is the minimum over a (finite) number of concave
functions. The corresponding dual problem can then be
expressed as a convex QCQP.

■ CONCLUSION
This paper has derived a set of lower bounds for a general class
of physical design problems, making it possible to give (a) an
easily computable certificate that certain objectives cannot be
physically achieved and (b) a bound on how suboptimal
(relative to the global optimum) a given design could be.
Additionally, as a side-effect of computing this lower bound,
we also receive an initialization for any heuristic approach we
might take for approximately solving problem 1 or its
multifrequency version problem 8.
Additionally, it seems feasible to obtain asymptotic bounds

with respect to physical parameters (e.g., with respect to the
size of the device) via this approach, since the optimization
problem in eq 7 can easily be written in an unconstrained form.
In other words, picking any ν ∈ Rn will yield some lower
bound, and an appropriate choice might yield scaling laws that
could be useful as general rules-of-thumb in inverse design.
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