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Abstract—We consider a static wind model for a I[I. WIND TURBINE PITCH OPTIMIZATION
three-bladed, horizontal-axis, pitch-controlled wind tur- s
bine. When placed in a wind field, the turbine experiences A. Description
several mechanical loads, which generate power but also  We consider a three-bladed, horizontal-axis, pitch-

create structural fatigue. We address the problem of find-  controlled wind turbine, as illustrated in figure 1. We
ing blade pitch profiles for maximizing power production assume that the wind turbine is affected by a wind

while simultaneously minimizing fatigue loads. In this pa- .. - . .
per, we show how this problem can be approximately solved field that is constant over time, but varying over the

using convex optimization. When there is full knowledge area swept by the blades. The blades of the rotor are
of the wind field, numerical simulations show that force numbered 1, 2, 3 and the anglec [0, 27 /3] defines
and torque RMS variation can be reduced by over 96% the position of the rotor.
compared to any constant pitch profile while sacrificing at

most 7% of the maximum attainable output power. Using

iterative learning, we show that very similar performance Z A
can be achieved by using only load measurements, with no
knowledge of the wind field or wind turbine model.

|. INTRODUCTION

Wind turbines are expensive to build and maintain.
The wind field from which they generate power is also
the source of large fatigue loads on the turbine, which
create structural wear and tear, increasing maintenance
costs and decreasing the operational lifetime of the
turbine. These costs are significant, and dramatically
impact the profitability of the turbine. Many studies [1],
[2], [3], [4], [5] have been performed which attempt
to reduce fatigue loads while also generating sufficiert
power by dynamically controlling blade pitching. In this
paper, we present a general blade pitching approach for
fatigue load minimization based on convex optimization. [

We focus on pitch controlled wind turbines, and
investigate the use of pitching to obtain the maximum
power output of a wind turbine. We then use this number

o . The wind turbine is controlled via the pitch of the
to bound how much power must be sacrificed to ach|ev% o .
three blades. As the wind is assumed constant over time,

a given I.evel of f§t|gug load re(.juctlon.. We COI’]CIUdethe blade pitching is a periodic function of the angle
by showing how iterative learning, using only IoadWe let

measurements, can achieve performance very close to
that of a controller with perfect knowledge of the wind  ;(9) = 5 = (81, 82, 83) € R}, 0<6< —
field and wind turbine model. 3
denote the pitching angles of all three blades at angle
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Fig. 1. Perspective view of a wind turbine.



span the rotor plane while the-axis is perpendicular C. Constraints

to the rotor plane, as in figure 1. The origin of our The pitch profiles are controlled by mechanical pitch
coordinate system is located at the intersection of thgetyators, which have limits in both range and pitch
rotor plane with the axis of rotation. speed. We also assume that the wind turbine is not

During operationy and f depend on the angle of the gesjgned to operate in stall mode. These constraints can
rotor, the pitch of the blades, the wind field present at thge expressed as

swept area, and the angular velocity of the rotor itself. < () <
We neglect the last dependency by assuming a constant ﬁmi‘; Ta)p( ) < Prmax,
rotor angular velocity and we let the wind field at the %‘ < Bstew:

swept area be defined by the parameter vegtofhen Where Buin, Bmax are, respectively, the minimum and

7 and f can be expressed by the functionals maximum pitch angles that are operationally possible
T=U(p),0,n), f="7T(p®),0,n). and at which the rotor will not stall, andse, is the

. . maximum pitch speed. We ug@ to denote the entire
In this work we use an overline to denote the mean value

. . ; t of th nstraints, which i nvex set.
of a function ofé in the interval0 < 6 < 27/3, e.g. Set o hese constraints, which 1s a convex se
5 [2m/3 [1l. M ODEL DESCRIPTION

g= Gy g(0) do, In this section we consider the torque and force
) o ~ functionals, ¥(p(0),6,n) and Y(p(9),0,n). We show
and we overload this notation for vector valued functiong,q\y to find expressions for these functionals by forming

componentwise. _ _ a static model of the wind field and the wind turbine.
The mean value¥ and f can be interpreted as DC-

terms around which the torques and force vary. W&- Wind Model
define the AC-terms of the torques and force by Let the vector fieldVi,(y,z) € R® describe the
Gre=r—7 Gf=f—TF incoming wind field at the areal swept by the turbine

blades, where
respectively. At a given anglé, 6= and §f depend 3 9 9 2
not only on the pitch at this angle, but on the entire A={(z,y,2) ER [2=0, 2" +y" < R}
pitch profile p(f) in the interval0 < 6 < %’f through and R is the length of each blade. We assume that the
the mean values and f. Using the root mean square wind field has naz-component, and that the direction of
(RMS) value of the AC-terms, we define the variationthe wind field is the same over the entire swept area. We
of the torques and force by = (J,, Jy, J., J;) € R‘}H further assume that the magnitude of the wind field can

where be described as a sum of wind phenomena contributions.
The wind field is then given b
. (@)1/2, g, = (@y/z7 g y )
7\ A\ Vin (Y, 2) = (vb1 + vys(2) + vns (y) + ves (¥, 2)) T
== (572) » Jr= (5f ) : whereT' = (cos,siny,0), v is the direction of the
B. Objectives wind, vy is the baseline wind speed,; and v, are

respectively the vertical and horizontal shear, and

Wind turbine operation is a multiobjective optimiza-. h had he followi d ibe th
tion problem. First, we desire a large, even power outpu'lS the tower shadow. In the following, we describe the

As instantaneous power output is proportional 7t character|stlc§ of the four wm.d phenomena._

this corresponds to a large mean output torgye with a) Baseline Wind Spgedl?he basghne wind speed
only small variations as measured By. In addition, we pgrgmetervbl < R.descrlbes the wind spe_ed at the
want low mechanical fatigue on our structure in order @rain O_f our coordlna_te system. All other wind terms
lengthen its operational lifetime and reduce maintenanc® © %eV{z;tl(:'nslfr\(/)vm (’;hlsshvalu.?m tical wind sh
costs. The torques, andr, and forcef describe various aranzeteepgr 'CZ R ér;scrib(eezrfhe 3;:;;;? o\fN\IICin dssegg d
mechanical loads experienced by the turbine structurg.s afunctic;; of altitude. This wind phenomena is k?’]own
Their DC-terms are regarded as specifications which the' " . d sh 6 ' P
wind turbine structure should be designed to handle arfg Wind shear [6]

i i - z VS8 ‘I 1 z 2
are therefore not treated in this work. The AC-terms o(2) = vy [&}s ( ) i Evs(vs — 1) ( )

of the mechanical loads cause structural fatigue. We " H 2 H
therefore also want small RMS values &f,, 7., and Evs(&os — 1)(Ews — 2) 7 2\3
§f, which are given byJ,, J., andJ;. * 2 (ﬁ) ’



where H is the height of the turbine hub above theB. Turbine Model

ground. The wind velocity experienced by a wind turbine
¢) Horizontal Wind Shear:The horizontal wind bla(_je is known as the effective wind velocity and is
shear parametef,, € R describes how the wind speeddefined asVig = Vi, + Vior € R®, where Vo, =

. jot . .
varies horizontally across the area swept by the bladel): &7 sin6,w,rcost) € R” is the wind velocity due

: . to the rotation of the blade itself and. is the constant
We assume a linear dependency between hor'zomz%]gular velocity of the rotor. When pitching a blade to

position and the horizontal wind shear, which is themn angles, it is subjected to the forces [7]
given by

_P 2 in —
o) = Doy aF, = £|[Vaal[3b (Ci(@) sin s — Cala) cos ) dr,

dF, = guxfeﬁnzb(a(a) cos® + Ca(a) sin ) dr,
d) Tower Shadow:The tower shadow parameter _ _
t, € {0,1} determines if the effect of the turbine towerwheredFs, dF, € R are the tangential and axial forces,

on the wind field is included in the wind field model. respectively, acting on an infinitesimal blade element

The tower shadow is described by [1] of length dr and width b. The functionsC)(«) and
Cu(a) are the lift and drag coefficients, respectively.
—t, (Tt dt—y>2 5 <0 They depend on the shape of the blade, and are functions
vis (5 2) = Od”“y otger;vise of the wind angle of attack.. The parametep is the

density of air, whiley is the angle betweei,,, and
wherer, € R is the radius of the tower shaft, adde R V. The blade also has a static pitch along its length,
is the distance of the rotor plane from the tower migdenoteds;. Figure 3 illustrates these relations.
line.

Using the static wind model above, we define the
components of the wind parameter vectoby

dF,
n= (’77 Vb1, Evss Ehs) ts)a o Viot
¥
which fully specifies the wind field/, (y, z). Figure 2 Vin @ T
illustrates an example wind field,, (y, z) over the swept off B+ By .
area. y
Y x

40
Fig. 3. Relations between the incoming wind and the the axidl a

.. 9 e
- I tangential forces generated.
20 Once the axial and tangential forces acting on the

B
c - 15  blades are known, it is possible to form expressions for
=) U(p(0),0,n) andY(p(0),0,n) for each blade [7]
gz 0 R
o 7 0) = / Zir (Cr(as) sinyy; — Caa;) cosh;) dr - (1)
8 o 14 r=0
8 ) R
5 - 5(0) = / Zursin 0 (Ci(a) cos s + Cala) sin ) dr
" @)
) R
—40 ‘ ‘ : ‘ i i ‘ 13 72(0) = / Eircos 0 (Cr(a;) cosh; + Cqlas) siny;) dr
40 20 0 20 40 = 3)
R
Horizontal position [m] 1) :/ Z; (Cr(ow) sinah; — Ca(au) coseps) dr,  (4)
r=0

Fig. 2. Example of a wind field with wind parameter vecipr= _ .

17, Vo1, Evss Enes L] = [0, 15,0.2, 510, 1] for a wind turbine with  Where Z; = 5[V (|30, andi € {1,2,3} references
blade radiusk = 40 m. The colors indicate the wind velocity in the quantities associated with bladeThe net force expe-
range 13 to 16 m/s. rienced by the turbine is given by(6) = 2%, £%(6),

with similar expressions for the net torques.



IV. PROBLEM FORMULATION to this problem can be found by using sequential convex
programming (SCP) [10].
Maximizing output power while minimizing fatigue
We formulate the problem of maximizing mean outputoads and output power variation corresponds to maxi-
torque subject to physical blade pitching constraints asrizing 7, while simultaneously minimizing all compo-
convex optimization problem. Solutions to this problemments of.J. We formulate this as the scalarized problem
will be used to evaluate power output reduction when

A. Power Maximization

maximize ®(p) =7, — ATJ

reducing fatigue loads. subject to p € P (6)
The power maximization problem can be formulated ’
as with variablesp(d) € R® for € [0, 2], and scalar-
maximize 7, ®) ization parameters\ = (\;, Ay, s, \;) € RY. For
subjectto p € P simplicity, and to reflect the equal importance of both

fatigue load minimization and even power output, we
will use the scalarization parametexs= u1, 1 € Ry,
for the remainder of this paper. By varying a trade-
off curve betweerr, and1”.J can be found. Unlike the
power maximization problem, the additional objective
term 17.J is non-convex and thus problem 6 is not a
9 convex optimization problem. We therefore choose to
: : solve it locally by using SCP.

The SCP method finds a local solution iteratively.

with variablesp(d) € R® for 6 € [0, Z7]. In the model
given by equations (1)-(4)7, only depends om(6)
through the lift and drag coefficients;(«) and Cy(«),
an example of which are illustrated in figure 4 [8].

E At iteration k, a convex approximation of problem 6
3 is formed about a poini*). This problem is formed by
S replacing the non-convex termh by a convex approx-
2 imation J*), which leads to the convex optimization
f\ problem
3 . .
= maximize ®(p) =7, — p17J*)
subjectto p € P, @)
peT®,
-1 —0.5 0 0.5 1 with variablesp(f) € R® for 6 € [0, 2F]. The con-

a [rad] straint set7(*) is a (convex) trust region around the

approximation poinp®) in which J*) is a sufficiently
accurate approximation of. The initial approximation
point p(©) is typically chosen to be a point with rea-
sonable performance, such as a well chosen constant
pitch profile, and for subsequent valueskofp(*) is set
equal to the solution of problem 7 at iteratién- 1. By
running a sufficient number of iterations*) converges

r;o a local optimum for problem 6 [11]. Although SCP
IS not guaranteed to find a globally optimal solution, it
nIeverages the convex parts of the original non-convex
problem, which often leads to a good solution.

Fig. 4. Example lift and drag coefficient curves. The dottetbdi
indicate the interval in which the coefficients have beerraxmated.

The allowed range forv is limited, as operation in
stall mode is prohibited. Using these limits,(«) can be
approximated by a concave functiondn while Cy(«a)
can be approximated by convex functiondnAs 7, is
the sum of a positive weighting of the concave functio
Ci(a) and a negative weighting of the convex functio
Cy(a), 7, and its mean valug, are concave functions
of «, and thus also op(f). Since the constraint s&®
is convex, problem 5 is a convex optimization problem V. NUMERICAL EXAMPLES

which can be solved globally and efficiently [9]. We present two numerical examples which solve

discretized versions of the power maximization and
fatigue load minimization problems. Starting from the
In this section we address the problem of maximizingnodel presented in equations (1)-(4), and using the wind
the mean output torque, while keeping it even and mirfield depicted in figure 2, we break each blade into
imizing fatigue loads. This is a non-convex multiobjec-n smaller blade elements, and divide the swept area

tive optimization problem. We show how local solutions) < 6 < %” into m discrete values. We approximate

B. Fatigue Load Minimization

4



Ci(a) and Cy4(a) by piecewise linear concave and

: . g 19+ e - = = = — -
convex functions, respectively, withdistinct segments. === - -
This allows all integrals to be replaced by finite sums 18 \\//” I
and reduces the number of optimization variables to L R
.. ape AN /
finite and tractable number. For the specific example 17 -

we present, the parameter valués- 40, m = 24, and o )
n = 2 were used, where the knot points 6f(«) and <
Cq4(a) were given by the model from [8]. Both example = 16 ¢
problems were solved using CVX [12].

We solved problem 5 to find the pitch profite (6), 15 ¢
which maximizes the mean output torque among all fee
sible pitch profiles. As problem 6 is only solved locally, 14 ¢ . . .
the trade-off curve between, and1”J depends on the 0 0.5 1 1.5 2
initial pitch profile p(®) used in the SCP algorithm. For 0 [rad]

this reason, multiple initial pitch profiles were used as

inputs for the SCP algorithm, gnd.thew correspondlngig‘ 6. The optimized pitch profiles* (6) (solid) and pt-°-(9)
trade-off curves are presented in figure 5. Good tradedashed). The colors reference the same three blades in huftles
off performance is obtained at the knee of figure 5The dip near 0.5 rad corresponds to the red blade passinggthro
where very little power output is sacrificed to obtaingr\%;ésvé of the wind field that is significantly affected by tbeer
significantly lower fatigue loads. We denote this pitch

profile asp®°(0). Note that for every initial pitch profile,

the SCP algorithm was able to find a final pitch profile

that was very close tp'-°- (). The pitch profileg*(6)

and p'-©-(9) are shown in figure 6. unit-weighted RMS variation for all AC-terms becomes

17J = 1.28 - 10*. By comparison, using the constant
< 10° pitch profile p¢* yields 7, = 1.41 - 10 Nm, and unit-
15 weighted RMS variation oft”.J = 3.2 - 10%. Thus,

— —t while the mean output torque is only increased slightly
using the optimal pitch profile*(d) compared with
p°*, the undesirable AC-components of the torques and

. 10¢+) force are reduced b§0% using the torque-maximizing
§ © pitch profile p*(#). This occurs even though RMS load
= —+—p"¥ =0.35 rad minimization was not explicitly part of the objective

I —+—p® =0.40 rad function used to fing* ().

p© =045 rad Using the pitch profilep'-°-(6) results in an average

*  pto(0) output torquer, = 1.33- 105 Nm with a corresponding

0 - - - unit-weighted RMS variation”.J = 1.10 - 10%. Thus,
0 5000 10000 15000 the pitch profilep®©-(6) reduces the unit-weighted RMS
17J [ variation by more tharf6% when compared to any

de-off h dif o profi constant pitch profile, while also having a mean output
Fig. 5. Trade-off curves with different starting constaittip profiles ;

for the SCP algorithm. All initial starting points convergedp®-°- (9) torque th_at IS Onl.w% less than what can be generated
for an appropriate choice of the tradeoff parameter by any pitch profile.

Looking at the pitch profiles in figure 6, and the

A. Results corresponding torques and force experienced by the

For the given wind field, we were able to find a con-wind turbine in figure 7, we see that most of the
stant pitch profilep®*, that was Pareto optimal (largestRMS variation occurs when a blade passes through
7., Smallest1”.J) compared to all other constant pitchthe area of the wind field significantly affected by the
profiles. The torques and force generated by the pitdower shadow. By having all three blades coherently
profiles p*(0), p'-° (), andp* are shown in figure 7. adjust their pitches when one blade passes through the

Applying the pitch profilep*(9) results in a mean tower shadowp®°:(9) is able to achieve effectively zero
output torque of7, = 1.42 - 10° Nm, while the variation in all torques.
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Fig. 7. Torques and force resulting from the pitch profiteg0) (solid), p*-°-(0) (dashed), ang* (dotted X's).

VI. | TERATIVE LEARNING CONTROL is a two step process: we first estimate the function

In the previous sections we assumed perfect knowfnd then find the pitclt that minimizes the estimated

edge of the wind field and turbine model when calculat?:

ing pitch profiles. In this section we show that pitch .

profiles can be computed solely from load measurd®: EStimation

ments, with no prior knowledge of the wind field or The mappingp is unknown, but we approximate it by
underlying turbine model. We do this through a simplean affine expression at an operating pgiitsuch that
implementation of iterative learning control (ILC). For

a more thorough examination of ILC and extremum- P(B8) =~ ¢(8°) + Dp(B°) (B — B°),

seeking control, refer to [13], [14], and [15]. where Dé(3°) € R is the Jacobian ofs at 5°

A. Model By taking a sequence of measurements of the error

We consider the wind turbine positioned at a fixed” = ¢(5) Over a range of, we can estimate this affine

angled. There exists an unknown mappiagfrom the approximation of¢(/3) vialleast squares. .
the pitch 8 € R® to the AC-termse = (37,0f) € R, We assume that a desired power set-point is provided

such that for the mean output torqu@:, which is preqleterrr_]ined

e = o(8). based on the wind conditions. Along with this set-
point, the mean values,,7., and f are required in

At eachd, the terme can be seen as an error. We wanbrder to determine the error, as= (1 — 7, f — f).

to minimize this erroe for all 9, thereby minimizing the These quantities are updated dynamically during turbine

AC-load 17J. We do this iteratively by using ILC. This operation after each full rotation. This allows the mean



values to change if, for example, the wind field changes. Results

The mean value updates are given by We applied ILC under the same initial wind conditions
_ _ heas in our previous numerical examples. Figure 8 shows
Ty = (L=a@)Ty +q7,"", how the AC-load and set-point tracking evolved over the
T, = (1—-qT. +q7;°", course of 50 rotations. After 20 rotations, the AC-load
T o= A=q@f+qf %, quickly decreased frora.94 - 10* Nm t0 2.80 - 10° Nm
while the mean torqué, stabilized to within1% of
where7meas Fmeas U ¢ R are the mean torque and its set-point value].33 - 106 Nm. This corresponds to
force values measured over the last full rotation, and 91% reduction in RMS variation when compared to
q € [0,1] is a smoothing parameter. p°*, while having the same mean torquezas:-(6).
After 22 rotations the baseline wind speegl was
C. Optimization increased. The AC-load increased briefly, after which

We wish to find the pitchd that minimizes the it quickly reduced due to adaption. Even though the

approximation of. In order to maintain the accuracy of S3M€ matrixf was u_sed through aII_ lterations, good
the approximation, we also wafitto be located close to Performance was obtained, even for different wind fields.

the operating poin3°. We can formulate this problem

4
as x10
. . . 5 [
minimize [|¢(6°) + D¢(8°)(B — B3 +v|B-6°13, | . _._._. -
4t
with variable 3 € R®, wherev € R is a trade-off
parameter, and(3°) € R*, D¢(5°) € R**3 g° € R? Y i
are the problem data. The solution to this problem, —
can be found analytically - 5
-, 2}
B =" = (Dg(8°) D(8°) + 1)~ D(5°)" $(5). .
This forms the basis for our ILC algorithm. We let
0%77‘777771___‘___‘___1
H(B°) = (D§(8°)" Dé(8°) + vI) "' D(8°)" $(5°) 1020, 30 [{110 50 60
and introduce a learning ratec [0, 1] such that %106
0 o o 1.7¢
B =pB%—rH(B%)p(B°). (8)
This expression exists for evetye [0, 27]. 1.6} ¥
- €
D. Algorithm Z 15
We implemented ILC on the same discretized turbine &
model from the previous section, in which each dis- 1.4k
cretized angular subinterval individually ran the control ¥
method described in equation (8). Every time a blade 13- T
passed through an interval corresponded to an iteratior : 10 20 30 40 50 60
in the ILC algorithm running in that interval. At iteration Rotations [-]
k we applied the pitch3*) and measured the error
(k) (k) i i
e We then setB (ki‘tj’)the operating point and usedFig. 8. (Top) The AC-loadi” J evaluated after each full rotation
equation (8) to find3 - (solid) compared to the response of using constant pitchiiabtted

For this example, we used the simplificatidh =  dash) and using the optimized pitch profife°" (¢) (dashed). (Bottom)
H(ﬁ(k)) _ H(/Bo)' i.e. we estimatedHd offline for The output torque, (solid), along with the set-points (dashed).

some pitchs°, and used this regardless of the current

operating point3®). The ILC algorithm then became VII. CONCLUSION
. i . We have presented methods for choosing pitch pro-
Bk = g — cHe®). files that maximize power production and minimize



RMS load variations for a static wind turbine model. By [4]
choosing an optimized pitch profile, force and torque
RMS variation can be reduced by over 96% percent
compared to any constant pitch profile, while only [5]
forfeiting 7% of the maximum power output. Moreover,
we have shown that simple iterative learning, using only
load measurements, can achie%% RMS variation [6]
reductions with the same mean output torque as that
of a profile optimized with full knowledge of the wind
field and wind turbine model. Lastly, the learning con- [7]
troller quickly adapts to wind field changes, showing the
robustness of our method to dynamic wind conditions.
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