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Reinforcement Learning (RL)
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@ RL: algorithms for solving MDPs with incomplete information of M
(e.g., p, r accessible by interacting with the environment) as input.
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@ RL: algorithms for solving MDPs with incomplete information of M
(e.g., p, r accessible by interacting with the environment) as input.

e Today: episodic (allow restart in the trajectory) and model-free (no
storage of transition & reward models).
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Success of RL
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Why Policy Gradient?

Heroes Behind the Success: RL algorithms
@ Value function learning (global convergence V)
o Q-learning, SARSA, Bellman Residue Minimization, etc.
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Why Policy Gradient?

Heroes Behind the Success: RL algorithms
@ Value function learning (global convergence V)
o Q-learning, SARSA, Bellman Residue Minimization, etc.
e Monte Carlo Tree Search (global convergence v):
o e-greedy tree search, UCT, BRUE, etc.
@ Policy optimization (global convergence v X)

o Policy gradient, random search, actor-critic, etc.

Today: global convergence & sample efficiency of practical versions of
policy gradient methods such as REINFORCE
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Why REINFORCE?

REINFORCE: balance between good empirical performance &
implementation simplicity
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Why REINFORCE?

REINFORCE: balance between good empirical performance &
implementation simplicity

Neural Architecture Search i robabity 5.

Semantic Program Parser

Trains a child network
with architecture

Visual Question Answering Thecotrolle (RAN)

A'to get accuracy R

Dialogue generation

@ Coreference resolution

Compute gradient of p and
scale it by R to update
o the controller
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Why REINFORCE?

REINFORCE: balance between good empirical performance &
implementation simplicity

Neural Architecture Search i robabity 5.

Semantic Program Parser

Trains a child network
with architecture

Visual Question Answering Thecotrolle (RAN)

A'to get accuracy R

Dialogue generation

@ Coreference resolution

Compute gradient of p and
scale it by R to update
o the controller

A good baseline and starting point!
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© Review of Policy Gradient Methods
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Underlying MDP

MDP (stationary, discounted): M = (S, A, p, r,7,p), v € [0,1).
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Underlying MDP

MDP (stationary, discounted): M = (S, A, p, r,7,p), v € [0,1).
0 p>0,5S=|[S5 <00, A=|A| <o0. W.lo.g., r(s,a) € [0,1].
o Goal: maximize E[Y ;2o 7r(st, at)], where sy ~ p, ag ~ (s¢, ),
St+1 ~ p(+|st, at), and 7 : S — P(A) is called policy.
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Policy Optimization

@ Policy optimization reformulation:
maximizeen F(m),

where
F(T[' _EZ ")/rSt,at)

so ~ p, ar ~ m(st,-), Sey1 ~ p(|st, a¢), Yt >0, and

A
n:{weRs*“ Z_lns,azu\fseS), ns,a>0(v568,aeA)}.
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Policy Optimization

@ Policy optimization reformulation:
maximizeen F(m),

o F(m) is also written as V™(p) in the value function learning literature.
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Policy Optimization

@ Policy optimization reformulation:

maximizeen F(m),

F () is also written as V7 (p) in the value function learning literature.

Policy parametrization: 7y : © — 1.

New problem:
maximizegeo F(mg).

Today — energy-based policies: (s, a) = %, 0 =R
a’E s,a/

Practical choice in reality, common basis for more advanced (e.g.,
neural) parametrization.
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Policy Gradient Existence

@ Question: Is F(mp) differentiable?

ZKOB20 (Stanford University) 14 / 31



Policy Gradient Existence

@ Question: Is F(mp) differentiable?
@ Answer: yes!
o Indeed, F(my) is at least C2 and VyF(mg) is 8/(1 — v)3-Lipschitz.
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Policy Gradient Methods

e (Vanilla) policy gradient method:
0"t = 0K + a* VL (6Y),

where Ly(6) = F(mg) + AR(0): e.g., entropy reg R.
@ Some other variants: NPG, TRPO/PPO, DPG etc.
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Policy Gradient Methods

e (Vanilla) policy gradient method:
0"t = 0K + a* VL (6Y),

where Ly(6) = F(mg) + AR(0): e.g., entropy reg R.
@ Some other variants: NPG, TRPO/PPO, DPG etc.

@ What does the policy gradient look like?

o Policy gradient theorems (PGT): hold for general C!-smooth Ty.
o Policy gradient estimators (PGE): Monte Carlo approx of PGT.

@ How to reduce variance caused by Monte Carlo approximation?
e Mini-batch updates.
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© REINFORCE & Practical Policy Gradient Methods
@ Policy Gradient Estimators
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PGE in Theoretical Analysis

@ Visitation-measure based PGT:

1
VoF(mg) = jESNdZQ Earro(s,) [RT(s,a) Ve log my(s, a)] -

1
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PGE in Theoretical Analysis

@ Visitation-measure based PGT:

1
VoF(mg) = jESNdZQ Earro(s,) [RT(s,a) Ve log my(s, a)] -

1

Here 7 = (sp, a0, ro, 51, 31, 1, - . . ) denotes a trajectory, and
Q"(s,a) =E [ZZO vtr(St,at)‘SO =s,30 = a,ar ~ 7(st, ), se41 ~ p(-|st, ar), Vt > 0] ,

dr = (1-7) Zt:O YtProb (s: = s|sp ~ p).
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PGE in Theoretical Analysis

@ Visitation-measure based PGT:

1
VoF(mg) = jESnge Eamro(s,) [R™(s,a) Vo log my(s, a)] -

1

e Vistation measure based PGE (used in theory):

A

VoF (o) = 12(Q(s, ) — b(s)) Ve log mo(s, a),

where s ~ d,? a ~ mp(s,-), Q(s,a) =~ Q™o (s, a), b is baseline:
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e Vistation measure based PGE (used in theory):

A

VoF (o) = 12(Q(s, ) — b(s)) Ve log mo(s, a),

s A . .
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PGE in Theoretical Analysis

@ Visitation-measure based PGT:

1
VoF(mg) = jESngg Eamro(s,) [R™(s,a) Vo log my(s, a)] -

1

e Vistation measure based PGE (used in theory):

A

VoF (o) = 12(Q(s, ) — b(s)) Ve log mo(s, a),

where s ~ d,? a ~ mp(s,-), Q(s,a) =~ Q™o (s, a), b is baseline:
o Trajectory for sampling s is wasted, rarely used in practice.
o Example @: @k(s,a) = z:,lk:t'yt,_trtk,, H* is a truncation horizon,
T =(s,a,rf, ..., 5K, ak, r) ~ Probgl .
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PGE in Practice

o Trajectory-based PGT:

VoF(m9) = E, _probr0 [ZZO Y Q™ (¢, ar) Vg log ma(st, at)}
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PGE in Practice

o Trajectory-based PGT:
VGF(WO) = E-,-Nprobge [tho ’YtQﬂe (5t7 at)Ve log 7T9(5t, 3t)}

o REINFORCE PGE (used in practice):

LBH"

] ~
o V(QK(sE aF) — b(sy)) Vo log mox(ag |sy).

VoF (mge) =

where 3 € (0,1), Q@%(s,a) =~ Q™* (s, a), b is baseline, H is the
: : k _ (ck ok Lk k ok Lk Tk
truncation horizon, 7 = (s, ag, rgs - - - » S5k A M) ~ Proby®.

~ o~ HK ,
o Example Q: Q*(sk,af) =Y, _, " ~irk.
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PGE in Practice (Continued)

@ Another trajectory-based PGT:

[e’e} t
VoF(mg) = ETNProbZG [tho vr(st, ar) tho Vo log mo(sh, an)
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PGE in Practice (Continued)

@ Another trajectory-based PGT:
[e’e} t
VoF(mp) = E prob7? [tho v r(st, ar) tho Vo log mo(sh, an)

e GPOMDP PGE (used in practice):

~ Hk

t
VoF(mp) = 3, 1 (rE = b)Y, Vologmy(alsf),

where b is baseline, H* is the truncation horizon.
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Additional (Practical) PGE

@ Actor-Critic PGE: Q-functions estimated using TD algorithms.
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Additional (Practical) PGE

@ Actor-Critic PGE: Q-functions estimated using TD algorithms.
@ Zeroth-Order/Random Search PGE:

o Corresponding to a random perturbation/smoothing type “policy
gradient theorem"”, widely used in PG + LQR literature.

@ Question 1: Can we deal with all kinds of (practical) estimators (e.g.,
REINFORCE)?
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© REINFORCE & Practical Policy Gradient Methods

@ Mini-batch updates
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Mini-batch Updates

@ Sample M independent trajectories le, e ,7',\"/, from M following
policy mg« and then compute an approximate gradient @g')L/\k(Hk)
(i=1,..., M) using each of these M trajectories.
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Mini-batch Updates

@ Sample M independent trajectories le, e ,7',\"/, from M following
policy mg« and then compute an approximate gradient @g')L/\k(Hk)
(i=1,..., M) using each of these M trajectories.

@ Then update as follows:

§

gk+1 — Z V4Y )L/\ (6%).
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Mini-batch Updates

@ Sample M independent trajectories le, e ,7',\"/, from M following
policy mg« and then compute an approximate gradient @g')L/\k(Hk)
(i=1,..., M) using each of these M trajectories.

@ Then update as follows:

§

0k+1 Z )L k(ak

@ Question 2: Can we accurately characterize the effect of M?
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© REINFORCE & Practical Policy Gradient Methods

@ Our Contribution
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Theory vs. Practice: What was Missing?

‘ Global? ‘ Practical PGE? ‘ Finite MB? ‘ High-Prob Rate?

Long Ago No Yes Yes No (a.s. Asymp)

~ 10 years No Yes Yes No (Rate in Expect.)
~ 2 years Yes No No: Q(47) | No (Rate in Expect.)
Our Work Yes Yes Yes Yes (High-Prob + a.s.)

Table: PGE: policy gradient estimators; MB: mini-batch

ZKOB20 (Stanford University) 25 /31



Theory vs. Practice: What was Missing?

| Global? [ Practical PGE? | Finite MB? |

High-Prob Rate?

Long Ago No Yes Yes No (a.s. Asymp)

~ 10 years No Yes Yes No (Rate in Expect.)
~ 2 years Yes No No: Q(47) | No (Rate in Expect.)
Our Work Yes Yes Yes Yes (High-Prob + a.s.)

Table: PGE: policy gradient estimators; MB: mini-batch

@ Exceptions:

o LQR [JSW20] (our work: general MDPs);
o NPG [AYBB+19, CYJW19, ESRM20] (our work: vanilla PG).
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Algorithm Specification & PGE Assumptions

O Choose regularization R(f) = <4 > ses.acalogmo(s, a) (2-smooth);
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Algorithm Specification & PGE Assumptions

O Choose regularization R(f) = <4 > ses.acalogmo(s, a) (2-smooth);
@ Decrease \¥ in doubling phases — indexing: k — (I, k);
© Add simple truncation after each phase (to bound log).

Assumption (PGE: nearly unbiased & bounded variance)

There exist constants C, C;, Gy, My, My > 0, such that for all |, k > 0,
we have ||[VoLyi(0"%)||2 < Ci almost surely and that

Vol (0" )TE; (VoLyi(0"%) > G| VoLy (873 = 61k, (1)
E/ k| VoLak(0"9)|3 < My + Ma||VoLy(6"9)]3, (2)

where Zk’ 152 < C,V1>0. Also, H'k > Iogl/v(k+ 1),VI] k>0.
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Main Results

Then we obtain (N is the number of episodes):
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Main Results
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@ any-time sub-linear high-prob regret bound

oo

O((M? + M=8)(N + M)3 (log(N /)3 + M(log N)?) = O(N3).
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Main Results

Then we obtain (N is the number of episodes):

@ any-time sub-linear high-prob regret bound

ol

O((M? + M=8)(N + M)3 (log(N /)3 + M(log N)?) = O(N3).

@ a.s. convergence of average regret with asymptotic rate

0 (Wé +M N <1 + %) (og ) + MM N)2> = O(NH).
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Main Results (Continued)

For REINFORCE & GPOMDP PGEs:
o PGE assumptions easily verified with ©(log k) truncated horizon H*.
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Main Results (Continued)

For REINFORCE & GPOMDP PGEs:
o PGE assumptions easily verified with ©(log k) truncated horizon H*.

@ any-time sub-linear high-prob regret bound (w.p. at least 1 — 9)

S2A% a7

of =2+
(((1 -

p

> (M$ + M™8)(N + M)# (log(N/))? + M(log N)2> :
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Main Results (Continued)

For REINFORCE & GPOMDP PGEs:
o PGE assumptions easily verified with ©(log k) truncated horizon H*.

dr’

P

@ any-time sub-linear high-prob regret bound (w.p. at least 1 — 9)

S2A2
¢ ((uw* /

@ a.s. convergence of average regret with asymptotic rate

S2A2 dr’ | 5.1 M\ & 5 M(log N)?
—_— Me + M~ 6)N"6 [1+ — logN)2 + ————— | .
O(((l—v)”‘ , )( bt (1 ) gesm ! MO

> (M$ + M™8)(N + M)# (log(N/))? + M(log N)2> :

o o]

oo
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Proof Sketch

o Phase analysis: bound regret in each phase (with \¥ fixed)
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Proof Sketch

o Phase analysis: bound regret in each phase (with \¥ fixed)
o Control of “bad” episodes: sub-linear upper bound on # episodes
with large gradient norms || VgL (6%)..
o Gradient domination condition [AKLM19]: from gradient norm
VoL (6%)]||2 to sub-optimality gap F* — F(mgx).
@ Doubling trick:
e stitch together phase regrets with log N additional terms.
e From high prob (with log(1/6) dependency) to a.s.:
o Borel-Cantelli.
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Open Problems

Extended version of this work (posting soon, check
https://stanford.edu/~boyd/papers/conv_reinforce.html):

e Episodic finite horizon MDPs.
e Additional PGEs.
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Open Problems

Extended version of this work (posting soon, check
https://stanford.edu/~boyd/papers/conv_reinforce.html):

e Episodic finite horizon MDPs.
e Additional PGEs.
Some future directions:

@ Practically widely used (relative) entropy regularization, and empirical
tests of the log-barrier one adopted in our work and [AKLM19].

@ Remove the necessity of the positivity assumption (p > 0).

@ Function approximation.
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Any Questions?

o IVACY FLoWCODE Ol

VACY.FLoWCODESS

Thank you all for listening! Any questions?
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