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Reinforcement Learning (RL)

RL: algorithms for solving MDPs with incomplete information of M
(e.g., p, r accessible by interacting with the environment) as input.

Today: episodic (allow restart in the trajectory) and model-free (no

storage of transition & reward models).
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Success of RL
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Why Policy Gradient?

Heroes Behind the Success: RL algorithms

Value function learning (global convergence 3)

Q-learning, SARSA, Bellman Residue Minimization, etc.

Monte Carlo Tree Search (global convergence 3):

ε-greedy tree search, UCT, BRUE, etc.

Policy optimization (global convergence 37)

Policy gradient, random search, actor-critic, etc.

Today: global convergence & sample efficiency of practical versions of

policy gradient methods such as REINFORCE
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Why REINFORCE?

REINFORCE: balance between good empirical performance &

implementation simplicity

Neural Architecture Search

Semantic Program Parser

Visual Question Answering

Dialogue generation

Coreference resolution

...

A good baseline and starting point!
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Underlying MDP

MDP (stationary, discounted): M = (S,A, p, r , γ, ρ), γ ∈ [0, 1).

ρ > 0, S = |S| <∞, A = |A| <∞. W.l.o.g., r(s, a) ∈ [0, 1].

Goal: maximize E [
∑∞

t=0 γ
tr(st , at)], where s0 ∼ ρ, at ∼ π(st , ·),

st+1 ∼ p(·|st , at), and π : S → P(A) is called policy.
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Policy Optimization

Policy optimization reformulation:

maximizeπ∈Π F (π),

where

F (π) = E
∑∞

t=0
γtr(st , at),

s0 ∼ ρ, at ∼ π(st , ·), st+1 ∼ p(·|st , at), ∀t ≥ 0, and

Π =

{
π ∈ RSA

∣∣∣ ∑A

a=1
πs,a = 1 (∀s ∈ S), πs,a ≥ 0 (∀s ∈ S, a ∈ A)

}
.
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Policy Optimization

Policy optimization reformulation:

maximizeπ∈Π F (π),

F (π) is also written as V π(ρ) in the value function learning literature.

Policy parametrization: πθ : Θ→ Π.

New problem:

maximizeθ∈Θ F (πθ).

Today – energy-based policies: πθ(s, a) =
exp(θs,a)∑

a′∈A exp(θs,a′ )
, Θ = RSA.

Practical choice in reality, common basis for more advanced (e.g.,

neural) parametrization.
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Policy Gradient Existence

Question: Is F (πθ) differentiable?

Answer: yes!

Indeed, F (πθ) is at least C 2 and ∇θF (πθ) is 8/(1− γ)3-Lipschitz.
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Policy Gradient Methods

(Vanilla) policy gradient method:

θk+1 = θk + αk∇θLλk (θk),

where Lλ(θ) = F (πθ) + λR(θ): e.g., entropy reg R.

Some other variants: NPG, TRPO/PPO, DPG etc.

What does the policy gradient look like?

Policy gradient theorems (PGT): hold for general C 1-smooth πθ.
Policy gradient estimators (PGE): Monte Carlo approx of PGT.

How to reduce variance caused by Monte Carlo approximation?

Mini-batch updates.
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PGE in Theoretical Analysis

Visitation-measure based PGT:

∇θF (πθ) =
1

1− γ
Es∼dπθρ Ea∼πθ(s,·) [Qπθ(s, a)∇θ log πθ(s, a)] .

Here τ = (s0, a0, r0, s1, a1, r1, . . . ) denotes a trajectory, and

Qπ(s, a) = E
[∑∞

t=0
γt r(st , at)

∣∣∣s0 = s, a0 = a, at ∼ π(st , ·), st+1 ∼ p(·|st , at), ∀t > 0
]
,

dπρ = (1− γ)
∑∞

t=0
γtProbπ(st = s|s0 ∼ ρ).
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Vistation measure based PGE (used in theory):

∇̂θF (πθk ) = 1
1−γ (Q̂k(s, a)− b(s))∇θ log πθ(s, a),

where s ∼ d
π
θk

ρ , a ∼ πθk (s, ·), Q̂k(s, a) ≈ Qπ
θk (s, a), b is baseline:

Trajectory for sampling s is wasted, rarely used in practice.

Example Q̂: Q̂k(s, a) =
∑Hk

t′=t γ
t′−trkt′ , H

k is a truncation horizon,
τ k = (s, a, rk0 , . . . , s

k
Hk , a

k
Hk , r

k
Hk ) ∼ Prob

π
θk

s,a .
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PGE in Practice

Trajectory-based PGT:

∇θF (πθ) = Eτ∼Probπθρ

[∑∞

t=0
γtQπθ(st , at)∇θ log πθ(st , at)

]

REINFORCE PGE (used in practice):

∇̂θF (πθk ) =
∑bβHkc

t=0
γt(Q̂k(skt , a

k
t )− b(skt ))∇θ log πθk (akt |skt ),

where β ∈ (0, 1), Q̂k(s, a) ≈ Qπ
θk (s, a), b is baseline, Hk is the

truncation horizon, τk = (sk0 , a
k
0 , r

k
0 , . . . , s

k
Hk , a

k
Hk , r

k
Hk ) ∼ Prob

π
θk
ρ .

Example Q̂: Q̂k(skt , a
k
t ) =

∑Hk

t′=t γ
t′−trkt′ .
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PGE in Practice (Continued)

Another trajectory-based PGT:

∇θF (πθ) = Eτ∼Probπθρ

[∑∞

t=0
γtr(st , at)

∑t

h=0
∇θ log πθ(sh, ah)

]

GPOMDP PGE (used in practice):

∇̂θF (πθk ) =
∑Hk

t=0
γt(rkt − bt)

∑t

h=0
∇θ log πθk (akh |skh ),

where b is baseline, Hk is the truncation horizon.
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Additional (Practical) PGE

Actor-Critic PGE: Q-functions estimated using TD algorithms.

Zeroth-Order/Random Search PGE:

Corresponding to a random perturbation/smoothing type “policy
gradient theorem”, widely used in PG + LQR literature.

Question 1: Can we deal with all kinds of (practical) estimators (e.g.,

REINFORCE)?
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Mini-batch Updates

Sample M independent trajectories τk1 , . . . , τ
k
M from M following

policy πθk and then compute an approximate gradient ∇̂(i)
θ Lλk (θk)

(i = 1, . . . ,M) using each of these M trajectories.

Then update as follows:

θk+1 = θk + αk 1

M

M∑
i=1

∇̂(i)
θ Lλk (θk).

Question 2: Can we accurately characterize the effect of M?
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Theory vs. Practice: What was Missing?

Global? Practical PGE? Finite MB? High-Prob Rate?

Long Ago No Yes Yes No (a.s. Asymp)

∼ 10 years No Yes Yes No (Rate in Expect.)

∼ 2 years Yes No No: Ω( 1
Mp ) No (Rate in Expect.)

Our Work Yes Yes Yes Yes (High-Prob + a.s.)

Table: PGE: policy gradient estimators; MB: mini-batch

Exceptions:

LQR [JSW20] (our work: general MDPs);
NPG [AYBB+19, CYJW19, ESRM20] (our work: vanilla PG).
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Algorithm Specification & PGE Assumptions

1 Choose regularization R(θ) = 1
SA

∑
s∈S,a∈A log πθ(s, a) (λS -smooth);

2 Decrease λk in doubling phases – indexing: k → (l , k);

3 Add simple truncation after each phase (to bound log).

Assumption (PGE: nearly unbiased & bounded variance)

There exist constants C , C1, C2, M1, M2 > 0, such that for all l , k ≥ 0,

we have ‖∇̂θLλl (θl ,k)‖2 ≤ C1 almost surely and that

∇θLλl (θl ,k)TEl ,k∇̂θLλl (θl ,k) ≥ C2‖∇θLλl (θl ,k)‖2
2 − δl ,k , (1)

El ,k‖∇̂θLλk (θl ,k)‖2
2 ≤ M1 + M2‖∇θLλl (θl ,k)‖2

2, (2)

where
∑Tl−1

k=0 δ2
l ,k ≤ C, ∀ l ≥ 0. Also, H l ,k ≥ log1/γ(k + 1), ∀ l , k ≥ 0.
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Main Results

Then we obtain (N is the number of episodes):

1 any-time sub-linear high-prob regret bound
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2 a.s. convergence of average regret with asymptotic rate
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= Õ(N− 1

6 ).

ZKOB20 (Stanford University) 27 / 31



Main Results

Then we obtain (N is the number of episodes):

1 any-time sub-linear high-prob regret bound

O((M
1
6 + M−

5
6 )(N + M)

5
6 (log(N/δ))

5
2 + M(logN)2) = Õ(N
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Main Results (Continued)

For REINFORCE & GPOMDP PGEs:

PGE assumptions easily verified with Θ(log k) truncated horizon Hk .

1 any-time sub-linear high-prob regret bound (w.p. at least 1− δ)

O
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?

ρ

ρ

∥∥∥∥∥
∞

)
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6 +M−

5
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5
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5
2 +M(logN)2

)
.

2 a.s. convergence of average regret with asymptotic rate
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?

ρ
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M

N

) 5
6

(log N)
5
2 +
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N

)
.

ZKOB20 (Stanford University) 28 / 31



Main Results (Continued)

For REINFORCE & GPOMDP PGEs:

PGE assumptions easily verified with Θ(log k) truncated horizon Hk .

1 any-time sub-linear high-prob regret bound (w.p. at least 1− δ)

O

((
S2A2

(1− γ)7
+

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
∞

)
(M

1
6 +M−

5
6 )(N +M)

5
6 (log(N/δ))

5
2 +M(logN)2

)
.

2 a.s. convergence of average regret with asymptotic rate

O

((
S2A2

(1− γ)7
+

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
∞

)
(M

1
6 + M−

5
6 )N−

1
6

(
1 +

M

N

) 5
6

(log N)
5
2 +

M(log N)2

N

)
.

ZKOB20 (Stanford University) 28 / 31



Main Results (Continued)

For REINFORCE & GPOMDP PGEs:

PGE assumptions easily verified with Θ(log k) truncated horizon Hk .

1 any-time sub-linear high-prob regret bound (w.p. at least 1− δ)

O

((
S2A2

(1− γ)7
+

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
∞

)
(M

1
6 +M−

5
6 )(N +M)

5
6 (log(N/δ))

5
2 +M(logN)2

)
.

2 a.s. convergence of average regret with asymptotic rate

O

((
S2A2

(1− γ)7
+

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
∞

)
(M

1
6 + M−

5
6 )N−

1
6

(
1 +

M

N

) 5
6

(log N)
5
2 +

M(log N)2

N

)
.

ZKOB20 (Stanford University) 28 / 31



Proof Sketch

Phase analysis: bound regret in each phase (with λk fixed)

Control of “bad” episodes: sub-linear upper bound on # episodes
with large gradient norms ‖∇θLλ(θk)‖2.
Gradient domination condition [AKLM19]: from gradient norm
‖∇θLλ(θk)‖2 to sub-optimality gap F ? − F (πθk ).

Doubling trick:

stitch together phase regrets with logN additional terms.

From high prob (with log(1/δ) dependency) to a.s.:

Borel-Cantelli.
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Open Problems

Extended version of this work (posting soon, check

https://stanford.edu/~boyd/papers/conv_reinforce.html):

Episodic finite horizon MDPs.

Additional PGEs.

Some future directions:

Practically widely used (relative) entropy regularization, and empirical

tests of the log-barrier one adopted in our work and [AKLM19].

Remove the necessity of the positivity assumption (ρ > 0).

Function approximation.
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Any Questions?

Thank you all for listening! Any questions?
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