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Abstract
We consider the problem of jointly estimating multiple related zero-mean Gaussian 
distributions from data. We propose to jointly estimate these covariance matrices 
using Laplacian regularized stratified model fitting, which includes loss and regu-
larization terms for each covariance matrix, and also a term that encourages the dif-
ferent covariances matrices to be close. This method ‘borrows strength’ from the 
neighboring covariances, to improve its estimate. With well chosen hyper-param-
eters, such models can perform very well, especially in the low data regime. We 
propose a distributed method that scales to large problems, and illustrate the effi-
cacy of the method with examples in finance, radar signal processing, and weather 
forecasting.

Keywords  Convex optimization · Stratified model fitting · Laplacian regularized 
stratified models · Laplacian regularization · Gaussian models

1  Introduction

We observe data records of the form (z, y), where y ∈ �n and z ∈ {1,… ,K} . We 
model y as samples from a zero-mean Gaussian distribution, conditioned on z, i.e.,

with �z ∈ �n
++

 (the set of symmetric positive definite n × n matrices), z = 1,… ,K . 
Our goal is to estimate the model parameters � = (�1,… ,�K) ∈ (�n

++
)K from 

the data. We refer to this as a stratified Gaussian model, since we have a different 
Gaussian model for y for each value of the stratification feature z. Estimating a set of 
covariance matrices is referred to as joint covariance estimation.

y ∣ z ∼ N(0,�z),
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The negative log-likelihood of � , on an observed data set (zi, yi) , i = 1,… ,m , is 
given by

where nk is the number of data samples with z = k and Sk =
1

nk

∑
i∶zi=k

yiy
T
i
 is the 

empirical covariance matrix of y for which z = k , with Sk = 0 when nk = 0.
This function is in general not convex in � , but it is convex in the natural 

parameter

where �k = �−1
k

 , k = 1… ,K . We will focus on estimating � rather than � . In terms 
of � , and dropping a constant and a factor of two, the negative log-likelihood is

where

We refer to �(�) as the loss, and �k(�k) as the local loss, associated with z = k . For 
the special case where nk = 0 , we define �k(�k) to be zero if 𝜃k ≻ 0 , and +∞ other-
wise. We refer to �(�)∕m as the average loss.

To estimate � , we add two types of regularization to the loss, and minimize the 
sum. We choose � as a solution of

where � is the optimization variable, r ∶ �n → � is a local regularization function, 
and L ∶ (�n)K → � is Laplacian regularization, defined below. We refer to our esti-
mated � as a Laplacian regularized stratified Gaussian model.

Local regularization Common types of local regularization include trace regu-
larization, r(�k) = ����k , and Frobenius regularization, r(�k) = �‖�k‖2F , where 
𝛾 > 0 is a hyper-parameter. Two more recently introduced local regularization 
terms are �‖�k‖1 and �‖�k‖od,1 = �

∑
i≠j �(�k)ij� , which encourage sparsity of � 

and of the off-diagonal elements of � , respectively (Friedman et  al. 2008). (A 
zero entry in �k means that the associated components of y are conditionally ind-
edendent, given the others, when z = kDanaher et al. 2014.)

Laplacian regularization Let W ∈ �K be a symmetric matrix with zero diago-
nal entries and nonnegative off-diagonal entries. The associated Laplacian regu-
larization is the function L ∶ (�n)K → � given by

m∑
i=1

(
(1∕2)yT

i
�−1

zi
yi − (1∕2) log det(�−1

zi
) − (n∕2) log(2�)

)

=

K∑
k=1

(
(nk∕2)��(Sk�

−1
k
) − (nk∕2) log det(�

−1
k
) − (nkn∕2) log(2�)

)
,

� = (�1,… , �K) ∈ (�n
++

)K ,

�(�) =

K∑
k=1

�k(�k),

�k(�k) = nk
(
��(Sk�k) − log det(�k)

)
.

(1)minimize
∑K

k=1

�
�k(�k) + r(�k)

�
+ L(�),
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Evidently L is separable across the entries of its arguments; it can be expressed as

Laplacian regularization encourages the estimated values of �i and �j to be close 
when Wij > 0 . Roughly speaking, we can interpret Wij as prior knowledge about how 
close the data generation processes for y are, for z = i and z = j.

We can associate the Laplacian regularization with a graph with K vertices, 
which has an edge (i, j) for each positive Wij , with weight Wij . We refer to this graph 
as the regularization graph. We assume that the regularization graph is connected. 
We can express Laplacian regularization in terms of a (weighted) Laplacian matrix 
L, given by

for i, j = 1,… ,K . The Laplacian regularization can be expressed in terms of L as

where ⊗ denotes the Kronecker product.
Assumptions We note that  (1) need not have a unique solution, in pathological 

cases. As a simple example, consider the case with r = 0 and W = 0 , i.e., no local 
regularization and no Laplacian regularization, which corresponds to independently 
creating a model for each value of z. If all Sk are positive definite, the solution is 
unique, with �k = S−1

k
 . If any Sk is not positive definite, the problem does not have a 

unique solution. The presence of either local or Laplacian regularization (with the 
associated graph being connected) can ensure that the problem has a unique solu-
tion. For example, with trace regularization (and 𝛾 > 0 ), it is readily shown that the 
problem (1) has a unique solution. Another elementary condition that guarantees a 
unique solution is that the associated graph is connected, and Sk do not have a com-
mon nullspace.

We will henceforth assume that the problem  (1) has a unique solution. This 
implies that the objective in  (1) is closed, proper, and convex. The problem (1) is 
a convex optimization problem which can be solved globally in an efficient man-
ner (Vandenberghe and Boyd 1996; Boyd and Vandenberghe 2004).

Contributions Joint covariance estimation and Laplacian regularized strati-
fied model fitting are not new ideas; in this paper we simply bring them together. 
Laplacian regularization has been shown to work well in conjunction with strati-
fied models, allowing one with very little data to create sensible models for each 
value of some stratification parameter (Tuck et al. 2021; Tuck and Boyd 2021). To 
our knowledge, this is the first paper that has explicitly framed joint covariance 

L(�) =
1

2

K�
i,j=1

Wij‖�i − �j‖2F.

L(�) =
1

2

n∑
u,v=1

(
K∑

i,j=1

Wij((�i)uv − (�j)uv)
2

)
.

Lij =

�
−Wij i ≠ j∑

k≠i Wik i = j

L(𝜃) = (1∕2)��(𝜃T (L⊗ I)𝜃),
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estimation as a stratified model fitting problem. We develop and implement a large-
scale distributed method for Laplacian regularized joint covariance estimation via 
the alternating direction method of multipliers (ADMM), which scales to large-scale 
data sets (Boyd et al. 2011; Wahlberg et al. 2012).

Outline In §1, we introduce Laplacian regularized stratified Gaussian models and 
review work related to fitting Laplacian regularized stratified Gaussian models. In 
§2, we develop and analyze a distributed solution method to fit Laplacian regular-
ized stratified Gaussian models, based on ADMM. Lastly, in §3, we illustrate the 
efficacy of this model fitting technique and of this method with three examples, in 
finance, radar signal processing, and weather forecasting.

1.1 � Related work

Stratified model fitting Stratified model fitting, i.e., separately fitting a different 
model for each value of some parameter, is an idea widely used across disciplines. 
For example, in medicine, patients are often divided into subgroups based on age 
and sex, and one fits a separate model for the data from each subgroup (Kernan et al. 
1999; Tuck et al. 2021). Stratification can be useful for dealing with categorical fea-
ture values, interpreting the nature of the data, and can play a large role in experi-
ment design. As mentioned previously, the joint covariance estimation problem can 
naturally be framed as a stratified model fitting problem.

Covariance matrix estimation Covariance estimation applications span disci-
plines such as radar signal processing (Salari et al. 2019), statistical learning (Baner-
jee et al. 2008), finance (Almgren and Chriss 2000; Skaf and Boyd 2009), and medi-
cine (Levitan and GHerman 1987). Many techniques exist for the estimation of a 
single covariance matrix when the covariance matrix’s structure is known a priori 
(Fan et al. 2016). When the covariance matrix is sparse, thresholding the elements 
of the sample covariance matrix has been shown to be an effective method of covari-
ance matrix estimation (Bickel and Levina 2008). Steiner and Gerlach (2000) pro-
pose a maximum likelihood solution for a covariance matrix that is the sum of a 
Hermitian positive semidefinite matrix and a multiple of the identity. Maximimum 
likelihood-style approaches also exist for when the covariance matrix is assumed to 
be Hermitian, Toeplitz, or both (Burg et al. 1982; Miller and Snyder 1987; Li et al. 
1999). (Cao and Bouman 2009) propose using various shrinkage estimators when 
the data is high dimensional. (Shrinkage parameters are typically chosen by an out-
of-sample validation technique Hoffbeck and Landgrebe 1996.)

Joint covariance estimation Jointly estimating statistical model parameters has 
been the subject of significant research spanning different disciplines. The joint 
graphical lasso (Danaher et al. 2014) is a stratified model that encourages closeness 
of parameters by their difference as measured by fused lasso and group lasso penal-
ties. (Laplacian regularization penalizes their difference by the �2-norm squared.) 
The joint graphical lasso penalties in effect result in groups of models with the same 
parameters, and those parameters being sparse. (In contrast, Laplacian regulariza-
tion leads to parameter values that vary smoothly with nearby models. It has been 
observed that in most practical settings, Laplacian regularization is sufficient for 
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accurate estimation Tuck et al. 2021.) Similar to the graphical lasso, methods such 
as the time-varying graphical lasso (Hallac et al. 2017) and the network lasso (Hal-
lac et al. 2015) have been recently developed to infer model parameters in graphical 
networks assuming some graphical relationship (in the former, the relationship is in 
time; in the latter, the relationship is arbitrary).

Another related work to this paper is Tuck et al. (2019), which introduces the use 
of Laplacian regularization in joint estimation of covariance matrices in a zero-mean 
multivariate Gaussian model. In this paper, Laplacian regularization is used assum-
ing a grid structure, and the problem is solved using the majorization-minimization 
algorithmic framework  Sun et  al. (2017). In contrast, this paper assumes a much 
more complex and sophisticated structure of the system, and uses ADMM to solve 
the problem much more efficiently.

Perhaps the most closely related work to this one is Saegusa and Shojaie (2016), 
where inverse covariance matrices are jointly estimated over a weighted graph. They 
consider a similar objective to (1), namely, fixing r = ‖ ⋅ ‖1 and using 

√
L instead of 

L , and establish statistical guarantees on the estimators for distributions with expo-
nential or polynomial tails. This objective is also solved using ADMM, though their 
algorithm exploits very little problem structure and is thus ill-suited for larger-scale 
problems, unlike the ADMM algorithm proposed in this paper. This paper, on the 
other hand, develops a more general solution method where r need not necessar-
ily be ‖ ⋅ ‖1 , and exploits the general problem structure to solve (1) in a distributed 
manner. Moreover, the choice of including 

√
L in the objective rather than L has the 

effect of encouraging neighboring model parameters to have similar sparsity struc-
tures, rather than encouraging neighboring model parameters to be smooth.

Connection to probabilistic graphical models There is a significant connection 
of this work to probabilistic graphical models (Koller and Friedman 2009). In this 
connection, a stratified model for joint model parameter estimation can be seen as 
an undirected graphical model, where the vertices follow different distributions, and 
the edges encourage corresponding vertices’ distributions to be alike. In fact, very 
similar problems in atmospheric science, medicine, and statistics have been studied 
under this context (Guo et al. 2011; Danaher et al. 2014; Zhu et al. 2014; Ma and 
Michailidis 2016).

2 � Distributed solution method

There are many methods that can be used to solve (1); for example, ADMM (Boyd 
et  al. 2011) has been successfully used in the past as a large-scale, distributed 
method for stratified model fitting with Laplacian regularization (Tuck et al. 2021), 
which we will adapt for use in this paper. This method expresses minimizing (1) in 
the equivalent form

(2)
minimize

K∑
k=1

((�k(�k) + r(�̃k)) + L(�̂)

subject to � − �̂ = 0, �̃ − �̂ = 0,
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now with variables � ∈ (�n
++

)K , �̃ ∈ (�n
++

)K , and �̂ ∈ (�n
++

)K . Problem  (2) is in 
ADMM standard form, splitting on (�, �̃) and �̂  . The ADMM algorithm for this 
problem, outlined in full in Algorithm 1, can be summarized by four steps: com-
puting the (scaled) proximal operators of �1,… ,�K , r, and L , followed by updates 
on dual variables associated with the two equality constraints, U ∈ (�n×n)K and 
Ũ ∈ (�n×n)K . Recall that the proximal operator of f ∶ �n×n

→ � with penalty 
parameter � is

To see how we could use this for fitting Laplacian regularized stratified models for 
the joint covariance estimation problem, we outline efficient methods for evaluating the 
proximal operators of �k , of a variety of relevant local regularizers r, and of the Lapla-
cian regularization.

2.1 � Evaluating the proximal operator of �
k

Evaluating the proximal operator of �k (for nk > 0 ) can be done efficiently and in 
closed-form (Witten and Tibshirani 2009; Boyd et al. 2011; Danaher et al. 2014; Tuck 
et al. 2021). We have that the proximal operator is

where X ∈ �K×K is a diagonal matrix with entries

and d and Q are computed as the eigen-decomposition of (1∕�nk)V − Sk , i.e.,

The dominant cost in computing the proximal operator of �k is in computing the 
eigen-decomposition, which can be computed with order n3 flops.

�����f (V) = argmin
�

�
�f (�) + (1∕2)‖� − V‖2

F

�
.

������k
(V) = QXQT ,

Xii =
�nkdi +

√
(�nkdi)

2 + 4�nk

2
, i = 1,… ,K,

1

�nk
V − Sk = Q����(d)QT .
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2.2 � Evaluating the proximal operator of r

The proximal operator of r often has a closed-form expression that can be 
computed in parallel. For example, if r = ���(�) , then �����r(V) = V − ��I . 
If r(�) = (�∕2)‖�‖2

F
 then �����r(V) = (1∕(1 + ��))V  , and if r = �‖�‖1 , then 

�����r(V) = max(V − �� , 0) −max(−V − �� , 0) , where max is taken elementwise 
(Parikh and Boyd 2014). If r(�) = �1��(�) + �2‖�‖od,1 where ‖�‖od,1 = ∑

i≠j ��ij� is 
the �1-norm of the off diagonal elements of � , then

2.3 � Evaluating the proximal operator of L

Evaluating the proximal operator of L is equivalent to solving the n(n + 1)∕2 reg-
ularized Laplacian systems

for i = 1,… , n and j = 1,… , i , and setting (�̂t+1
k

)ji = (�̂t+1
k

)ij . Solving these systems 
is quite efficient; many methods for solving Laplacian systems (and more generally, 
symmetric diagonally-dominant systems) can solve these systems in nearly-linear 
time (Vishnoi 2013; Kelner et al. 2013). We find that the conjugate gradient (CG) 
method with a diagonal pre-conditioner (Hestenes and Stiefel 1952; Takapoui and 
Javadi 2016) can efficiently and reliably solve these systems. (We can also warm-
start CG with �̂t.)

Stopping criterion Under our assumptions on the objective, the iterates of 
ADMM converge to a global solution, and the primal and dual residuals

converge to zero (Boyd et al. 2011). This suggests the stopping criterion

for some primal tolerance �pri and dual tolerance �dual . Typically, these tolerances are 
selected as a combination of absolute and relative tolerances; we use

and

�����r(V)ij =

{
Vij − ��1, i = j

max(Vij − ��2, 0) −max(−Vij − ��2, 0) i ≠ j
.

(3)
�
L + (2∕�)I

�⎡
⎢⎢⎢⎢⎣

(�̂t+1
1

)ij
(�̂t+1

2
)ij

⋮

(�̂t+1
K

)ij

⎤
⎥⎥⎥⎥⎦
= (1∕�)

⎡
⎢⎢⎢⎢⎣

(�t+1
1

+ Ut
1
+ �̃t+1

1
+ Ũt

1
)ij

(�t+1
2

+ Ut
2
+ �̃t+1

2
+ Ũt

2
)ij

⋮

(�t+1
K

+ Ut
K
+ �̃t+1

K
+ Ũt

K
)ij

⎤⎥⎥⎥⎥⎦

rt+1 = (�t+1 − �̂t+1, �̃t+1 − �̂t+1), st+1 = −(1∕�)(�̂t+1 − �̂t, �̂t+1 − �̂t),

‖rt+1‖F ≤ �pri, ‖st+1‖F ≤ �dual,

�pri =
√
2Kn2�abs + �rel max{‖rt+1‖F, ‖st+1‖F}
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for some absolute tolerance 𝜖abs > 0 and relative tolerance 𝜖rel > 0.
Penalty parameter selection In theory, with respect to the problem (1), ADMM 

converges as long as the penalty parameter 𝜔 > 0 . In practice (i.e., in §3), we find 
that the number of iterations to convergence does not change significantly with the 
choice of � . We found that simply fixing � = 0.1 worked well across all of our 
experiments.

3 � Examples

In this section we illustrate Laplacian regularized stratified model fitting for joint 
covariance estimation. In each of the examples, we fit two models: a common model 
(a Gaussian model without stratification), and a Laplacian regularized stratified 
Gaussian model. For each model, we selected hyper-parameters (i.e., local regu-
larization hyper-parameters and graph Laplacian edge weights), from a grid of val-
ues, that performed best under a validation test set. As mentioned in §2.3, we fixed 
the ADMM penalty parameter � = 0.1 for all of these examples, which we found 
worked well across all of our experiments. We provide an open-source implemen-
tation of Algorithm 1, along with the code used to create the examples, at https://​
github.​com/​jonat​hantu​ck/​cov_​strat_​models. We train all of our models with an 
absolute tolerance �abs = 10−3 and a relative tolerance �rel = 10−3 . All computation 
was carried out on a 2014 MacBook Pro with four Intel Core i7 cores clocked at 3 
GHz.

3.1 � Sector covariance estimation

Estimating the covariance matrix of returns of a portfolio of time series is a cen-
tral task in quantitative finance, as it is a parameter to be estimated in the classical 
Markowitz portfolio optimization problem (Markowitz 1952; Skaf and Boyd 2009; 
Boyd et al. 2017). In addition, models for studying the dynamics of the variance of 
a time series (or multiple time series) data are common, such as with the GARCH 
family of models in statistics  (Engle 1982). Classically, estimation of (individual) 
return covariances has been accomplished through regularized maximum likelihood 
estimation, where the regularization is used to ensure that the problem is well-posed 
and to enforce structure (e.g., sparsity)  (Ledoit and Wolf 2003; Deshmukh and 
Dubey 2020). In this example, we consider the problem of modeling the covariance 
of daily sector returns, given market conditions observed the day prior.

Data records and dataset We use daily returns from n = 9 exchange-traded funds 
(ETFs) that cover the sectors of the stock market, measured daily, at close, from Janu-
ary 1, 2000 to January 1, 2018 (for a total of 4774 data points). The ETFs used are 
XLB (materials), XLV (health care), XLP (consumer staples), XLY (consumer discre-
tionary), XLE (energy), XLF (financials), XLI (industrials), XLK (technology), and 

�dual =
√
2Kn2�abs + (�rel∕�)‖(ut, ũt)‖F,

https://github.com/jonathantuck/cov_strat_models
https://github.com/jonathantuck/cov_strat_models
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XLU (utilities). Each data record includes y ∈ �9 , the daily return of the sector ETFs. 
The sector ETFs have individually been winsorized (clipped) at their 5th and 95th 
percentiles.

Each data record also includes the market condition z, which is derived from 
market indicators known on the day, the five-day trailing averages of the mar-
ket volume (as measured by the ETF SPY) and volatility (as measured by the 
ticker VIX). Each of these market indicators is binned into 2% quantiles (i.e., 
0% − 2%, 2% − 4%,… , 98% − 100% ), making the number of stratification features 
K = 50 ⋅ 50 = 2500 . We refer to z as the market conditions.

We randomly partition the dataset into a training set consisting of 60% of the data 
records, a validation set consisting of 20% of the data records, and a held-out test set 
consisting of the remaining 20% of the data records. In the training set, there are an 
average of 1.2 data points per market condition, and the number of data points per 
market condition vary significantly. The most populated market condition contains 38 
data points, and there are 1395 market conditions (more than half of the 2500 total) for 
which there are zero data points.

Model The stratified model in this case includes K = 2500 different sector return 
(inverse) covariance matrices in �9

++
 , indexed by the market conditions. Our model has 

Kn(n − 1)∕2 = 90000 parameters.
Regularization For local regularization, we use trace regularization with regulariza-

tion weight �loc , i.e., r = �loc��(⋅).
The regularization graph for the stratified model is the Cartesian product of two reg-

ularization graphs:

•	 Quantile of five-day trailing average volatility. The regularization graph is a path 
graph with 50 vertices, with edge weights �vix.

•	 Quantile of five-day trailing average market volume. The regularization graph is a 
path graph with 50 vertices, with edge weights �vol.

The corresponding Laplacian matrix has 12300 nonzero entries, with hyper-parameters 
�vix and �vol . All together, our stratified Gaussian model has three hyper-parameters.

Results We compared a stratified model to a common model. The common model 
corresponds to solving one covariance estimation problem, ignoring the market regime.

For the common model, we used �loc = 5 . For the stratified model, we used 
�loc = 0.15 , �vix = 1500 , and �vol = 2500 . These values were chosen based on a crude 
grid hyper-parameter search. We compare the models’ average loss over the held-out 
test set in Table 1. We can see that the stratified model substantially outperforms the 
common model.

Table 1   Results for §3.1 Model Average test loss

Common 6.42 × 10−3

Stratified 1.15 × 10−3
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To visualize how the covariance varies with market conditions, we look at risk of 
a portfolio (i.e., the standard deviation of the return) with uniform allocation across 
the sectors. The risk is given by 

√
wT�w , where � is the covariance matrix and 

w = (1∕9)� is the weight vector corresponding to a uniform allocation. In Fig. 1, we 
plot the heatmap of the risk of this portfolio as a function of the market regime z for 
the stratified model. The risk heatmap makes sense and varies smoothly across market 
conditions. The estimate of the risk of the uniform portfolio for the common model 
covariance matrix is 0.859. The risk in our stratified model varies by about a factor of 
two from this common estimate of risk.

Application Here we demonstrate the use of our stratified risk model, in a simple 
trading policy. For each of the K = 2500 market conditions, we compute the portfolio 
wz ∈ �9 which is Markowitz optimal, i.e., the solution of

with optimization variable w ∈ �9 ( wi < 0 denotes a short position in asset i). The 
objective is the risk adjusted return, and 𝛾 > 0 is the risk-aversion parameter, which 
we take as � = 0.15 . We take � ∈ �9 to be the vector of median sector returns in the 
training set. The last constraint limits the portfolio leverage, measured by ‖w‖1 , to no 
more than 2. (This means that the total short positions in the portfolio cannot exceed 

(4)
maximize �Tw − �wT�zw

subject to �Tw = 1

‖w‖1 ≤ 2,

Fig. 1   Heatmap of 
√
wT�zw with w = (1∕9)� for the stratified model



905

1 3

Fitting Laplacian regularized stratified Gaussian models﻿	

0.5 times the total portfolio value.) We plot the leverage of the stratified model port-
folios wz , indexed by market conditions, in Fig. 2.

At the beginning of each day t, we use the previous day’s market conditions zt 
to allocate our current total portfolio value according to the weights wzt

 . We run 
this policy using realized returns from January 1, 2018 to January 1, 2019 (which 
was held out from all other previous experiments). In Fig. 3, we plot the cumulative 

Fig. 2   Heatmap of ‖wz‖1 , the stratified model portfolios, indexed by market conditions

Fig. 3   Cumulative value of three portfolios, starting from initial value 1
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value of three policies: Using the weights from the stratified model, using a constant 
weight from the common model, and simply buying and holding SPY.

In Fig. 4, we plot the sector weights of the stratified model policy and the weights 
of the common model policy.

Table 2 gives the annualized realized risks and returns of the three policies. The 
stratified model policy has both the lowest annualized risk and the greatest annual-
ized return. While the common model policy and buying and holding SPY realize 
losses over the year, our simple policy has a positive realized return.

3.2 � Space‑time adaptive processing

In radar space time adaptive processing (STAP), a problem of widespread impor-
tance is the detection problem: detect a target over a terrain in the presence of 
interference. Interference typically comes in the form of clutter (unwanted terrain 
noise), jamming (noise emitted intentionally by an adversary), and white noise 
(typically caused by the circuitry/machinery of the radar receiver) (Melvin 2004; 
Wicks et  al. 2006; Kang 2015). (We refer to the sum of these three noises as 

Fig. 4   Weights for the stratified model policy and the common policy over 2018

Table 2   Annualized realized 
risks and returns for the three 
policies

Model Annualized risk Annualized return

Stratified model 0.112 0.061
Common model 0.124 −0.015
Buy/hold SPY 0.170 −0.059
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interference.) In practice, these covariance matrices for a given radar orientation 
(i.e., for a given range, azimuth, Doppler frequency, etc.) are unknown and must 
be estimated (Wicks et al. 2006; Kang 2015). Our goal is to estimate the covari-
ance matrix of the interference, given the radar orientation.

Data records Our data records (z,  y) include ground interference measure-
ments y ∈ �30 (so n = 30 ), which were synthetically generated (see below). In 
addition, the stratification features z describe the radar orientation. A radar 
orientation corresponds to a tuple of the range r (in km), azimuth angle a (in 
degrees), and Doppler frequency d (in Hz), which are binned. For example, if 
z = (r, a, d) = ([35, 37), [87, 89), [976, 980)) , then the measurement was taken at a 
range between 35-57 km, an azimuth between 87-89 degrees, and a Doppler fre-
quency between 976-980 Hz.

There are 10 range bins, 10 azimuth bins, and 10 Doppler frequency bins, and 
we allow r ∈ [35, 50] , a ∈ [87, 267] , and d ∈ [−992, 992] ; these radar orientation 
values are realistic and were selected from the radar signal processing literature; 
see (Table 1 Bergin and Techau 2002) and (Table 3.1 Kang 2015). The number of 
stratification features is K = 10 ⋅ 10 ⋅ 10 = 1000.

We generated the data records (z, y) as follows. We generated three complex 
Hermitian matrices �̃range ∈ �15 , �̃azi ∈ �15 , and �̃dopp ∈ �15 randomly, where � 
is the set of complex numbers. For each z = (r, a, d) , we generate a covariance 
matrix according to

For each z, we then independently sample from a Gaussian distribution with zero 
mean and covariance matrix �̃z to generate the corresponding data samples ỹ ∈ �15 . 
We then generate the real-valued data records (z, y) from the complex-valued (z, ỹ) 
via y = (ℜỹ,ℑỹ) , where ℜ and ℑ denote the real and imaginary parts of ỹ , respec-
tively, and equivalently estimate (the inverses of)

the real-valued transformation of �̃z (Ch.  4  Boyd and Vandenberghe 2004). (Our 
model estimates the collection of real-valued natural parameters � = (�−1

1
,… ,�−1

K
) ; 

it is trivial to obtain the equivalent collection of complex-valued natural parame-
ters.) For the remainder of this section, we only consider the problem in its real-
valued form.

We generate approximately 2900 samples and randomly partition the data set 
into 80% training samples and 20% test samples. The number of training samples 
per vertex vary significantly; there are a mean of 1.74 samples per vertex, and 
the maximum number of samples on a vertex is 30. 625 of the K = 1000 vertices 
have no training samples associated with them.

�̃z = �̃(r,a,d) =

(
4 × 104

r

)2

�̃range +
(
cos

(
�a

180

)
+ sin

(
�a

180

))
�̃azi +

(
1 +

d

1000

)
�̃dopp.

�z =

[
ℜ�̃z −ℑ�̃z

ℑ�̃z ℜ�̃z

]
, z = 1,… ,K,
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Model The stratified model in this case is K = 1000 (inverse) covariance matri-
ces in �30

++
 , indexed by the radar orientation. Our model has Kn(n − 1)∕2 = 435000 

parameters.
Regularization For local regularization, we utilize trace regularization with 

regularization weight �tr , and �1-regularization on the off-diagonal elements with 
regularization weight �od . That is, r(�) = �tr��(�) + �od‖�‖od,1.

The regularization graph for the stratified model is taken as the Cartesian prod-
uct of three regularization graphs:

•	 Range The regularization graph is a path graph with 10 vertices, with edge 
weight �range.

•	 Azimuth The regularization graph is a cycle graph with 10 vertices, with edge 
weight �azi.

•	 Doppler frequency. The regularization graph is a path graph with 10 vertices, 
with edge weight �dopp.

The corresponding Laplacian matrix has 6600 nonzero entries and the hyper-
parameters are �range , �azi , and �dopp.

The stratified model in this case has five hyper-parameters: two for the local 
regularization, and three for the Laplacian regularization graph edge weights.

Results We compared a stratified model to a common model. The common 
model corresponds to solving one individual covariance estimation problem, 
ignoring the radar orientations. For the common model, we let �tr = 0.001 and 
�od = 59.60 . For the stratified model, we let �tr = 2.68 , �od = 0.66 , �range = 10.52 , 
�azi = 34.30 , and �dopp = 86.97 . These hyper-parameters were chosen by perform-
ing a crude grid hyper-parameter search and selecting hyper-parameters that per-
formed well on the validation set. We compare the models’ average loss over the 
held-out test sets in Table 3. In addition, we also compute the metric

where 𝛴⋆
k

 is the true covariance matrix for the stratification feature value z = k ; this 
metric is used in the radar signal processing literature as a metric to determine how 
close �−1

k
 is to 𝛴⋆

k
.

Application As another experiment, we consider utilizing these three models in 
a target detection problem: given a vector of data y ∈ �30 and its radar orientation 
z, determine if the vector is just interference, i.e.,

D(𝜃) =
1

Kn

K∑
k=1

(
��(𝛴⋆

k
𝜃k) − log det(𝜃k)

)
,

Table 3   Results for §3.2 Model Average test sample loss D(�)

Common 0.153 2.02
Stratified 0.069 1.62
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or if the vector has some target associated with it, i.e.,

for some target vector sz ∈ �30 , which is fixed for each z. (Typically, this is cast as a 
hypothesis test where the former is the null hypothesis and the latter is the alterna-
tive hypothesis Ward 1995.) We generate sz with z = (r, a, d) as

with za = e2�i sin(a) , zd = e2�id∕fR , and fR = 1984 is the pulse repetition frequency 
(in Hz); these values are realistic and selected from the radar signal processing 
literature  (Ch. 2  Kang 2015). For each z, we generate y as follows: we sample a 
d ∼ N(0,𝛴⋆

z
) , and with probability 1/2 we set y = sz + d , and set y = d otherwise. 

(There are 1000 samples). We then test if y contains the target vector via the selec-
tion criterion

for some threshold � ; this is well-known in the radar signal processing literature 
as the optimal method for detection in this setting (Robey et al. 1992; Wicks et al. 
2006; Kang 2015). If the selection criterion holds, then we classify y as containing a 
target; otherwise, we classify y as containing noise.

We vary � and test the samples on the common and stratified models. We 
plot the receiver operator characteristic (ROC) curves for both models in Fig. 5. 
The area under the ROC curve is 0.84 for the common model and 0.95 for the 

y ∣ z = d, d ∼ N(0,𝛴⋆
z
),

y ∣ z = sz + d, d ∼ N(0,𝛴⋆
z
)

sz = (ℜ�sz,ℑ�sz), �sz = (1, zd, z
2
d
)⊗ (1, za, z

2
a
, z3

a
, z4

a
)

(sT
z
𝜃zy)

2

sT
z
𝜃zsz

> 𝛼,

Fig. 5   ROC curves for the com-
mon and stratified models as the 
threshold � varies
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stratified model; the stratified model is significantly more capable at classifying 
in this setting.

3.3 � Temperature covariance estimation

We consider the problem of modeling the covariance matrix of hourly tempera-
tures of a region as a function of day of year. Generally, computing shrinkage 
estimators  (Ledoit and Wolf 2020), or statistical algorithms such as the expec-
tation-maximization algorithm  (Schneider 2001) are used to estimate statistical 
parameters of temperature.

Data records and dataset. We use temperature measurements (in Fahrenheit) 
from Boston, MA, sampled once per hour from October 2012 to October 2017, 
for a total of 44424 hourly measurements. This data was originally collected from 
the Weather API on the OpenWeather website  (OpenWeather 2017). We win-
sorize the data at its 1st and 99th percentiles. We then remove a baseline tempera-
ture, which consists of a constant and a sinusoid with period one year. We refer to 
this time series as the baseline-adjusted temperature.

From this data, we create data records (zi, yi), i = 1,… , 1851 (so m = 1851 ), 
where yi ∈ �24 is the baseline-adjusted temperature for day i, and zi ∈ {1,… , 366} 
is the day of the year. For example, (yi)3 is the baseline-adjusted temperature at 
3AM, and zi = 72 means that the day was the 72nd day of the year. The number 
of stratification features is then K = 366 , corresponding to the number of days in 
a year.

We randomly partition the dataset into a training set consisting of 60% of the 
data records, a validation set consisting of 20% of the data records, and a held-
out test set consisting of the remaining 20% of the data records. In the training 
set, there are a mean of approximately 3.03 data records per day of year, the most 
populated vertex is associated with six data records, and there are seven vertices 
associated with zero data records.

Model. The stratified model in this case is K = 366 (inverse) covariance matri-
ces in �24

++
 , indexed by the days of the year. Our model has Kn(n − 1)∕2 = 101016 

parameters.
Regularization For local regularization, we utilize trace regularization with 

regularization weight �tr , and �1-regularization on the off-diagonal elements with 
regularization weight �od . That is, r(�) = �tr��(�) + �od‖�‖od,1.

The stratification feature stratifies on day of year; our overall regularization 
graph, therefore, is a cycle graph with 366 vertices, one for each possible day of 
the year, with edge weights �day . The associated Laplacian matrix contains 1096 
nonzeros.

Results We compare a stratified model to a common model. The common model 
corresponds to solving one covariance estimation problem, ignoring the days of the 
year.

For the common model, we used �tr = 359 and �od = 0.1 . For the stratified model, 
we used �tr = 6000 , �od = 0.1 , and �day = 0.14 . These hyper-parameters were chosen 
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by performing a crude grid hyper-parameter search and selecting hyper-parameters 
that performed well on the validation set.

We compare the models’ losses over the held-out test sets in Table 4.
To illustrate some of these model parameters, in Fig. 6 we plot the heatmaps of 

the correlation matrices for days that roughly correspond to each season.
Application As another experiment, we consider the problem of forecasting 

the second half of a day’s baseline-adjusted temperature given the first half of 
the day’s baseline-adjusted temperature. We do this by modeling the baseline-
adjusted temperature from the second half of the day as a Gaussian distribution 

Table 4   Average loss over the 
test set for §3.3

Model Average test loss

Common 0.132
Stratified 0.093

Fig. 6   Heatmaps of the correlation matrices for days approximately corresponding to the start of winter 
(top left), spring (top right), summer (bottom left) and autumn (bottom right)
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conditioned on the observed baseline-adjusted temperatures (see Eaton 1983, 
p. 116, Anderson 2003, p. 33, Flury 1997, p. 75, and p. 85 Bishop 2006 for exam-
ples). We run this experiment using the common and stratified models found in 
the previous experiment, using the data in the held-out test set. In Table  5, we 
compare the root-mean-square (RMS) error between the predicted temperatures 
and the true temperatures over the held-out test set for the two models, and in 
Fig. 7, we plot the temperature forecasts for two days in the held-out test set.
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