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Abstract
We consider the problem of choosing a portfolio that maximizes the cumulative 
prospect theory (CPT) utility on an empirical distribution of asset returns. We show 
that while CPT utility is not a concave function of the portfolio weights, it can be 
expressed as a difference of two functions. The first term is the composition of a 
convex function with concave arguments and the second term a composition of a 
convex function with convex arguments. This structure allows us to derive a global 
lower bound, or minorant, on the CPT utility, which we can use in a minorization–
maximization (MM) algorithm for maximizing CPT utility. We further show that 
the problem is amenable to a simple convex–concave (CC) procedure which itera-
tively maximizes a local approximation. Both of these methods can handle small 
and medium size problems, and complex (but convex) portfolio constraints. We also 
describe a simpler method that scales to larger problems, but handles only simple 
portfolio constraints.

Keywords  Convex optimization · Cumulative prospect theory · Convex-concave 
procedure

1  Introduction

1.1 � Cumulative Prospect Theory

Analysis of decision-making under uncertainty has long been dominated by von 
Neumann–Morgenstern (VNM) utility maximization (von Neumann et al., 1944), 
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which takes rational behavior as a fundamental assumption. Kahneman and Tver-
sky (1979) observed that the VNM theory fails to explain actual human decision-
making behavior in many settings. The subsequently introduced prospect theory 
(PT) formalizes loss aversion and the overweighting of small probability events, 
which are inconsistent with VNM utility maximization. To overcome a violation 
of first-order stochastic dominance in prospect theory, cumulative prospect theory 
(CPT) was introduced (Tversky & Kahneman, 1992), which replaces probabilities 
of outcomes with their rank-dependent cumulative probability distribution. This 
change leads to an overweighting of extreme low-probability outcomes, instead 
of all low-probability outcomes. Maximizing CPT utility yields more realistic 
predictions of actual human decision-making behavior than maximizing VNM 
utility.

1.2 � Portfolio Optimization

Our focus is portfolio optimization, i.e., choosing a mix of investments in a set 
of assets. One approach is based on VNM utility, where the expected value of a 
concave increasing utility function (which is also concave) is maximized subject 
to the constraints on the portfolio. Another approach, introduced by Markowitz 
Markowitz (1952), poses the problem as a bi-criterion optimization problem, with 
the goal of trading off the maximization of expected return with minimization of 
risk, taken to be the variance of the portfolio return. The standard approach is to 
combine the return and risk, scaled by a risk aversion factor, into a risk-adjusted 
return, and maximize this concave quadratic objective subject to the constraints. 
For this reason Markowitz portfolio optimization is also referred to as mean-
variance (MV) portfolio optimization. These two approaches are not the same, 
since the MV utility function is not increasing, but they are closely related. For 
example, with a Gaussian asset return model and exponential utility, VNM port-
folio optimization is the same as MV portfolio optimization (Merton, 1969). In 
other cases, MV portfolio optimization was shown to be approximately optimal 
for other forms of utility functions (Levy & Markowitz, 1979).

One advantage of the MV formulation is that the objective can be expressed 
explicitly as a quadratic function, without an expectation over the asset returns. (The 
MV objective is the expected value of a function of the return, but one with a sim-
ple analytical expression.) This enables it to be solved analytically for special cases 
(Grinold & Kahn, 1999), and very efficiently using numerical methods for convex 
optimization when the constraints are convex (Boyd & Vandenberghe, 2004). Lever-
aging convex optimization, many extensions were developed, such as the inclusion 
of transaction and holding costs, or multi-period optimization (Boyd et al., 2017),

VNM portfolio optimization generally uses sample based stochastic convex 
optimization (Shapiro et  al., 2021). Here we use samples of the asset returns, 
which can be historical or generated from a stochastic model of asset returns (pre-
sumably fit to historical data). While these methods solve the problem globally, 
they are substantially slower than MV methods for similar problems.
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We now describe these portfolio optimization methods in more detail. We 
consider a set of n assets. A portfolio is characterized by its asset weights 
w = (w1,… ,wn) , where wi is the fraction of the total portfolio value (assumed to 
be positive) invested in asset i, with wi < 0 denoting a short position. The goal in 
portfolio optimization is to choose w. The general portfolio optimization problem is

with variable w ∈ R n . Here U ∶ R n
→ R is a utility function, W ⊆ R n is the set 

of allowable portfolio weights, and 1 is the vector with all entries one. The data in 
this problem are the utility function U and the portfolio constraint set W , which we 
assume is convex.

When U is a concave function the portfolio optimization problem (1) is convex, 
and so readily solved globally (Boyd & Vandenberghe, 2004). When U is not con-
cave, the problem is not convex, and in general difficult to solve globally. In this 
case, we typically resort to heuristic or local methods, which attempt to solve (1), 
but cannot guarantee that the globally optimal portfolio is found.

MV portfolio optimization uses the concave quadratic utility function

the risk-adjusted expected return, where � is the expected asset return, Σ is the 
covariance matrix of the asset returns, and 𝛾 > 0 is the risk aversion parameter, used 
to control the trade-off of the mean and variance of the portfolio return. This yields a 
convex optimization problem that is efficiently solved.

VNM utility maximization uses a utility function of the form

where r is the random asset return vector, and u ∶ R → R is a concave increasing 
utility function. Since expectation preserves concavity, U is a concave function of 
w and this too leads to a convex portfolio optimization problem. In a few cases, the 
expectation can be worked out analytically, but in most cases one substitutes a sam-
ple or empirical average for the expected value, leading to the approximation

where r1,… , rN are samples of returns. Maximizing this approximation results in a 
convex portfolio optimization problem.

1.3 � This Paper

We consider portfolio optimization under the CPT utility, which we denote Ucpt , 
defined later in Sect. 2. It is well known that CPT utility is not a concave function, 
so the problem of choosing portfolio weights so as to maximize it is not a convex 

(1)
maximize U(w)

subject to 1
Tw = 1, w ∈ W,

Umv(w) = wT� − �wTΣw,

Uvnm(w) = �u(rTw),

Uvnm(w) ≈
1

N

N∑

i=1

u(rT
i
w),
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optimization problem, as VNM utility maximization and MV portfolio optimization 
are. This makes it a challenge to carry out CPT utility maximization in practice.

While CPT utility is not concave, we will show that it does have some convex-
ity structure. Specifically, it is the composition of a convex increasing function of 
concave functions for positive returns, and the composition of a concave increas-
ing function of convex functions for negative returns. This observation allows us to 
construct a concave lower bound, or minorant, for the CPT utility, and leads imme-
diately to a simple algorithm for maximizing it by repeatedly maximizing the con-
structed minorant (which is a convex problem, and thus readily solved). This simple 
minorization–maximization (MM) method leads to a local maximum of the CPT 
utility (Lipp & Boyd, 2015).

Our MM method scales to medium size problems, with perhaps tens of assets and 
hundreds of return samples. For larger problems, we give two other algorithms. One 
algorithm uses a simpler optimization of a minorant to the approximation given by 
fixing the probability weights that arise in CPT in each step, again relying on itera-
tions that involve solving convex optimization problems. As a result, this method 
can handle complex portfolio constraints, as long as they are convex. The second 
additional algorithm scales to very large problems, but handles only simple portfolio 
constraints. It relies on modern frameworks for automatic differentiation and first-
order optimization methods.

Open-source Python implementations of all three methods can be found in the 
code repository https://​github.​com/​cvxgrp/​cptopt.

We do not address questions such as whether or when one should choose a port-
folio that maximizes CPT utility. We only address the question of how it can be 
done, algorithmically and computationally. We provide methods to solve the CPT 
portfolio optimization problem, but we emphasize that the conceptual framework 
behind the method is more general. Across computational economics and finance, 
nonconvex problems frequently arise. The framework for decomposing the problem 
into convex and concave parts can be extended to such other problems.

1.4 � Previous and Related Work

Limited prior work exists on portfolio optimization with CPT utility. Analytical 
solutions exist for special cases such as single-period settings with one risk-free and 
one risky asset (Bernard & Ghossoub, 2010; He & Zhou, 2011; Zou & Zagst, 2017) 
or for two-fund separation under elliptical distributions (Pirvu & Schulze, 2012). 
Extensions of these special cases to a multi-period setting are considered in Shi 
et  al. (2015). For the general multi-asset cases, heuristics such as particle swarm 
simulation (Barro et al., 2020), or grid search methods (Hens & Mayer, 2014) are 
employed, which have been extended to the multi-period case using dynamic pro-
gramming (De Giorgi & Legg, 2012; Barberis & Huang, 2009). While grid search 
can accommodate constraints, the particle swarm method used in Barro et al. (2020) 
cannot, and requires a hyperparameter to be chosen to turn constraints into penalties.

The evaluation of CPT utility along the mean-variance frontier is a commonly 
used heuristic (Levy & Levy, 2004; Hens & Mayer, 2014). Some authors (e.g., 

https://github.com/cvxgrp/cptopt
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Srivastava et al. (2022)) use numerical methods to maximize CPT utility on small 
problems, do not explicitly mention the numerical solve method, suggesting the 
use of generic nonlinear optimizers. In contrast, we focus on custom methods that 
exploit the special structure of the CPT utility maximization problem.

After the initial release of this manuscript, Yan et al. (2022) proposed a method 
for optimizing a portfolio using CPT utility based on the alternating direction 
method of multipliers (ADMM) [(see, e.g., Boyd et al. (2011)]. This work is closely 
related to ours, in that they consider general multi-asset portfolios, and exploit con-
vexity structure, although in a different way than we do. It is the only other method 
we are aware of that exploits the convexity structure of the CPT utility and can han-
dle constraints. While we make an approximation about the monotonicity of the 
weights, they employ a method which does not globally solve one of their sub-prob-
lems in order to obtain tractable speeds. Carrying out a direct comparison of the 
methods is not immediately possible since an implementation of the algorithm they 
describe is not publicly available.

1.5 � Outline

We start in Sect.  2 by defining CPT utility, fixing our notation. The CPT utility 
extends prospect theory (PT) utility, described in Sect. 2.1, by adding a reweight-
ing function, described in Sect. 2.2. In Sect. 2.3 we explore the convexity structure 
of CPT utility, followed by a description of the CPT utility portfolio optimization 
problem in Sect. 2.4. In Sect. 3 we describe algorithms that can be used to find a 
portfolio that maximizes CPT utility. The first method, presented in Sect. 3.1, is a 
minorization–maximization method that relies on the convexity structure described 
in the previous section. The second method, described in Sect.  3.2, uses the con-
vex–concave procedure, a method for maximizing the sum of a convex and concave 
function, and iterates over the probability weights that appear in the CPT utility. The 
last method, given in Sect. 3.3, is a projected gradient type method, which can scale 
to large problem sizes. Numerical experiments are presented in Sect. 4, where we 
evaluate all methods on a toy problem with three assets, a medium-sized problem 
with more assets, and a large-scale problem, all based on historical asset class data. 
We give some conclusions in Sect. 5.

2 � Cumulative Prospect Theory Utility

2.1 � Prospect Theory Utility

In this section we introduce PT utility, the first building block of CPT utility. Like 
VNM utility, it is monotonically increasing, but PT utility is not concave. PT utility 
has an inflection point at the origin, which represents a reference wealth. It is con-
cave for positive arguments, i.e., investors are risk averse for gains, and convex on 
for negative arguments, i.e., investors are risk seeking for losses. Exponential utility 
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functions are commonly used for both the convex and the concave sections of the PT 
utility function. We thus define the positive and negative exponential utilities as

where 𝛾+, 𝛾− > 0 are parameters. Here and throughout the paper, functions with a 
subscript plus sign are applied to gains, and functions with a subscript minus sign 
are applied to losses. Combining both functions yields the exponential prospect the-
ory utility for a single return

which is S-shaped. Prospect theory further accounts for loss aversion, which requires 
𝛾− > 𝛾+ , i.e., a marginal decrease in wealth would decrease the utility more than a 
marginal increase in wealth would increase the utility.

2.2 � Probability Reweighting

The second building block of CPT utility is a reweighting function that assigns higher 
weights to more extreme outcomes. As is common in the CPT literature, we first 
define the weighting functions w(p) ∶ [0, 1] → [0, 1] . We take the specific weighting 
functions

where 𝛿+, 𝛿− > 0 are parameters. We now specify the notion of extreme outcomes. 
Let r1,… , rN ∈ R n be the empirical distribution of realized returns on n assets. 
Consider a vector of portfolio weights w ∈ R n , with 1Tw = 1 , where 1 is the vector 
with all entries one. The associated portfolio returns are rT

1
w,… , rT

N
w ∈ R . Without 

reweighting, all returns would have equal weight. Let N− denote the number of nega-
tive returns, and N+ the number of nonnegative returns, with N− + N+ = N . We let 
�i denote the returns re-ordered or sorted by the portfolio returns, with index value 
i = 1,… ,N,

i.e., wT�1 is the largest loss and wT�N is the largest gain. We define the positive and 
negative decision weights respectively as

u+(x) = 1 − exp(−�+x), u−(x) = −1 + exp(�−x),

uprosp(x) =

{
u+(x) if x ≥ 0

u−(x) otherwise
,

w+(p) =
p�+

(p�+ + (1 − p)�+)1∕�+
, w−(p) =

p�−

(p�− + (1 − p)�−)1∕�−
,

wT𝜌1 ≤ ⋯ ≤ wT𝜌N−
< 0 ≤ wT𝜌N−+1

≤ ⋯ ≤ wT𝜌N ,

��
+,j

=

{
w+((N+ − j + 1)∕N) − w+((N+ − j)∕N) j = 1,… ,N+ − 1

w+(1∕N) j = N+,

��
−,j

=

{
w−((N− − j + 1)∕N) − w−((N− − j)∕N) j = 1,… ,N− − 1

w−(1∕N) j = N−.
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We would argue that ��
+
 and ��

−
 should be nondecreasing, i.e., we should put higher 

weight on more extreme events. This occurs for most reasonable choices of parame-
ters, but there are choices for which monotonicity is (slightly) violated. Thus, we 
force monotonicity by replacing ��

+,j
 with min(��

+
) for all j < argmin(𝜋�

+
) , and like-

wise for ��
−
 . We zero-pad ��

+
 and ��

−
 from the left to be length N, i.e., �+ = (0N−

,��
+
) 

and �− = (0N+
,��

−
) , where the subscript on the vector zero denotes its dimension. 

We define for a monotone increasing probability vector �

which is sometimes called the weighted-ordered-sum or dot-sort function. (The 
notation x(i) means the ith smallest element of the vector x.) Then, with

we have the total CPT utility given by

2.3 � Convexity Properties

In this section we describe some convexity properties of the CPT utility function. 
PT utility is convex for negative arguments and concave for positive arguments by 
definition. CPT utility, i.e., with reweighting, is a difference of two structured terms

The first term is a composition of dot-sort-positive, f�◦�+ , and the concave expo-
nential utility for gains, u+ . The dot-sort-positive function is convex, because dot-
sort is convex and increasing for positive weights � , and �+ is convex. The weighted 
sum in the CPT utility is consistent with dot-sort whenever the weights in the 
dot-sort function are monotone nondecreasing, i.e., �1 ≤ �2 ⋯ ≤ �N . Similarly, 
f�◦�− is convex following the same reasoning, making −f�◦�− concave, which is 
in turn composed with the convex exponential utility for losses, u− . We note that 
for each return, only one argument of the difference contributes to the CPT util-
ity, as �+(x)�−(x) = 0 . These convexity properties motivate principled algorithmic 
approaches to maximizing the CPT utility, which we explore in Sects. 3.1 and 3.2.

2.4 � CPT Utility Portfolio Optimization Problem

The CPT utility portfolio optimization problem is

f�(x) =

N∑

i=1

�ix(i),

�+(x) = max(x, 0), �−(x) = −min(x, 0),

Ucpt(w) = f�+

(
�+

(
u+(Rw)

))
− f�−

(
�−

(
u−(Rw)

))
.

Ucpt(w) = f�+(�+(
⏟⏟⏟
convex

u+(Rw)
⏟⏟⏟
concave

)) − f�−(�−(
⏟⏟⏟
convex

u−(Rw)
⏟⏟⏟
convex

)).
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with variable w, where W is the set of feasible portfolio weights. It is not a convex 
optimization problem, so we will seek approximate solution methods.

We mention some simple methods for solving or approximately solving the CPT 
utility portfolio optimization problem (2). If the number of assets is very small (say, 
3 or 4), we can solve it by brute force computation, by evaluating Ucpt over a fine 
grid of values.

A reasonable heuristic for approximately solving the CPT utility portfolio opti-
mization problem, motivated by Levy and Levy (2004), leverages our ability to effi-
ciently solve the MV portfolio optimization problem. We find the so-called efficient 
frontier, by solving the MV problem for a number of different values of the risk 
aversion parameter � . (This gives the MV efficient frontier.) We evaluate the CPT 
utility of each of these portfolios, and choose the one with the largest value. While 
this does not in general solve the problem (2), it often produces a very good, i.e., 
nearly optimal, portfolio. It can be used as an initial guess for the iterative methods 
described below. We refer to this method as the MV heuristic for CPT maximization.

3 � Optimization Methods

3.1 � Minorization–Maximization Method

The CPT utility has the composition form

We denote a general linearization of a convex (concave) function h(w) at the point 
ŵ as

where g is a subgradient (supergradient) of the function h. As all linearizations that 
follow occur at ŵ , we suppress the second argument.

At ŵ , we create a concave approximation of the first term of Ucpt(w) by lineariz-
ing (f�+◦�+) . We approximate the second term in the difference by linearizing the 
inner convex utility u− . To linearize dot-sort-positive, we observe that a subgradient 
is given by the vector gx with entries

where �x is the permutation which maps i to the rank of xi in x. The minorant at ŵ is 
therefore given by

(2)
maximize Ucpt(w)

subject to 1
Tw = 1, w ∈ W,

Ucpt(w) = (f�+◦�+)(u+(Rw)) − (f�−◦�−)(u−(Rw)).

�h(w, ŵ) = h(ŵ) + gT (w − ŵ),

gx,i =

{
0 if xi < 0

𝜋+𝜎x(i)
otherwise,
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The minorization–maximization (MM) algorithm (also called the majorization-min-
imization algorithm when solving a minimization problem) simply iterates between 
creating the minorant at the current iterate and then maximizing it to find the next 
iterate (Hunter & Lange, 2000). Our minorant is concave, so maximizing it is effi-
cient. Here W can be any DCP convex constraint set, since each iteration requires 
solving a general convex optimization problem.
Algorithm 1   Minorization–maximization method

3.2 � Iterated Convex–Concave Method

Though the CPT portfolio optimization objective is non-convex, we know the 
curvature and sign properties of the component functions which are composed 
to form the utility. In particular, PT utility is convex on the negative reals, and 
concave on the nonnegative reals. Thus, it is amenable to optimization via the 
convex–concave procedure (CCP) Lipp and Boyd (2015); Shen et  al. (2016); 
Yuille and Rangarajan (2003); Lanckriet and Sriperumbudur (2009). The con-
vex–concave procedure for maximization iteratively linearizes the second term in 
the sum of a concave and a convex function, and maximizes this surrogate objec-
tive. While the PT utility has this clear curvature, the CPT utility does not, due to 
reweighting. Our heuristic approach is to fix the probability weights in each itera-
tion, and then solve the fixed weight CPT utility optimization problem with the 
convex–concave procedure. Once the weights have been fixed, we can write the 
PT utility as a concave function

plus a convex function,

Ũcpt(w) = (�f𝜋+◦𝜙+)(u+(Rw)) − (f𝜋−◦𝜙−)(�u−(Rw)).

f ccv(x) =

{
1 − exp(−�+x) if x ≥ 0

�−x otherwise ,
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Here “cvx” and “ccv” denote convex and concave, respectively. (See §A for a deri-
vation of these functions in disciplined convex programming (DCP) form.) Unlike 
the MM algorithm in Sect. 3.1 which maximizes a global lower bound, this approxi-
mation is only local, so we include a trust region constraint, which we omit from the 
algorithm description for brevity. Note that as before, W can be any DCP convex 
constraint set.
Algorithm 2   Convex–concave procedure

3.3 � Projected Gradient Ascent

We first consider maximizing the CPT utility using gradient ascent (GA). While the 
CPT utility is not differentiable everywhere, we can use an automatic differentiation 
package such as PyTorch Paszke et al. (2019) to specify the computation chain for the 
problem and automatically compute the gradient at points where the utility is differenti-
able, and a reasonable surrogate for the gradient (such as a subgradient for convex func-
tions) at points where it is not. Such libraries are extremely fast and optimized for use 
on GPUs. We can then perform gradient ascent, together with a method to enforce the 
portfolio constraints. Projected gradient ascent consists of the iterations

where k denotes iteration, 𝜂k > 0 is a stepsize and Π is �2 or Euclidean projection 
onto the constraint set W , i.e., Π(w) = argminw�∈W‖w� − w‖2.

Using these computation frameworks requires the projection to be expressed as a 
simple computation chain, which can be done in simple cases such as a long-only port-
folio, i.e., W = R n

+
 . Another option to handle long-only portfolio constraints is to par-

ametrize nonnegative portfolio weights via a multinomial logistic map,

f cvx(x) = inf
z≤0, z≤x

(
−1 + exp(�−z) − �−z

)
.

wk+1 = Π
(
wk + �k∇f (wk)

)
,
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where x is an unconstrained variable.

4 � Numerical Examples

To evaluate the efficiency and performance of the proposed methods, we compare 
them in a series of numerical experiments with increasing data size. We first compile 
a data set consisting of N = 600 monthly returns, covering the 50-year period from 
07–1972 to 06–2022. The n = 14 assets consist of equities and fixed income securi-
ties from different regions, as well as commodities, as displayed in Table 1. The data 
was obtained from Global Financial Data (2022). The indices are total return indi-
ces, i.e., they include dividends and interest payments. The GFD index methodology 
extends the index history back in time by combining multiple single indices where 
necessary. We provide the GFD symbol for each asset class for reference.

4.1 � Toy Example

Our first small example uses n = 3 assets: US stocks, 10-year US Treasury bonds, 
and 3-month US Treasury T-bills. We choose the CPT function with parameters

which are reasonable, and at the same time exhibit clear non-convexity and even 
multimodality of the CPT utility. (Many other reasonable choices of the parameters 

wi =
exp xi∑
j exp xj

, i = 1,… , n,

�+ = 8.4, �− = 11.4, �+ = 0.77, �− = 0.79,

Table 1   Asset classes and 
regions in the data set

Asset class Region GFD symbol

Equity US SPXTRD
Equity Europe STOXXER
Equity Japan TOPXDVD
Equity Emerging markets TRGFDEM
Government bonds US TRUSG10M
Corporate bonds US TRCCRBD
Government bonds Europe TREUROGM
Government bonds Japan TRJPNGVM
Bills US TRUSABIM
Bills Europe TREUROBM
Bills Japan TRJPNBIM
Commodities Global TRUSACOM
Gold Global XAU_BD
Silver Global XAG_HD
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lead to unimodal CPT utility, which makes the portfolio optimization problems easy; 
our goal is to evaluate the methods on more challenging problem instances.)

Figure 1 gives a plot of this utility function for W = R 2
+
 , i.e., long-only portfo-

lios. The horizontal axis is w1 , the fraction invested in stocks; the vertical axis is w2 , 
the fraction invested in bonds. The fraction invested in T-bills is w3 = 1 − w1 − w2 . 
Thus, the point (0, 0) represents a portfolio fully invested in T-bills. Any portfolio on 
the diagonal connecting (1, 0) and (0, 1) represents portfolios invested in a convex 
combination of only stock and bonds. Since there are only two portfolio weights to 
optimize over, we can find the global maximum using brute-force evaluation of the 
utility over a fine grid. The global maximum is attained at w⋆ = (0.14, 0.3) , yielding 
Ucpt(w⋆) = 0.0334 . In addition, there is a local optimum with slightly lower utility at 
w̄ = (0.37, 0.63) , which yields Ucpt(w̄) = 0.0332.

MV frontier A simple heuristic is to evaluate Ucpt on portfolios along the mean-
variance efficient MV frontier and choosing the maximizing portfolio among 
them. Based on the sample mean and covariance of the returns, we first find the 

Fig. 1   CPT utility surface for a 
long-only portfolios of stocks 
( w1 ), bonds ( w2 ), and T-bills 
( w3 = 1 − w1 − w2)

(a) (b)

Fig. 2   a Maximizing Ucpt along the MV frontier, resulting in wmv . b Utility surface of Umv for the choice 
of � that results in wmv
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return-maximizing and risk-minimizing portfolios, and then sample 100 points that 
are equidistant in volatility space along the efficient MV frontier. Figure 2a shows 
the efficient MV frontier, and the portfolio with the highest CPT utility along it, 
wmv , associated with risk aversion parameter � = 3.2 . It achieves CPT utility of 
Ucpt(wmv) = 0.0328 . Figure 2b shows Umv for the choice � = 3.2 . It should be noted 
that the MV frontier is independent of the parameter choice of the CPT utility func-
tion, and in general the MV optimum can be far away from a local optimum of CPT.

Iterative methods As all remaining methods depend on initialization, we compare 
the convergence from equal weights, three points close to a full investment in each 
single asset, as well as the MV optimum in Fig. 3. The MM algorithm terminates at 
a local maximum from all starting points within fewer than 30 iterations. Likewise, 
CC converges to a local optimum or a point where the numerical stopping criterion 
is reached in all cases within at most 11 iterations, albeit on a visually more erratic 
path. Lastly, the GA method also converges to a point close to a local optimum in all 
cases. Thus, all iterative methods appear to perform equally well on the toy example.

Diversification To see the effect of the CPT utility on diversification, as well as to 
understand how the different methods alter the portfolio weights, we run a backtest 
using a sliding window of 100 observations along our previously described data set 
of 600 monthly returns. Following (Goetzmann & Kumar, 2008) and (Yan et  al., 
2022), we compute the sum of squared portfolio weights (SSPW), ‖w −

1

n
‖2
2
 , as a 

measure of diversification. We compare the MM, CC, and GA methods to the MV 
heuristic in Fig. 4. We observe that the MM and CC methods all result in a lower 
SSPW than the MV heuristic, i.e., the portfolios are more diversified. In addition, 
we explore how the assumptions of probability reweighting and loss aversion that 
are inherent to the CPT utility affect the portfolio weights. For this, we change set 
�+ = �− = 11.4 in the no loss aversion setting, and �+ = �− = 1 in the no probability 
reweighting setting. We find that both cases result in a much higher median SSPW, 
indicating that the portfolio weights are less diversified.

4.2 � Multi‑asset Example

We now extend our example to use all n = 14 assets, comparing the achieved 
utilities, as well as the required computation time. While comparing the abso-
lute wall-times across different implementations can only approximate the com-
putational efficiency of the algorithms, it is relevant to the practicality of the 
presented methods. The best portfolio on the efficient MV frontier attains a util-
ity of 0.0395 in only 0.6 s. Starting all iterative methods from the equal-weight 
portfolio, CC terminates first, yielding a utility of 0.0403 in 4.1  s. MM also 
attains the same utility, but it takes substantially longer, terminating after about 
650 s. GA also results in approximately the same utility, being slower than CC, 
but still dominating MM. When optimizing a single portfolio, we find that GA 
converges faster using the CPU. However, simultaneous optimization of many 
portfolios, which is naturally handled by this method, scales better when using 
a GPU. We use this observation to simultaneously optimize from 10,000 start-
ing points. These weights are sampled from a symmetric Dirichlet distribution 
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Fig. 3   Convergence from differ-
ent staring points for the MM 
(a), CC (b), and GA (c) methods

(a)

(b)

(c)
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with concentration parameter � = 1 , i.e., w0 ∼ Dir(1n) , which is equivalent to a 
uniform distribution over the open standard (n − 1)-simplex. The best resulting 
utility is denoted as the approximate global optimum, and is not higher than the 
utilities achieved by all iterative methods when started from equal weights. All 
methods, as well as the approximate global optimum, are visualized in Fig. 5a. 
In practice, it would likely be beneficial to leverage the fast computation of the 
MV portfolio as a starting point for the iterative methods. Indeed, as shown in 
Fig. 5b, this reduces the time to convergence substantially for all methods, with 
the GA method now converging in approximately ten seconds. MM is also faster, 
but still takes about 400 s to converge.

Investigating the sensitivity to the starting point, we sample 30 starting 
weights and compare the attained utilities. We find that MM and CC converge 

Fig. 4   Comparison of the sum of squared portfolio weights across methods

(a) (b)

Fig. 5   Comparison of wall-time across methods for the multi-asset example, started from a equal-weight 
portfolio and b the best MV portfolio
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to a utility of 0.0403 in all cases. GA, however, displays a higher variance. Its 
best utility is close to the values obtained by MM and CC. The median utility 
is 0.0401, which is higher than MV at 0.0395. The worst case utility is 0.0386, 
which is worse than all other methods.

4.3 � Scaling to Many Return Samples

To investigate the scalability of the methods to more return samples, we extend the 
600 observations of our data set with synthetic returns. For this, we sample from a 
Gaussian mixture model with three components that was fit to the return data. We 
find that GA scales best, handling data sets of hundreds of thousands of observa-
tions. For such large data sets, MM and CC did not converge in a reasonable time. 
Further, as the GA implementation naturally handles optimizing multiple starting 
points simultaneously, the problem of high variance observed in Sect. 4.2 is allevi-
ated. Figure 6 shows an example where we extend the original data set by a factor 
of ten, i.e., we consider the case where N = 6, 000 . We choose wmv as a principled 
starting point for the GA method. We observe that GA does improve over its starting 
point, however, looking at the axis scale reveals that the improvement over MV is 
marginal. We observe that the numerical value of the highest utility is different com-
pared to the original data set in Sect. 4.2. This is expected, however, as the observed 
data only makes up 10% of the extended data set, and the data generating process for 
the synthetic returns is only an approximation of the true data generating process, 
which may not be fully described by any single distribution.

5 � Conclusions

While the CPT utility is nonconvex and can even be multimodal, we identify some 
simple convexity properties. Specifically, the CPT utility is a difference of two struc-
tured functions, with the first term given by a composition of a convex function with 
concave arguments and the second term given by a composition of a convex function 

Fig. 6   Convergence of the GA method for N = 6000 starting from wmv
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with convex arguments. This structure allows us to construct locally tangent con-
cave minorants, which we use to develop a minorization–maximization algorithm to 
maximize the CPT utility numerically. While the analysis was restricted to the CPT 
utility, we believe that it motivates similar analyses for other nonconvex objectives 
commonly used in finance and economics. We provide several practical methods to 
maximize the CPT utility, including one massively scalable method, and two meth-
ods which can easily handle arbitrary convex portfolio constraints. To the best of our 
knowledge, previous work on maximizing CPT utility considered only simple ana-
lytical cases or small problem instances with generic nonlinear optimizers.

As a practical matter, for small problems with arbitrary convex constraints, the MM 
method has shown smooth convergence and is thus the recommended default method. 
If this method is too slow, but the portfolio constraints are complex, the CC method 
should be used instead. For large problems with simple constraints, the GA method 
appears to be the best choice. As there is low scaling overhead, one should optimize 
many portfolios simultaneously, including the MV optimal portfolio, an equal weight 
portfolio, as well as randomly sampled starting points. As all methods are readily 
available in the accompanying code, it is easy to experiment for the given use case.

Lastly, it is worth noting that the simple method of approximately maximizing 
the CPT utility by restricting the feasible set to the MV frontier seems to closely 
approximate the optimal CPT utility in many problem instances.
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Appendix

A DCP Form of CCP Objective

A.1 DCP Form of fccv

To obtain the piecewise definition of f ccv , we split up its argument into a positive 
and negative part,

Now, we observe that

is concave, because 𝛾− > 𝛾+ ≥
𝜕(1−exp(−𝛾+x))

𝜕x
 for x ≥ 0 . We implement f ccv in DCP 

form via its hypograph,

which in practice means that to add this function to an optimization problem, we 
introduce new variables t, x+ , and x− , replace f ccv with t, and add the constraints

A.2 DCP Form of fcvx

To see that f cvx is convex, we can equivalently represent it as a partial minimization 
of the convex function (of z and x jointly)

over the convex set {(z, x) ∣ z ≤ 0} . The function can be used in DCP frameworks 
that provide the indicator function and partial minimization. Alternatively, the indi-
cator function can be omitted when adding the explicit constraints

x = x+ + x−, x+ ≥ 0, x− ≤ 0.

f ccv(x) = 1 − exp(−�+x
+) + �−x

−

{(x, t) ∣ f (x) ≥ t}

= {(x, t) ∣ ∃ x+ ≥ 0, x− ≤ 0, x = x+ + x−, 1 − exp(−�+x
+) + �−x

−
≥ t},

t ≤ 1 − exp(−�+x
+) + �−x

−, x = x+ + x−, x+ ≥ 0, x− ≤ 0.

−1 + exp(�−z) − �−z + 1{z ≤ x}

z ≤ x, z ≤ 0.
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B Code Snippets
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