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Portfolio allocation vector

v

invest fraction w; in asset i, i=1,...,n

» w € R" is portfolio allocation vector

1"Tw=1

w; < 0 means a short position in asset i
(borrow shares and sell now; must replace later)

v

v

> w > 0 is a long only portfolio

v

w1 =1Twy +1Tw_ is leverage
(many other definitions used . ..)
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Asset returns

» investments held for one period

» initial prices p; > 0; end of period prices pfr >0

» asset (fractional) returns r; = (p;” — p;)/pi

» portfolio (fractional) return R = r’w

» common model: r is a random variable, with mean E r = p,
covariance E(r — p)(r — )T =X

» so Risa RV with ER=pu"w, var(R) = w'Xw

» E R is (mean) return of portfolio

» var(R) is risk of portfolio
(risk also sometimes given as std(R) = y/var(R))

> two objectives: high return, low risk

Portfolio Optimization



Classical (Markowitz) portfolio optimization

maximize p'w—yw Xw
subjectto 17Tw=1, weWw

variable w € R”

v

v

W is set of allowed portfolios

» common case: ¥V = R (long only portfolio)

v

v > 0 is the risk aversion parameter
» n'w —ywT Lw is risk-adjusted return

> varying -y gives optimal risk-return trade-off

v

can also fix return and minimize risk, etc.

Portfolio Optimization



Example

optimal risk-return trade-off for 10 assets, long only portfolio
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Example

return distributions for two risk aversion values
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Portfolio constraints

» W = R" (simple analytical solution)
> leverage limit: [jw||; < L™

» market neutral- m" Tw =0

» m; is capitalization of asset i
» M = mT"ris market return
» m"Iw = cov(M, R)

i.e., market neutral portfolio return is uncorrelated with
market return

Portfolio Optimization



Example

optimal risk-return

trade-off curves for leverage limits 1,2, 4
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Example

three portfolios with w’ Zw = 2, leverage limits L = 1,2,4
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Variations

> require 17 w > R™" minimize w’ Zw or || ZY2w||

» include (broker) cost of short positions,
» include transaction cost (from previous portfolio wP™"),

kT w — wP | k>0

common models: n =1, 3/2, 2
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Factor covariance model

Y=FyFT +D

» F € R™¥ k < n'is factor loading matrix

v

k is number of factors (or sectors), typically 10s

v

Fij is loading of asset i to factor j

v

D is diagonal matrix; D; > 0 is idiosyncratic risk

¥ > 0 is the factor covariance matrix

v

v

FTw e R¥ gives portfolio factor exposures

v

portfolio is factor j neutral if (FTw); =0

Portfolio Optimization
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Portfolio optimization with factor covariance model

maximize p'w — 7 (fTif + WTDW)
subjectto 17Tw=1 f=FTw
wew, ferF

> variables w € R" (allocations), f € R¥ (factor exposures)

» F gives factor exposure constraints

» computational advantage: O(nk?) vs. O(n?)

Portfolio Optimization 14



Example

» 50 factors, 3000 assets
> leverage limit = 2
> solve with covariance given as

» single matrix
» factor model

» CVXPY/OSQP single thread time

covariance ‘ solve time

single matrix | 173.30 sec

factor model | 0.85 sec

Portfolio Optimization
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Covariance uncertainty

v

single period Markowitz portfolio allocation problem

v

we have fixed portfolio allocation w € R”
> return covariance X not known, but we believe ¥ € §
» S is convex set of possible covariance matrices

risk is w! Xw, a linear function of ¥

v

Worst-Case Risk Analysis
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Worst-case risk analysis

» what is the worst (maximum) risk, over all possible
covariance matrices?

> worst-case risk analysis problem:

maximize w'Xw
subjectto €S, X >0

with variable X

> ...a convex problem with variable ©

» if the worst-case risk is not too bad, you can worry less

» if not, you'll confront your worst nightmare

Worst-Case Risk Analysis
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Example

> w = (—0.01,0.13,0.18,0.88, —0.18)

> optimized for X™°™, return 0.1, leverage limit 2

> S = {Znom + A |A,’,‘| =0, ‘AU’ < 02},

ZHOHI —

Worst-Case Risk Analysis
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Example

» nominal risk = 0.168

» worst case risk = 0.422

worst case A =

Worst-Case Risk Analysis
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Ad display

» m advertisers/ads, i =1,..., m
> ntimeslots, t=1,...,n
» T; is total traffic in time slot t

> Dj: > 0 is number of ad i displayed in period t
>iDie < T¢

contracted minimum total displays: >, Dit > ¢;

v

v

v

goal: choose Dj;

Optimal Advertising
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Clicks and revenue

Cjit is number of clicks on ad i in period t
click model: Cjy = P;:Djt, Pir € [0,1]
payment: R; > 0 per click for ad i, up to budget B;

Si = min {Riz Cit, Bi}
t

...a concave function of D

v

v

v

v

ad revenue

Optimal Advertising
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Ad optimization

» choose displays to maximize revenue:

maximize >; S;
subjectto D>0, D'1<T, Dl1>c

> variable is D € R™*"
» dataare T, c, R, B, P

Optimal Advertising
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Example

> 24 hourly periods, 5
» total traffic:
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Optimal Advertising
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Example

A

B

C

D

E

Optimal Advertising
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Example
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Example
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Example

ad revenue
Ad | A B C D E
c; | 61000 80000 61000 23000 64000
R; | 0.15 1.18 0.57 2.08 2.43
B; | 256000 12000 12000 11000 17000
>+ Dir | 61000 80000 148116 23000 167323
S| 182 12000 12000 11000 7760

Optimal Advertising
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Standard regression

» given data (x;,y;) ER" xR, i=1,....m

> fit linear (affine) model j = 37x; — v, B€R", v€R
> residuals are r; = y; — y;

» least-squares: choose 3, v to minimize ||r||3 = 3, r?
» mean of optimal residuals is zero

» can add (Tychonov) regularization: with A > 0,

minimize ||r]|3 + \|| 3|3

Regression Variations

31



Robust (Huber) regression
» replace square with Huber function

u? lu <M
o(u) = { 2Mu — M2 |u| > M

M > 0 is the Huber threshold

NN

» same as least-squares for small residuals, but allows (some)
large residuals

Regression Variations
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Example

v

m = 450 measurements, n = 300 regressors

» choose 3'TU¢; x; ~ N(0, /)

> set y; = (B87) Tx; + €5, ¢ ~ N(0,1)

» with probability p, replace y; with —y;

» data has fraction p of (non-obvious) wrong measurements
» distribution of ‘good’ and ‘bad’ y; are the same

> try to recover 3¢ € R" from measurements y € R™

‘ . 1 - -
prescient’ version: we know which measurements are wrong

Regression Variations 33



Example

50 problem instances, p varying from 0 to 0.15
14 . : . . : . :
— Least squares
12+ — Huber iy
10f — Prescient |
:"\ 08} 4
06| |

Regression

\

02 4
/\' J
0.0 —
0.00 002 0.04 0.08 010 0.12 0.14
p

Variations

34



Example
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Quantile regression

» tilted {1 penalty: for T € (0,1),

¢(u) = 7(u)+ + (1 = 7)(u)- = (1/2)|u[ + (7 = 1/2)u

» quantile regression: choose (3, v to minimize >; ¢(r;)

» 7 = 0.5: equal penalty for over- and under-estimating
» 7 =0.1: 9x more penalty for under-estimating

» 7 =0.9: 9x more penalty for over-estimating

Regression Variations 36



Quantile regression

» for r; # 0,
0> o(ri
Zé¢( ) =7|{i:rn>0}—-(1—7)[{i:r <0}
v
» (roughly speaking) for optimal v we have
T{i:r>0}=0-7)|{i:r <0}
» and so for optimal v, Tm = [{i : r; < 0}]
» 7-quantile of optimal residuals is zero
» hence the name quantile regression

Regression Variations
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Example

> time series x¢;, t =10,1,2,...

> auto-regressive predictor:

o T
X1 = (th--,Xt—M) -V
» M =10 is memory of predictor
» use quantile regression for 7 = 0.1,0.5,0.9
> at each time t, gives three one-step-ahead predictions:
0.1 0.5 0.9
Xt4+1> Xt+1> Xt4+1

Regression Variations
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Example

time series x;

0.0
o

Regression Variations
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Example

x¢ and predictions XY, %07, %% (training set, t =0,...,399)

Training data
40 T T T T T
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Example

x¢ and predictions X014, %2, %09 (test set, t = 400, .. .,449)

Test data

Regression Variations



Example

residual distributions for 7 = 0.9, 0.5, and 0.1 (training set)
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Example

residual distributions for 7 = 0.9, 0.5, and 0.1 (test set)
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Data model

» given data (x;,y;) € X x ), i=1,....m
» for X = R", x is feature vector

» for Y =R, y is (real) outcome or label
» for Y = {—1,1}, y is (boolean) outcome

» find model or predictor 1) : X — Y so that (x) ~ y
for data (x,y) that you haven't seen

» for Y =R, v is a regression model
» for Y = {—1,1}, ¢ is a classifier

» we choose v based on observed data, prior knowledge

Model Fitting 45



Loss minimization model

v

data model parametrized by 6 € R"”
loss function L: X x Y x R" = R

L(x;, yi,0) is loss (miss-fit) for data point (x;, yi),
using model parameter 6

v

v

v

choose 0; then model is

(x) = argmin L(x, y, 0)
y

Model Fitting
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Model fitting via regularized loss minimization

» regularization r : R" — RU {00}
» r(0) measures model complexity, enforces constraints, or
represents prior

» choose 6 by minimizing regularized loss
(1/m) Z L(Xi’)/fa 6) + r(<9)

» for many useful cases, this is a convex problem

> model is ¥(x) = argmin, L(x, y, )

Model Fitting
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Examples

model L(x,y,0) »(x) r(6)
least-squares (0T x — y)? 07 x 0
ridge regression (0Tx —y)? 07 x IIE:
lasso (0Tx —y)? 67 x DNICAIE:
logistic classifier log(1 4 exp(—yf7x)) sign(67x) 0
SVM (1—y87x), sign(07x) |03

» X > 0 scales regularization

> all lead to convex fitting problems

Model Fitting 48



Example

v

original (boolean) features z € {0,1}1°

v

(boolean) outcome y € {—1,1}

v

new feature vector x € {0, 1}°® contains all products zz
(co-occurence of pairs of original features)

v

use logistic loss, #1 regularizer

v

training data has m = 200 examples; test on 100 examples

Model Fitting
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Example

045 r : -
— Train error
| — Test error
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Example

selected features z;z;, A = 0.01
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