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Portfolio allocation vector

I invest fraction wi in asset i , i = 1, . . . , n
I w ∈ Rn is portfolio allocation vector
I 1T w = 1
I wi < 0 means a short position in asset i

(borrow shares and sell now; must replace later)
I w ≥ 0 is a long only portfolio
I ‖w‖1 = 1T w+ + 1T w− is leverage

(many other definitions used . . . )

Portfolio Optimization 4



Asset returns

I investments held for one period
I initial prices pi > 0; end of period prices p+

i > 0
I asset (fractional) returns ri = (p+

i − pi )/pi
I portfolio (fractional) return R = rT w
I common model: r is a random variable, with mean E r = µ,

covariance E(r − µ)(r − µ)T = Σ
I so R is a RV with E R = µT w , var(R) = wT Σw
I E R is (mean) return of portfolio
I var(R) is risk of portfolio

(risk also sometimes given as std(R) =
√

var(R))

I two objectives: high return, low risk
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Classical (Markowitz) portfolio optimization

maximize µT w − γwT Σw
subject to 1T w = 1, w ∈ W

I variable w ∈ Rn

I W is set of allowed portfolios
I common case: W = Rn

+ (long only portfolio)
I γ > 0 is the risk aversion parameter
I µT w − γwT Σw is risk-adjusted return
I varying γ gives optimal risk-return trade-off
I can also fix return and minimize risk, etc.
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Example
optimal risk-return trade-off for 10 assets, long only portfolio
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Example
return distributions for two risk aversion values
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Portfolio constraints

I W = Rn (simple analytical solution)
I leverage limit: ‖w‖1 ≤ Lmax

I market neutral: mT Σw = 0
I mi is capitalization of asset i
I M = mT r is market return
I mT Σw = cov(M,R)

i.e., market neutral portfolio return is uncorrelated with
market return
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Example
optimal risk-return trade-off curves for leverage limits 1, 2, 4
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Example
three portfolios with wT Σw = 2, leverage limits L = 1, 2, 4
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Variations

I require µT w ≥ Rmin, minimize wT Σw or ‖Σ1/2w‖2
I include (broker) cost of short positions,

sT (w)−, s ≥ 0

I include transaction cost (from previous portfolio wprev),

κT |w − wprev|η, κ ≥ 0

common models: η = 1, 3/2, 2
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Factor covariance model

Σ = F Σ̃F T + D

I F ∈ Rn×k , k � n is factor loading matrix
I k is number of factors (or sectors), typically 10s
I Fij is loading of asset i to factor j
I D is diagonal matrix; Dii > 0 is idiosyncratic risk
I Σ̃ > 0 is the factor covariance matrix

I F T w ∈ Rk gives portfolio factor exposures
I portfolio is factor j neutral if (F T w)j = 0
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Portfolio optimization with factor covariance model

maximize µT w − γ
(

f T Σ̃f + wT Dw
)

subject to 1T w = 1, f = F T w
w ∈ W, f ∈ F

I variables w ∈ Rn (allocations), f ∈ Rk (factor exposures)
I F gives factor exposure constraints

I computational advantage: O(nk2) vs. O(n3)
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Example

I 50 factors, 3000 assets
I leverage limit = 2
I solve with covariance given as

I single matrix
I factor model

I CVXPY/OSQP single thread time

covariance solve time
single matrix 173.30 sec
factor model 0.85 sec
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Covariance uncertainty

I single period Markowitz portfolio allocation problem
I we have fixed portfolio allocation w ∈ Rn

I return covariance Σ not known, but we believe Σ ∈ S
I S is convex set of possible covariance matrices
I risk is wT Σw , a linear function of Σ
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Worst-case risk analysis

I what is the worst (maximum) risk, over all possible
covariance matrices?

I worst-case risk analysis problem:

maximize wT Σw
subject to Σ ∈ S, Σ � 0

with variable Σ
I . . . a convex problem with variable Σ

I if the worst-case risk is not too bad, you can worry less
I if not, you’ll confront your worst nightmare
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Example

I w = (−0.01, 0.13, 0.18, 0.88,−0.18)
I optimized for Σnom, return 0.1, leverage limit 2
I S = {Σnom + ∆ : |∆ii | = 0, |∆ij | ≤ 0.2},

Σnom =


0.58 0.2 0.57 −0.02 0.43
0.2 0.36 0.24 0 0.38

0.57 0.24 0.57 −0.01 0.47
−0.02 0 −0.01 0.05 0.08
0.43 0.38 0.47 0.08 0.92


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Example

I nominal risk = 0.168
I worst case risk = 0.422

worst case ∆ =


0 0.04 −0.2 −0. 0.2

0.04 0 0.2 0.09 −0.2
−0.2 0.2 0 0.12 −0.2
−0. 0.09 0.12 0 −0.18
0.2 −0.2 −0.2 −0.18 0


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Ad display

I m advertisers/ads, i = 1, . . . ,m
I n time slots, t = 1, . . . , n
I Tt is total traffic in time slot t
I Dit ≥ 0 is number of ad i displayed in period t
I
∑

i Dit ≤ Tt
I contracted minimum total displays:

∑
t Dit ≥ ci

I goal: choose Dit
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Clicks and revenue

I Cit is number of clicks on ad i in period t
I click model: Cit = PitDit , Pit ∈ [0, 1]
I payment: Ri > 0 per click for ad i , up to budget Bi
I ad revenue

Si = min
{

Ri
∑

t
Cit ,Bi

}
. . . a concave function of D
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Ad optimization

I choose displays to maximize revenue:

maximize
∑

i Si
subject to D ≥ 0, DT 1 ≤ T , D1 ≥ c

I variable is D ∈ Rm×n

I data are T , c, R, B, P
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Example
I 24 hourly periods, 5 ads (A–E)
I total traffic:
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Example

I ad data:
Ad A B C D E
ci 61000 80000 61000 23000 64000
Ri 0.15 1.18 0.57 2.08 2.43
Bi 25000 12000 12000 11000 17000
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Example
Pit
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Example
optimal Dit
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Example

ad revenue

Ad A B C D E
ci 61000 80000 61000 23000 64000
Ri 0.15 1.18 0.57 2.08 2.43
Bi 25000 12000 12000 11000 17000∑

t Dit 61000 80000 148116 23000 167323
Si 182 12000 12000 11000 7760
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Standard regression

I given data (xi , yi ) ∈ Rn × R, i = 1, . . . ,m
I fit linear (affine) model ŷi = βT xi − v , β ∈ Rn, v ∈ R
I residuals are ri = ŷi − yi
I least-squares: choose β, v to minimize ‖r‖22 =

∑
i r2

i
I mean of optimal residuals is zero
I can add (Tychonov) regularization: with λ > 0,

minimize ‖r‖22 + λ‖β‖22
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Robust (Huber) regression

I replace square with Huber function

φ(u) =
{

u2 |u| ≤ M
2Mu −M2 |u| > M

M > 0 is the Huber threshold

I same as least-squares for small residuals, but allows (some)
large residuals
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Example

I m = 450 measurements, n = 300 regressors
I choose βtrue; xi ∼ N (0, I)
I set yi = (βtrue)T xi + εi , εi ∼ N (0, 1)
I with probability p, replace yi with −yi
I data has fraction p of (non-obvious) wrong measurements
I distribution of ‘good’ and ‘bad’ yi are the same
I try to recover βtrue ∈ Rn from measurements y ∈ Rm

I ‘prescient’ version: we know which measurements are wrong
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Example
50 problem instances, p varying from 0 to 0.15
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Example
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Quantile regression

I tilted `1 penalty: for τ ∈ (0, 1),

φ(u) = τ(u)+ + (1− τ)(u)− = (1/2)|u|+ (τ − 1/2)u

I quantile regression: choose β, v to minimize
∑

i φ(ri )

I τ = 0.5: equal penalty for over- and under-estimating
I τ = 0.1: 9× more penalty for under-estimating
I τ = 0.9: 9× more penalty for over-estimating
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Quantile regression

I for ri 6= 0,

∂
∑

i φ(ri )
∂v = τ |{i : ri > 0}| − (1− τ) |{i : ri < 0}|

I (roughly speaking) for optimal v we have

τ |{i : ri > 0}| = (1− τ) |{i : ri < 0}|

I and so for optimal v , τm = |{i : ri < 0}|
I τ -quantile of optimal residuals is zero
I hence the name quantile regression
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Example

I time series xt , t = 0, 1, 2, . . .
I auto-regressive predictor:

x̂t+1 = βT (xt , . . . , xt−M)− v

I M = 10 is memory of predictor
I use quantile regression for τ = 0.1, 0.5, 0.9
I at each time t, gives three one-step-ahead predictions:

x̂0.1
t+1, x̂0.5

t+1, x̂0.9
t+1
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Example
time series xt
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Example
xt and predictions x̂0.1

t+1, x̂0.5
t+1, x̂0.9

t+1 (training set, t = 0, . . . , 399)
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Example
xt and predictions x̂0.1

t+1, x̂0.5
t+1, x̂0.9

t+1 (test set, t = 400, . . . , 449)
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Example
residual distributions for τ = 0.9, 0.5, and 0.1 (training set)
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Example
residual distributions for τ = 0.9, 0.5, and 0.1 (test set)
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Data model

I given data (xi , yi ) ∈ X × Y, i = 1, . . . ,m
I for X = Rn, x is feature vector
I for Y = R, y is (real) outcome or label
I for Y = {−1, 1}, y is (boolean) outcome

I find model or predictor ψ : X → Y so that ψ(x) ≈ y
for data (x , y) that you haven’t seen

I for Y = R, ψ is a regression model
I for Y = {−1, 1}, ψ is a classifier
I we choose ψ based on observed data, prior knowledge
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Loss minimization model

I data model parametrized by θ ∈ Rn

I loss function L : X × Y × Rn → R
I L(xi , yi , θ) is loss (miss-fit) for data point (xi , yi ),

using model parameter θ
I choose θ; then model is

ψ(x) = argmin
y

L(x , y , θ)
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Model fitting via regularized loss minimization

I regularization r : Rn → R ∪ {∞}
I r(θ) measures model complexity, enforces constraints, or

represents prior
I choose θ by minimizing regularized loss

(1/m)
∑

i
L(xi , yi , θ) + r(θ)

I for many useful cases, this is a convex problem
I model is ψ(x) = argminy L(x , y , θ)
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Examples

model L(x , y , θ) ψ(x) r(θ)
least-squares (θT x − y)2 θT x 0
ridge regression (θT x − y)2 θT x λ‖θ‖22
lasso (θT x − y)2 θT x λ‖θ‖1
logistic classifier log(1 + exp(−yθT x)) sign(θT x) 0
SVM (1− yθT x)+ sign(θT x) λ‖θ‖22

I λ > 0 scales regularization
I all lead to convex fitting problems
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Example

I original (boolean) features z ∈ {0, 1}10

I (boolean) outcome y ∈ {−1, 1}
I new feature vector x ∈ {0, 1}55 contains all products zi zj

(co-occurence of pairs of original features)
I use logistic loss, `1 regularizer
I training data has m = 200 examples; test on 100 examples
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Example
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Example
selected features zi zj , λ = 0.01
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