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Abstract We investigate the convex–concave procedure, a local heuristic that

utilizes the tools of convex optimization to find local optima of difference of convex

(DC) programming problems. The class of DC problems includes many difficult

problems such as the traveling salesman problem. We extend the standard procedure

in two major ways and describe several variations. First, we allow for the algorithm

to be initialized without a feasible point. Second, we generalize the algorithm to

include vector inequalities. We then present several examples to demonstrate these

algorithms.

Keywords Convex optimization � Convex concave procedure � Sequential

optimization � Difference of convex programming

1 Introduction

In this paper we present several extensions of and variations on the convex–concave

procedure (CCP), a powerful heuristic method used to find local solutions to

difference of convex (DC) programming problems. We then demonstrate the

algorithms with several examples. It is worth noting that CCP is very similar to

work done on DC algorithms (DCA), which we will discuss in detail later. For ease
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of presentation, we believe greater clarity comes from taking CCP as a starting point

rather than DCA, although similar points could be reached by progressing through

the DCA literature, and there is much overlap. We will reference results in the DCA

literature when appropriate.

1.1 Difference of convex programming

In this paper we consider DC programming problems, which have the form

minimize f0ðxÞ � g0ðxÞ
subject to fiðxÞ � giðxÞ� 0; i ¼ 1; . . .;m;

ð1Þ

where x 2 Rn is the optimization variable and fi : Rn ! R and gi : Rn ! R for

i ¼ 0; . . .;m are convex. The class of DC functions is very broad; for example, any

C2 function can be expressed as a difference of convex functions (Hartman 1959). A

DC program is not convex unless the functions gi are affine, and is hard to solve in

general. To see this, we can cast the Boolean linear program (LP)

minimize cTx

subject to xi 2 f0; 1g; i ¼ 1; . . .; n
Ax� b;

ð2Þ

where x 2 Rn is the optimization variable and c 2 Rn, A 2 Rm�n, and b 2 Rm are

problem data, in the DC form (1) as

minimize cTx

subject to x2
i � xi � 0; i ¼ 1; . . .; n
xi � x2

i � 0; i ¼ 1; . . .; n
Ax� b� 0:

ð3Þ

Here the objective and constraint functions are convex, except for the second block

of n inequality constraint functions, which are concave. Thus the Boolean LP (2) is a

subclass of DC programs (1). The Boolean LP, in turn, can represent many problems

that are thought to be hard to solve, like the traveling salesman problem; for these

problems, no polynomial time algorithm is known, and it is widely believed none

exists (Karp 1972). We will examine one instance from this class, 3-satisfiability, in

Sect. 5.

The global solution to (1) can be found through general branch and bound

methods (Agin 1966; Lawler and Wood 1966). There is also an extensive literature

on solving DC programming problems which we will review later. Alternatively,

one can attempt to find a local optimum to this problem through the many

techniques of nonlinear optimization (Nocedal and Wright 2006).

1.2 Convex–concave procedure

We now present the basic convex–concave procedure, also known as the concave-

convex procedure (Yuille and Rangarajan 2003). This is one heuristic for finding a
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local optimum of (1) that leverages the ability to efficiently solve convex

optimization problems.

We will assume that all of the fi and gi are differentiable for the ease of notation,

but the analysis holds for nondifferentiable functions where the gradient at a point is

replaced by a subgradient at that point. This basic version of the algorithm requires

an initial feasible point x0, i.e., fiðx0Þ � giðx0Þ� 0, for i ¼ 1; . . .;m.

One reasonable stopping criterion is that the improvement in the objective value

is less than some threshold d, i.e.,

f0ðxkÞ � g0ðxkÞð Þ � f0ðxkþ1Þ � g0ðxkþ1Þð Þ� d:

We will see the lefthand side is always nonnegative. Observe that the subproblem in

step 2 of algorithm 1.1,

minimize f0ðxÞ � g0ðxkÞ þ rgiðxkÞTðx� xkÞ
� �

subject to fiðxÞ � giðxkÞ þ rgiðxkÞTðx� xkÞ
� �

� 0; i ¼ 1; . . .;m;
ð4Þ

is convex, since the objective and constraint functions are convex, and can therefore

be solved efficiently (assuming the functions fi can be handled tractably).

Initialization. CCP is a local heuristic, and thus, the final point found may (and

often does) depend on the initial point x0. It is therefore typical to initialize the

algorithm with several (feasible) x0 and take as the final choice of x the final point

found with the lowest objective value over the different runs. The initial point x0 can

be chosen randomly (provided that feasibility is ensured) or through a heuristic, if

one is known.

Line search. Unlike some algorithms, CCP does not require a line search.

However, a line search may still be performed; taking a larger step may lead to

faster convergence.

Algorithm 1.1 Basic CCP algorithm.

given an initial feasible point x0.
k := 0.

repeat
1. Convexify. Form ĝi(x;xk) gi(xk) + ∇gi(xk)T (x − xk) for i = 0, . . . , m.
2. Solve. Set the value of xk+1 to a solution of the convex problem

minimize f0(x) − ĝ0(x; xk)
subject to fi(x) − ĝi(x;xk) ≤ 0, i = 1, . . . , m.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

Algorithm 1.2 Line search for CCP.

given a solution xk+1 to (4) and α > 1.
t := 1.
Δx = xk+1 − xk

while f0 (xk + αtΔx) − g0 (xk + αtΔx) ≤ f0(xk + tΔx) − g0(xk + tΔx) and
fi (xk + αtΔx) − gi (xk + αtΔx) ≤ 0, for i = 1, . . . , m,
t := αt.

xk+1 := xk + tΔx.
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1.3 Convergence proof

We will first observe that all of the iterates are feasible, and then show that CCP is a

descent algorithm, i.e.,

f0ðxkþ1Þ � g0ðxkþ1Þ� f0ðxkÞ � g0ðxkÞ:

Assume xk is a feasible point for (1). We know that xk is a feasible point for the

convexified subproblem (4) because

fiðxkÞ � ĝiðxk; xkÞ ¼ fiðxkÞ � giðxkÞ� 0;

so a feasible point xkþ1 exists to the convexified subproblem (4). The convexity of gi
gives us ĝiðx; xkÞ� giðxÞ; for all x, so

fiðxÞ � giðxÞ� fiðxÞ � ĝiðx; xkÞ:

It then follows that xkþ1 must be a feasible point of (1) since

fiðxkþ1Þ � giðxkþ1Þ� fiðxkþ1Þ � ĝiðxkþ1; xkÞ� 0:

Thus, because x0 was chosen feasible, all iterates are feasible.

We will now show that the objective value converges. Let vk ¼ f0ðxkÞ � g0ðxkÞ.
Then

vk ¼ f0ðxkÞ � g0ðxkÞ ¼ f0ðxkÞ � ĝ0ðxk; xkÞ� f0ðxkþ1Þ � ĝ0ðxkþ1; xkÞ;

where the last inequality follows because at each iteration k we minimize the value

of f0ðxÞ � ĝ0ðx; xkÞ, and we know that we can achieve vk by choosing xkþ1 ¼ xk.

Thus

vk � f0ðxkþ1Þ � ĝ0ðxkþ1; xkÞ� vkþ1:

Thus the sequence fvig1i¼0 is nonincreasing and will converge, possible to negative

infinity. The above analysis holds in the nondifferentiable case when the gradient is

replaced by a subgradient, that is any dgiðxkÞ such that for all x,

giðxkÞ þ dgiðxkÞðx� xkÞ� giðxÞ:

A proof showing convergence to critical points of the original problem in the

differentiable case can be found in (Lanckreit and Sriperumbudur 2009).

Although the objective value converges in all cases, it does not necessarily

converge to a local minimum. Consider the problem

minimize x4 � x2;

where x 2 R is the optimization variable, which has optimal value �0:25 at

x ¼ �1=
ffiffiffi
2

p
. If the algorithm is initialized with x0 ¼ 0, then the algorithm will

converge in one step to the local maximum value, 0.
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1.4 Advantages of convex–concave procedure

One of the advantages of CCP over other algorithms, like sequential quadratic

programming (SQP), is that more information is retained in each of the iterates. In

SQP the problem at each iteration is approximated by a quadratic program (convex

quadratic objective and linear constraints). Thus all information above the second

order is lost in the objective and even more is lost in the constraints. On the other

hand, CCP is able to retain all of the information from the convex component of

each term and only linearizes the concave portion.

Another advantage of CCP is that the over estimators fiðxÞ � ĝiðx; xkÞ are global.

Many approximation procedures, like SQP, require trust regions which limit

progress at an iteration to a region where the approximation is valid (Byrd et al.

2000). Because of the global nature of the inequalities for convex and concave

functions, our bounds are valid everywhere. We therefore do not need to limit the

progress at each step or perform a line search. Although SQP and other

approximation algorithms were popular for the ease of solving each step, as the

methods and algorithms for solving more general convex programs have improved

it has become beneficial to take advantage of greater information.

The CCP algorithm above can be derived from DCA, but we prefer this

formulation as it is a purely primal description of the problem, i.e., it makes no

reference to a dual problem or conjugate functions.

1.5 Outline

In Sect. 2 we examine previous work in solving DC programs and the history of

iterative convexification procedures. In Sect. 3 we will introduce our first extension

to CCP in which constraints are loosened. In Sect. 4 we present our second

extension of CCP, giving a vector version of the algorithm, which is particularly

relevant for matrix constraints. In Sect. 5 we present several examples using these

methods including 3-satisfiability, circle packing, placement, and multi-matrix

principal component analysis.

2 Previous work

Difference of convex programming problems of the form (1) have been studied for

several decades. Early approaches to solving the problem globally often involved

transforming the problem into a concave minimization problem (minimize a

concave function over a convex set) or a reverse convex problem (a convex

optimization problem except for a constraint of the form f ðxÞ[ 0 where f is convex)

(Tuy 1986; Tuy and Horst 1988; Horst et al. 1991a). Good overviews of the work

that has been done in solving DC programs globally can be found in (Horst et al.

1995; Horst and Thoai 1999), and the references therein.

Solving DC problems globally, and the related concave minimization and reverse

convex optimization problems, most often rely on branch and bound or cutting

plane methods as in (Maranas and Floudas 1997). Branch and bound methods were
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originally popularized for combinatorial problems (Agin 1966; Lawler and Wood

1966) but soon made the transition to general nonconvex optimization (Falk and

Soland 1969; Horst 1986; Soland 1971). Branch and bound methods involve

splitting the domain into partitions on which simpler problems can be solved to find

upper and lower bounds on the optimal value in that region. Further subdividing

these regions will produce tighter bounds. The hope is that these bounds will

eliminate regions so that exploration of the entire domain will prove unnecessary.

The subproblems created by branch and bound methods are often reverse convex

problems, a term first coined in (Meyer 1970), or concave minimization problems.

These problems are often approached with simplicial algorithms as in (Hillestad

1975; Hillestad and Jacobsen 1980a) or cutting plane methods as in (Hillestad and

Jacobsen 1980b; Thoai and Tuy 1980; Muu 1985). Cutting plane methods, an early

optimization technique as seen in (Zangwill 1969), involve adding constraints that

eliminate regions of the domain known not to contain the solution. Another popular

approach for addressing the concave minimization problem is outer approximation

as discussed in (Falk and Hoffmann 1976; Tuy 1983; Horst et al. 1991b) and the

less common inner approximation as in (Yamada et al. 2000). A more in depth

discussion of these problem classes and approaches can be found in (Horst and Tuy

1996).

However, these global methods often prove slow in practice, requiring many

partitions or cuts. Therefore, we are instead concerned with local heuristics that can

find improved solutions rapidly. The sequential nature of CCP draws from the

tradition of sequential quadratic programming (SQP). SQP was introduced in

(Wilson 1963) with convergence properties shown in (Robinson 1972). SQP

typically involves approximating an optimization problem by a quadratic objective

with linear constraints. This approximation is then used to find a search direction for

descent of the original problem. SQP is a well developed field and much more can

be learned about the process from (Boggs and Tolle 1995; Nocedal and Wright

2006; Gill and Wong 2012) and the references therein.

CCP can also be considered a generalization of majorization minimization (MM)

algorithms, of which expectation maximization (EM) is the most famous.

Expectation maximization was introduced in (Dempster et al. 1977) and although

MM algorithms are just as old, as seen in (De Leeuw 1977), the term majorization

minimization was not coined until Hunter and Lange’s rejoinder to (Lange et al.

2000). In MM algorithms, a difficult minimization problem is approximated by an

easier to minimize upper bound created around a particular point, a step called

majorization. The minimum of that upper bound (the minimization step) is then

used to sequentially create another, hopefully tighter, upper bound (another

majorization step) to be minimized. Although the name may be new, many

algorithms, including gradient and Newton methods, may be thought of as MM

schemes. Many EM and MM extensions have been developed over the years and

more can be found on these algorithms in (Little and Rubin 1987; Lange 2004;

McLachlan and Krishnan 2007). MM approaches have been employed frequently in

signal processing applications as seen in (Stoica and Babu 2012), with approaches

that have started to address the DC programming problem as in (Lange et al. 2000;

Naghsh et al. 2013).
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Although many algorithms reduce to CCP, including EM, it is not the only time

that sequential convex optimization algorithms have been created. In the field of

structural optimization, an algorithm called sequential convex optimization is used.

First introduced as the method of moving asymptotes in (Svanberg 1987) and later

expanded in (Zillober 2001) this method similarly involves sequential convexifi-

cation, although the parameters are rescaled to drive solutions away from variable

limits. Also in structural engineering there is sequential parametric convex

approximation (Beck et al. 2010). In vehicle avoidance and trajectory problems,

many have independently developed their own sequential convexification proce-

dures which are effectively CCP procedures. A few examples include (Mueller and

Larsson 2008; Shulman et al. 2013).

The work that most closely relates to the work presented here is that on

difference of convex algorithms (DCA), presented in (Pham Dinh and Souad 1986)

as methods of subgradients, for solving optimization problems where the objective

is a DC function. In fact, CCP can be viewed as a version of DCA which instead of

explicitly stating the linearization as CCP does, finds it by solving a dual problem.

Thus DCA consists of solving an alternating sequence of primal and dual problems.

This work was then expanded to include optimization problems with DC constraints

in (Pham Dinh and Souad 1988) before settling on the term DCA in (Le Thi et al.

1996; Pham Dinh and Le Thi 1997). DCA has been applied to a variety of

applications (Le Thi and Pham Dinh 1997; Pham Dinh and Le Thi 1998; Le Thi and

Pham Dinh 2008; Le Thi et al. 2009a, b), including large scale approaches (Le Thi

and Pham Dinh 2003; Le Thi 2003; Pham Dinh et al. 2008), and combination with

branch and bound methods for global optimization (Le Thi et al. 1998, 2002; Pham

Dinh et al. 2010; Le et al. 2010). More recent work has addressed the problem of

infeasible constraints which we address in this paper. Indeed the DCA2 algorithm

presented in (Le Thi et al. 2014; Pham Dinh and Le Thi 2014) does away with

DCA’s alternating primal and dual steps to use a simple linearization that is nearly

identical to our algorithm 3.1, although we arrive at it from a different direction.

There have also been approaches that adapt DCA for conic inequalities (Niu and

Pham Dinh 2014), but none seem to provide a general framework as given in

Sect. 4. Still more information on DCA can be found at (Le Thi 2015) and the

references therein.

The convex–concave procedure was first introduced geometrically in (Yuille and

Rangarajan 2003) although without inequality constraints. Our approach and

analysis more closely follows that in (Smola et al. 2005) which considered the

procedure as a sequence of convex optimization problems and added inequality

constraints; algorithm 1.1 is almost identical to their ‘‘Constrained Concave Convex

Procedure’’. CCP is already used in a variety of settings including image

reconstruction as in (Byrne 2000), support vector machines (SVM) with additional

structure as in (Yu and Joachims 2009), design of feedback gains (Fardad and

Jovanović 2014), and even for tuning multi-input multi-output proportional-

integral-derivative control as in (Boyd et al. 2015) which includes matrix

constraints. In extending CCP we draw from techniques developed in many of its

predecessors.
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3 Penalty convex–concave

3.1 Basic algorithm

In this section we present our first extension to CCP, which removes the need for an

initial feasible point. We relax our problem by adding slack variables to our

constraints and penalizing the sum of the violations. It is well known in SQP and

other iterative techniques that the individual iterates may not be feasible, prompting

the use of slack variables (Garcia Palomares and Mangasarian 1976; Powell 1978).

Here, rather than using slack variables as a quick fix, we leverage them in our

algorithm. By initially putting a low penalty on violations, we allow for constraints

to be violated so that a region with lower objective value can be found. Thus this

approach may be desirable even if a feasible initial point is known. This approach

can similarly be thought of as modeling our constraints with a hinge loss. Penalizing

the sum of violations is equivalent to using the ‘1 norm and is well known to induce

sparsity (Boyd and Vandenberghe 2004), Sect. 6.3.2. Therefore, if we are unable to

satisfy all constraints, the set of violated constraints should be small. As mentioned

earlier, with the exception of the penalty update, algorithm 3.1 is identical to the

algorithm DCA2 mentioned in (Le Thi et al. 2014; Pham Dinh and Le Thi 2014).

However, because we arrive at the algorithm through different motivations, we

maintain the different name.

Algorithm 3.1 Penalty CCP.

given an initial point x0, τ0 > 0, τmax, and μ > 1.
k := 0.

repeat
1. Convexify. Form ĝi(x;xk) gi(xk) + ∇gi(xk)T (x − xk) for i = 0, . . . , m.
2. Solve. Set the value of xk+1 to a solution of

minimize f0(x) − ĝ0(x; xk) + τk
m
i=1 si

subject to fi(x) − ĝi(x;xk) ≤ si, i = 1, . . . , m
si ≥ 0, i = 1, . . . , m.

3. Update τ . τk+1 := min(μτk , τmax).
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

One reasonable stopping criterion would be when the improvement in objective

when solving the convexified problem is small, i.e.,

f0ðxkÞ � g0ðxkÞ þ sk
Xm

i¼1

ski

 !

� f0ðxkþ1Þ � g0ðxkþ1Þ þ sk
Xm

i¼1

s
ðkþ1Þ
i

 !

� d;

where ski is the slack variable si found at iteration k, and either xk is feasible, i.e.,

Xm

i¼1

s
ðkþ1Þ
i � dviolation � 0;

or sk ¼ smax.

This algorithm is not a descent algorithm, but the objective value will converge,

although the convergence may not be to a feasible point of the original problem. To

see this convergence observe that once s ¼ smax, we can rewrite the problem with
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slack variables as (1) and then algorithm 3.1 is equivalent to algorithm 1.1 and the

objective will therefore converge.

The upper limit smax on s is imposed to avoid numerical problems if si grows too

large and to provide convergence if a feasible region is not found. The theory of exact

penalty functions tells us that if si is greater than the largest optimal dual variable

associated with the inequalities in the convexified subproblem (4), then solutions to

(4) are solutions of the relaxed convexified problem, and subject to some conditions

on the constraints, if a feasible point exists, solutions to the relaxed problem are

solutions to the convexified problem e:g:;
Pm

i¼1 si ¼ 0
� �

(Han and Mangasarian

1979; Di Pillo and Grippo 1989). Provided smax is larger than the largest optimal dual

variable in the unrelaxed subproblems (4) the value of smax will have no impact on

the solution. This value is unlikely to be known; we therefore choose smax large. For

work on penalty functions from the DCA point of view, see (Le Thi et al. 2012).

Observe that for sufficiently large smax, if (1) is convex, and the constraint conditions

are met, then penalty CCP is not a heuristic but will find an optimal solution.

In the case of nondifferentiable functions, we do not specify a particular

subgradient. However, the choice of subgradient can have an impact on the

performance of the algorithm. We will see an example of this in Sect. 5.3.

3.2 Enforcing constraints

There are many variations on how constraints are handled in the algorithm. For

example, the value of s could be chosen on a per constraint basis, prioritizing the

satisfaction of certain constraints over others. Another variation is that constraints

that are purely convex (giðxÞ ¼ 0) could be enforced at all iterations without a slack

variable. If a feasible point exists to the problem then clearly it must obey all of the

convex constraints, so a feasible point will be found at each iteration without slack

for the convex constraints. In the standard algorithm slack variables are included for

convex constraints because temporarily violating a convex constraint may allow the

algorithm, on subsequent iterations, to reach a more favorable region of a

nonconvex constraint. Enforcing the constraints without slack, on the other hand,

reduces the search area for the solution, and may lead to faster convergence and

greater numerical stability.

Yet another variation is that once a constraint becomes satisfied, it could be

handled as in algorithm 1.1, without a slack variable, guaranteeing that the

constraint will be satisfied for all future iterates. Our experience in numerical

examples suggests that this last variation is ill advised, since it seems to constrain

the algorithm prematurely to a region without feasible points, or with higher

objective value.

3.3 Cutting plane techniques

Often DC programs may have large numbers of constraints, as we will see in the

circle packing problem of Sect. 5.2. However, most of these constraints are inactive,

i.e., we have fiðxÞ � giðxÞ 	 0. In these instances, cutting plane or column
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generation techniques can be used (Elzinga and Moore 1975; du Merle et al. 1999;

Mutapcic and Boyd 2009). These methods keep track of a set of active and likely to

become active constraints to include at each iteration while ignoring well satisfied

constraints. There are many ways to choose these active constraints with various

convergence properties; we describe two basic approaches here.

In the first approach, one can include every constraint that has been violated at

any iteration of the algorithm. In the worst case scenario, this could result in all of

the constraints being included, but is guaranteed to converge. In the second

approach the n constraints with the largest value (fiðxÞ � giðxÞ) are included at each

iteration. This approach does not guarantee convergence, but for appropriate

n works very well in many situations. By greatly reducing the number of constraints

that need to be considered, much larger problems can be handled.

Although they may seem different, these methods derive from the same source as

the cutting plane methods mentioned in Sect. 2 for solving concave minimization

problems (Kelly 1960). The difference in this implementation is that when adding a

constraint (cutting plane), it is simply chosen from the list of constraints in the

original problem statement, in the methods in Sect. 2, new constraints need to be

generated. An implementation for this latter method for DC problems can be seen in

(Ndiaye et al. 2012).

4 Vector convex–concave

We now generalize the DC problem (1) to include vector inequalities. Our problem

statement is now

minimize f0ðxÞ � g0ðxÞ
subject to fiðxÞ � giðxÞ 
K 0; i ¼ 1; . . .;m;

ð5Þ

where x 2 Rn is the optimization variable, f0 : Rn ! R and g0 : Rn ! R are con-

vex, K � Rp is a proper cone, fi : Rn ! Rp and gi : Rn ! Rp for i ¼ 1; . . .;m are K-

convex and differentiable, and 0 is the length p vector of zeros. We use 
K to

represent generalized inequalities with respect to the cone K, e.g., x 
K y means

y� x 2 K, and x �K y means y� x 2 intK. Note that although this formulation

does not limit generality as, if K1 and K2 are proper cones, then so is K ¼ K1 � K2,

things change very little if each inequality has a different cone Ki. Similar to scalar

convexity, f is K-convex if for all x and y we have,

f ðxÞ 
K f ðyÞ þ Df ðyÞðx� yÞ; ð6Þ

where Df(y) is the derivative or Jacobean matrix of f evaluated at y. For more

background on generalized inequalities and proper cones see (Boyd and Vanden-

berghe 2004), Sect. 2.4.1. For more on convexity with respect to generalized

inequalities see (Boyd and Vandenberghe 2004), Sect. 3.6.2

We can now construct a generalization of algorithm 1.1 for the vector case.

Again we require x0 feasible, e.g., fiðx0Þ � giðx0Þ 
K 0 for i ¼ 1; . . .;m.
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Algorithm 4.1 Vector CCP.
given an initial feasible point x0.
k := 0.
repeat

1. Convexify. Form ĝi(x;xk) g0(xk) + ∇g0(xk)T (x − xk) and
gi(x; xk) gi(xk) + Dgi(xk)(x − xk) for i = 1, . . . , m.

2. Solve. Set the value of xk+1 to a solution of
minimize f0(x) − ĝ0(x; xk)
subject to fi(x) − ĝi(x;xk) K 0, i = 1, . . . , m.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

In the above algorithm if gi is not differentiable, any matrix can be substituted for

DgiðxkÞ which satisfies the property in (6). The proof of feasible iterates and

convergence is identical except for the substitution of the generalized inequalities

for inequalities and the Jacobian for the gradient. For example, we have

fiðxkþ1Þ � giðxkþ1Þ 
K fiðxkÞ � ĝiðxkþ1; xkÞ 
K 0:

For more on convex optimization problems with generalized inequalities see (Boyd

and Vandenberghe 2004), Sects. 4.6, 11.6.

Similarly we can extend algorithm 3.1 for the vector case.

Algorithm 4.2 Penalty vector CCP.
given an initial point x0, t0 K∗ 0, τmax, and μ > 1.
k := 0.
repeat

1. Convexify. Form ĝi(x;xk) g0(xk) + ∇g0(xk)T (x − xk) and
gi(x; xk) gi(xk) + Dgi(xk)(x − xk) for i = 1, . . . , m.

2. Solve. Set the value of xk+1 to a solution of
minimize f0(x) − ĝ0(x; xk) +

m
i=1 tTk si

subject to fi(x) − ĝi(x;xk) K si, i = 1, . . . , m
si K 0, i = 1, . . . , m.

3. Update t.
if μtk 2 ≤ τmax

tk+1 := μtk ,
else

tk+1 := tk.
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

In the above algorithm K� represents the dual cone of K. Since K is a proper cone,

K� is a proper cone, and therefore has an interior. Furthermore, if ti �K� 0 then

lti �K� 0 so all ti �K� 0 for i� 0. Note that because si 
K 0, tTk si � 0 at all

iterations, because si is in a proper cone, and tk is in its dual. As in algorithm 3.1, our

objective increases the cost of violating the inequality at each iterate, driving tTk si
towards zero. Observe that if tTk si ¼ 0, then tTk si � 0 and �si 2 K, so si 
K 0, and

fiðxÞ � giðxÞ 
K fiðxÞ � ĝiðx; xkÞ 
K si 
K 0;

so the inequality is satisfied. For more information on dual cones and generalized

inequalities see (Boyd and Vandenberghe 2004), Sect. 2.6.

As before, once kltkk2 [ smax, we can rewrite our problem as (5) and then

algorithm 4.2 is equivalent to 4.1, and will therefore converge, although not

necessarily to a feasible point of the original problem.
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5 Examples

We now present several examples using these algorithms. Each of these examples

comes from a large field where much time has been spent developing algorithms

targeted at these specific applications. It is not our intention to compete with these

problem-specific algorithms, but rather to show that a general approach using CCP,

with no or minimal tuning, performs remarkably well in a variety of settings. In

each case simple modifications could be made to to improve CCP’s performance,

but these examples serve to illustrate an implementation of CCP and highlight

several features. Example code for these problems is available at (Lipp and Boyd

2014).

5.1 3-Satisfiability

General description Satisfiability problems ask if there exists an assignment of

Boolean variables such that an expression evaluates to true. In 3-satisfiability (3-

SAT) the expression is a conjunction of expressions with three disjunctions of

variables and, possibly, negations of variables.

Mathematical description We can represent the 3-SAT problem as a Boolean LP

(2) where m is the number of expressions and the entries of A are given by

aij ¼
�1 if expression i is satisfied by xj true
1 if expression i is satisfied by xj false
0 otherwise ;

8
<

:

and the entries of b are given by

bi ¼ 2 � ð number of negated terms in expression iÞ:

There is no objective since we are only looking for a feasible point; c is the zero

vector. There are many different DC representations for Boolean variables, besides

the one given in problem (2), and more can be read about these variations in (Pham

Dinh and Le Thi 2014).

Initialization procedure We present two initialization procedures for this

algorithm. In the first procedure we initialize the entries of x0 by drawing from

the uniform distribution on [0, 1]. In the second procedure we choose x0 to be an

optimal value of x in a linear programming (LP) relaxation of the problem

minimize
Pn

i¼1

jxi � 0:5j
subject to 0 
 x 
 1;

Ax 
 b;

ð7Þ

where x is the optimization variable, A and b are problem data, and the objective

function is chosen to not bias assignments towards true or false.

Algorithm variation To solve the problem we use the variant of algorithm 3.1

presented in 3.2 that enforces the convex constraints at each iteration with no slack.
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Note that when we run the algorithm there is no guarantee that the resulting values

will be integers, so to evaluate the solution we round the values of x.

Problem instance To demonstrate the algorithm we used randomly generated

3-SAT problems of varying sizes. For randomly generated 3-SAT problems as

defined in (Mitchell et al. 1992) there is a threshold around 4.25 expressions per

variable when problems transition from being feasible with high probability to being

infeasible with high probability (Crawford and Auton 1996). Problems near this

threshold are generally found to be hard satisfiability problems. We only test

problems below this threshold, because the algorithm provides no certificate of

infeasibility.

For each problem and constraint size below the feasibility threshold, 10 problem

instances were created and the existence of a satisfiable assignment was verified

using the integer programming solver MOSEK (MOSEK ApS 2013). In the case of

random initialization, 10 initializations were tried for each problem and if any of

them found an x that, when rounded, satisfied all expressions, success was reported.

Computational details The subproblems were solved using CVX (CVX Research

2012; Grant and Boyd 2008) as the interface to the SDPT3 solver (Toh et al. 1999;

Tutuncu et al. 2003) on a 2.66 GHz Intel Core 2 Duo machine. For a problem with

100 variables and 430 expressions, the algorithm took between 5 and 25 steps,

depending on the initialization, with an average of 11 steps; the average solve time

for each subproblem was under one second.

Results Figure 1 compares the results of random initialization with the LP

relaxation initialization (7). Using random initializations, satisfying assignments

could be found consistently for up to 3.5 constraints per variable at which point

success started to decrease.
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Fig. 1 Percentage of runs for which a satisfying assignment to random 3-SAT problems were found for
problems of varying sizes. Problems in the gray region are with high probability infeasible
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Figure 2 depicts a histogram of the number of expressions not satisfied over 1000

random initializations for a problem with 100 variables and 430 expressions.

Observe that in the linear inequality formulation of 3-SAT used, there is no

constraint driving the number of violations to be sparse; still, we see that even when

CCP fails (to find a feasible point) it typically finds points satisfying almost all of

the expressions. When the convex constraints are enforced, the objective encourages

fewer variables to be noninteger valued, rather than fewer expressions to be

unsatisfied.

5.2 Circle packing

General description The circle packing problem is to find the largest percentage of a

polygon that can be covered by a set number of circles of equal radius. This problem

has long been studied in mathematics, and databases exist of the densest known

packings for different numbers of circles in a square (Specht 2013).

Mathematical description For our example we will consider n circles and take the

polygon to be a square with side length l. Let xi 2 R2 for i ¼ 1; . . .; n represent the

position of the center of circle i and r be radius of the circles. The problem is

maximize r

subject to kxi � xjk2
2 � 4r2; i ¼ 1; . . .; n� 1; j ¼ i; . . .n

xi 
 1ðl� rÞ; i ¼ 1; . . .; nxi 
 1ðrÞ; i ¼ 1; . . .; n;
ð8Þ

where x and r are optimization parameters, n and l are problem data, and 1 is the

vector of ones. Note that maximizing r is the same as minimizing �r and, by

monotonicity, maximizing npr2 for r� 0. The first inequality constraint can be

represented in DC form as
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Fig. 2 Histogram of the number of unsatisfied expressions for a hard 3-SAT problem instance with 100
variables and 430 expressions
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4r2 � kxi � xjk2
2 � 0:

Initialization procedure For this example we draw x0 from the uniform distribution

½0; l� � ½0; l�. Although it is an optimization parameter, r does not occur in any of the

gi so no r0 is needed.

Small problem instance In our examples we take l ¼ 10, without loss of

generality, and take n ¼ 41. We use algorithm 3.1 with s0 ¼ 1, l ¼ 1:5, and

smax ¼ 10;000, which was never reached.

Small problem instance computational details The subproblems were solved

using CVXPY (Diamond et al. 2014; Diamond and Boyd 2015) as the interface to

the ECOS solver (Domahidi et al. 2013) on a 2.20GHZ Intel Xeon processor. We

used a direct application of algorithm 3.1. The algorithm took between 6 and 20

steps depending on the initialization, with an average of 14 steps, and an average

solve time for each subproblem of under 0.2 s.

Small problem instance results Figure 3 shows a histogram of the coverages

found for this problem over 1000 initializations. In 14.0 % of the cases we found a

packing within 1 % of the best known packing for 41 circles of 79.273 %. The

densest packing found by the algorithm of 79.272 % is shown in Fig. 4. In 0.3 % of

the cases the algorithm failed due to numerical issues.

Algorithm variation The number of non-intersection constraints for the circle

packing problem grows as n2, so for large n it may be impossible to impose all of

the constraints. We note that for any configuration with 0\xi\l with xi distinct for

all i, the configuration can be made feasible with sufficiently small r. We therefore

enforce the boundary constraints without slack variables at all iterations for

numerical stability. We apply the remaining constraints with slack variables using a

cutting plane method which includes, at each iteration, the 22n constraints with the

smallest margin or all currently violated constraints, whichever set is larger. These

22n (or more) constraints represent the constraints currently violated or most likely

to be violated at the next iteration. This simple method does not have a guarantee of
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Fig. 3 Histogram of the percentage of a square covered for the circle packing problem with 41 circles
over 1000 random initializations
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convergence, and more sophisticated cutting plane procedures can be found in the

references in Sect. 3.3. This method is sufficient for our example.

Large problem instance We tested the algorithm using n ¼ 400 so that

approximately 13 % of all of the constraints were included at each iteration. We

set l ¼ 10, s0 ¼ 0:001, l ¼ 1:05, and smax ¼ 10;000, which was never reached.

Large problem instance computational details The subproblems were solved

using CVXPY (Diamond et al. 2014; Diamond and Boyd 2015) as the interface to

the ECOS solver (Domahidi et al. 2013) on a 2.20GHZ Intel Xeon processor. The

algorithm took between 86 and 160 steps depending on the initialization, with an

average of 125 steps, and an average solve time for each subproblem of under 4

seconds.

Large problem instance results Figure 6 shows a histogram of the coverages

found for this problem over 450 random initializations. In 84.2 % of cases we were

within 3 % of the best known packing of 86.28 % coverage. In 28.0 % of cases we

were within 2 % of the best known packing. The densest packing we found, shown

in Fig. 5, is 85.79 %, within 0.6 % of the densest known packing. Given that this is

a general purpose algorithm, almost always getting within 3 % is significant. In less

than 1 % of cases, the algorithm failed due to numerical issues.

5.3 Placement

General description In the placement problem (also called floor-planning or layout)

we arrange non-overlapping components to minimize an objective such as the total

distance between specified components. This is a well developed field, used in

several applications areas; for early work in the field see (Hanan and Kurtzberg

1972). A description of the placement problem we consider can be found in (Boyd

and Vandenberghe 2004), Sect. 8.8. This problem can also be thought of as a

greatly simplified circuit problem, where the distance between components can

stand in for wire length. (Real circuit placement problems are much more complex;

Fig. 4 Densest packing found
for 41 circles: 79.27
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see (Nam and Cong 2007)) For more on floor planning problems we direct the

reader to (Drira et al. 2007; Singh and Sharma 2006) and references therein. There

has also been some work on layout and packing type problems in the DC literature

as in (Ndiaye et al. 2012).

Mathematical description For our components we will consider n square

components. Let xi, yi, and li for i ¼ 1; . . .; n be the x position, y position, and side

length respectively of component i. The placement area is a rectangle with side

lengths bx and by. We are given a set of pairs E representing the components we

wish to be close, and we would like to minimize the ‘1 distance between the

components such that none of the components overlap. In order for two components

not to overlap they must be either far enough apart in the x direction or the y

direction, e.g.,

jxi � xjj �
li þ lj

2
or jyi � yjj �

li þ lj

2
i ¼ 1; . . .; n� 1; j ¼ i; . . .; n:

We can therefore express the placement problem as

minimize
P

ði;jÞ2E jxi � xjj þ jyi � yjj

subject to min
li þ lj

2
� jxi � xjj;

li þ lj

2
� jyi � yjj

� �
� 0;

i ¼ 1; . . .; n� 1; j ¼ iþ 1; . . .; n
jxij � ðbx � liÞ=2; i ¼ 1; . . .; n
jyij � ðby � liÞ=2; i ¼ 1; . . .; n;

where xi and yi are the optimization parameters and li, bx, by, and the connectivity

graph are problem data. The objective is convex, and the first constraint is the

minimum of concave functions and is therefore concave (for these constraint

fiðxÞ ¼ 0).

Initialization procedure We will use two initialization procedures. One good

initialization procedure for this algorithm is to use the embedding of the graph

Fig. 5 Densest packing found
for 400 circles: 85.79
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Laplacian of the connections as introduced in (Belkin and Niyogi 2003). In this

method the eigenvectors corresponding to the two smallest nonzero eigenvalues of

the graph Laplacian are used to initialize the xi and yi. We will also initialize xi and

yi uniformly on ½�bx=2; bx=2� and ½�by=2; by=2� respectively.

Algorithm variation We solved the problem using algorithm 3.1 with a particular

choice of subgradients when necessary. We observe that when two components are

touching at a corner, the non-overlap constraint is not differentiable, and therefore a

subgradient must be chosen. Any linear separator between the vertical and

horizontal separator is a valid subgradient. In breaking ties we choose the vertical

separator for even values of k and the horizontal separator for odd values of k. By

aligning subgradients at each iteration, we allow components to easily slide past

each other.

Problem instance To demonstrate the algorithm we generated an Erdös-Renyi

connectivity graph for n ¼ 15 components with average degree 6. We took li ¼ 1,

bx ¼ by ¼ 7, s0 ¼ 0:2, l ¼ 1:1, and smax ¼ 10;000.

Computational details The subproblems were solved using CVX (CVX Research

2012; Grant and Boyd 2008) as the interface to the SDPT3 solver (Toh et al. 1999;

Tutuncu et al. 2003) on a 2.66 GHz Intel Core 2 Duo machine. The algorithm took

between 34 and 50 steps depending on the initialization, with an average of 41 steps,

and an average solve time for each subproblem of 0.29 s.

Results Although this problem was too large for us to solve a mixed integer linear

programming representation of it, using the observation that the first four

connections to a given component have at least distance 1, and the next 4 at least

distance 2, we can lower bound the optimal value by 42. Figure 7 shows the best

solution we were able to find, which has wire length 57. Connected components are

signaled by a red dotted lines (note, these are not the distances measured). Figure 8

shows a histogram of the distances between components found over 1000 random

initializations. Using the Laplacian initialization, CCP finds a layout with distance

60.
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Fig. 6 Histogram of the percentage of a square covered for the circle packing problem with 400 circles
over 450 random initializations
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5.4 Multi-matrix principal component analysis

General description Principal component analysis (PCA) finds the orthogonal

directions in data with the greatest variance (and therefore the most significance).

Multi-matrix PCA is similar, except that the data is not known exactly, but rather a

set (often drawn from a distribution) of possible data is known. Multi-matrix PCA

then looks for directions of significance across all of the possible data sets.
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for the Erdös-Renyi random
graph with average degree 6.
Components that are connected
are represented by dotted lines

56 58 60 62 64 66 68 70 72
0

50

100

150

200

250

300

nu
m
b
er

of
tr
ia
ls

distance
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Mathematical description The multi-matrix PCA problem is

maximize mini¼1;...;p Tr XTAiXð Þ
subject to XTX ¼ I;

ð9Þ

where X 2 Rn�m is the optimization variable, Ai 2 Sn
þ, where Sþ is the set of n� n

positive semidefinite matrices, and I is the identity matrix. The equality constraint is

also known as the Stiefel manifold (Stiefel 1935–1936), and has its own history of

optimization techniques; see, e.g., (Edelman et al. 1998; Absil et al. 2009).

Problem (9) is equivalent to

maximize mini¼1;...;p Tr XT Ai � kIð ÞXð Þ þ mk
subject to XTX ¼ I;

where X is the optimization parameter and k is a scalar. From this we can see that,

without loss of generality, we can assume that all of the Ai in (9) are negative

definite by choosing k to be larger than the largest eigenvalue of any Ai. Therefore

we can represent (9) in DC form as

minimize �mini¼1;...;p Tr XTAiXð Þ
subject to XTX � I 
 0;

I � XTX 
 0;

where X is the optimization parameter, the Ai are negative definite, and 
 is with

respect to the positive semidefinite cone. The objective is the negative of a concave

function, which is the minimum of concave functions, and is therefore convex, and

XTX � I is convex with respect to the semidefinite cone.

Initialization procedure We look at two initialization procedures in addition to

random initialization. It is well known for the case when p ¼ 1 that the principal

components can be found by looking at the singular vectors of A corresponding to

the m largest singular values. We can therefore calculate an Xi for each of the Ai by
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Fig. 9 Histogram of the objective value of multi-matrix PCA over 1000 initializations
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solving the PCA problem. We can then set X0 to be the Xi with the best objective

value for (9). Another initialization for X0 we will look at is to use the solution to

PCA using the average of the Ai as X0.

Problem instance For our example we generate a positive definite matrix by

creating a diagonal matrix with entries drawn uniformly from the interval [0, 1], and

then apply a random orthogonal transformation. We then generate the Ai by varying

the entries by up to 50 % by drawing uniformly from the interval ½�50; 50�. We then

verified that the resulting matrix is positive definite. We used algorithm 4.2 with

m ¼ 10, n ¼ 100, p ¼ 8, s0 ¼ 0:5I, sinc ¼ 1:05, smax ¼ 10;000. Observe that the

positive semidefinite cone is self dual, and that 0.5 I is clearly in the interior of the

semidefinite cone.

Computational details The subproblems were solved using CVX (CVX Research

2012; Grant and Boyd 2008) as the interface to the SDPT3 solver (Toh et al. 1999;

Tutuncu et al. 2003) on a 2.66 GHz Intel Core 2 Duo machine. The algorithm took

between 62 and 84 steps depending on the initialization, with an average of 72 steps,

and an average solve time for each subproblem of 35.74 s.

Results Clearly the solution to (9) cannot be larger than the smallest solution for

any particular Ai, so we can upper bound the optimal value by 11.10. Using the best

X found by solving PCA individually for each of the Ai yields an objective of 7.66

and solving PCA with the average of the Ai yields an objective value of 8.66.

Initializing the algorithm using these values yields 9.33 and 9.41, respectively. The

best value found over 1000 random initializations was also 9.41. A histogram of the

results can be seen in Fig. 9.

6 Conclusion

In this paper we have presented simple heuristics for approaching DC programs,

extending the traditional CCP. We have shown through a number of examples that

these heuristics work remarkably well, even on hard problems. It is not our intention

that these heuristic should compete with state of the art algorithms designed to

address the specific examples or even that these are the best CCP approaches for

these problems. Rather, we have shown that even with simplistic application of

these algorithms, useful results can be achieved, and that these algorithms should

certainly be one of the tools in an optimization arsenal.
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