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Convex optimization problem — standard form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex
for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward
I equality constraints are linear
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Convex optimization problem — conic form

cone program:

minimize cT x
subject to Ax = b, x ∈ K

with variable x ∈ Rn

I linear objective, equality constraints; K is convex cone
I special cases:

I linear program (LP)
I semidefinite program (SDP)

I the modern canonical form
I there are well developed solvers for cone programs
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Other canonical forms
I quadratic program (QP):

minimize 1
2xT Px + qT x

subject to l ≤ Ax ≤ u
I smooth optimization:

minimize f (x)

where f : Rn → R is smooth
I linearly constrained least squares:

minimize ‖Ax − b‖22
subject to Fx = g

I prox-affine:

minimize
∑N

i=1 fi (Hi xi )
subject to

∑N
i=1 Ai xi = b.
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Why convex optimization?

I beautiful, fairly complete, and useful theory
I solution algorithms that work well in theory and practice

I convex optimization is actionable
I many applications in

I control
I combinatorial optimization
I signal and image processing
I communications, networks
I circuit design
I machine learning, statistics
I finance

. . . and many more
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How do you solve a convex problem?

I use an existing custom solver for your specific problem

I develop a new solver for your problem using a currently
fashionable method
I requires work
I but (with luck) will scale to large problems

I transform your problem into a cone program, and use a
standard cone program solver
I can be automated using domain specific languages
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Curvature: Convex, concave, and affine functions

I f is concave if −f is convex, i.e., for any x , y , θ ∈ [0, 1],

f (θx + (1− θ)y) ≥ θf (x) + (1− θ)f (y)

I f is affine if it is convex and concave, i.e.,

f (θx + (1− θ)y) = θf (x) + (1− θ)f (y)

for any x , y , θ ∈ [0, 1]
I f is affine ⇐⇒ it has form f (x) = aT x + b
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Verifying a function is convex or concave

(verifying affine is easy)

approaches:

I via basic definition (inequality)
I via first or second order conditions, e.g., ∇2f (x) � 0

I via convex calculus: construct f using
I library of basic functions that are convex or concave
I calculus rules or transformations that preserve convexity
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Convex functions: Basic examples

I xp (p ≥ 1 or p ≤ 0), e.g., x2, 1/x (x > 0)
I ex

I x log x
I aT x + b
I xT Px (P � 0)
I ‖x‖ (any norm)
I max(x1, . . . , xn)
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Concave functions: Basic examples

I xp (0 ≤ p ≤ 1), e.g.,
√

x
I log x
I √xy
I xT Px (P � 0)
I min(x1, . . . , xn)
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Convex functions: Less basic examples

I x2/y (y > 0), xT x/y (y > 0), xT Y −1x (Y � 0)
I log(ex1 + · · ·+ exn )
I f (x) = x[1] + · · ·+ x[k] (sum of largest k entries)
I f (x , y) = x log(x/y) (x , y > 0)
I λmax(X ) (X = X T )
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Concave functions: Less basic examples

I log det X , (det X )1/n (X � 0)
I log Φ(x) (Φ is Gaussian CDF)
I λmin(X ) (X = X T )
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Calculus rules

I nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

I sum: f , g convex =⇒ f + g convex

I affine composition: f convex =⇒ f (Ax + b) convex

I pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

I composition: h convex increasing, f convex =⇒ h(f (x)) convex

. . . and similar rules for concave functions

(there are other more advanced rules)
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Examples

from basic functions and calculus rules, we can show convexity of . . .

I piecewise-linear function: maxi=1....,k(aT
i x + bi )

I `1-regularized least-squares cost: ‖Ax − b‖2
2 + λ‖x‖1, with λ ≥ 0

I sum of largest k elements of x : x[1] + · · ·+ x[k]

I log-barrier: −
∑m

i=1 log(−fi (x)) (on {x | fi (x) < 0}, fi convex)
I KL divergence: D(u, v) =

∑
i (ui log(ui/vi )− ui + vi ) (u, v > 0)
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A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine

I there’s a similar rule for concave compositions
(just swap convex and concave above)

I this one rule subsumes all of the others
I this is pretty much the only rule you need to know
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Example

let’s show that

f (u, v) = (u + 1) log((u + 1)/min(u, v))

is convex

I u, v are variables with u, v > 0
I u + 1 is affine; min(u, v) is concave
I since x log(x/y) is convex in (x , y), decreasing in y ,

f (u, v) = (u + 1) log((u + 1)/min(u, v))

is convex
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Example

I log(eu1 + · · ·+ euk ) is convex, increasing
I so if f (x , ω) is convex in x for each ω and γ > 0,

log
((

eγf (x ,ω1) + · · ·+ eγf (x ,ωk)
)
/k
)

is convex
I this is log E eγf (x ,ω), where ω ∼ U ({ω1, . . . , ωk})
I arises in stochastic optimization via bound

log Prob(f (x , ω) ≥ 0) ≤ log E eγf (x ,ω)
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Constructive convexity verification

I start with function given as expression
I build parse tree for expression

I leaves are variables or constants/parameters
I nodes are functions of children, following general rule

I tag each subexpression as convex, concave, affine, constant
I variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative
I sufficient (but not necessary) for convexity
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Example

for x < 1, y < 1
(x − y)2

1−max(x , y)
is convex

I (leaves) x , y , and 1 are affine expressions
I max(x , y) is convex; x − y is affine
I 1−max(x , y) is concave
I function u2/v is convex, monotone decreasing in v for v > 0

hence, convex with u = x − y , v = 1−max(x , y)
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Example
analyzed by dcp.stanford.edu (Diamond 2014)
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Example

I f (x) =
√

1 + x2 is convex

I but cannot show this using constructive convex analysis
I (leaves) 1 is constant, x is affine
I x2 is convex
I 1 + x2 is convex
I but

√
1 + x2 doesn’t match general rule

I writing f (x) = ‖(1, x)‖2, however, works
I (1, x) is affine
I ‖(1, x)‖2 is convex
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Disciplined convex programming (DCP)

(Grant, Boyd, Ye, 2006)

I framework for describing convex optimization problems
I based on constructive convex analysis
I sufficient but not necessary for convexity
I basis for several domain specific languages and tools for

convex optimization
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Disciplined convex program: Structure

a DCP has
I zero or one objective, with form

I minimize {scalar convex expression} or
I maximize {scalar concave expression}

I zero or more constraints, with form
I {convex expression} <= {concave expression} or
I {concave expression} >= {convex expression} or
I {affine expression} == {affine expression}
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Disciplined convex program: Expressions

I expressions formed from
I variables,
I constants/parameters,
I and functions from a library

I library functions have known convexity, monotonicity, and
sign properties

I all subexpressions match general composition rule
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Disciplined convex program

I a valid DCP is
I convex-by-construction (cf. posterior convexity analysis)
I ‘syntactically’ convex (can be checked ‘locally’)

I convexity depends only on attributes of library functions,
and not their meanings
I e.g., could swap

√
· and 4

√
·, or exp · and (·)+, since their

attributes match
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Canonicalization

I easy to build a DCP parser/analyzer
I not much harder to implement a canonicalizer, which

transforms DCP to equivalent cone program
I then solve the cone program using a generic solver

I yields a modeling framework for convex optimization
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Optimization modeling languages

I domain specific language (DSL) for optimization
I express optimization problem in high level language

I declare variables
I form constraints and objective
I solve

I long history: AMPL, GAMS, . . .
I no special support for convex problems
I very limited syntax
I callable from, but not embedded in other languages
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Modeling languages for convex optimization

all based on DCP

YALMIP Matlab Löfberg 2004
CVX Matlab Grant, Boyd 2005
CVXPY Python Diamond, Boyd; Agrawal et al. 2013; 2018
Convex.jl Julia Udell et al. 2014
CVXR R Fu, Narasimhan, Boyd 2017

some precursors

I SDPSOL (Wu, Boyd, 2000)
I LMITOOL (El Ghaoui et al., 1995)
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CVX

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1

cvx_end

I A, b, gamma are constants (gamma nonnegative)
I variables, expressions, constraints exist inside problem
I after cvx_end

I problem is canonicalized to cone program
I then solved
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Some functions in the CVX library

function meaning attributes
norm(x, p) ‖x‖p, p ≥ 1 cvx
square(x) x2 cvx
pos(x) x+ cvx, nondecr
sum_largest(x,k) x[1] + · · ·+ x[k] cvx, nondecr
sqrt(x)

√
x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr
max(x) max{x1, . . . , xn} cvx, nondecr
quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y
lambda_max(X) λmax(X ), X = X T cvx

Modeling Frameworks 35



DCP analysis in CVX

cvx_begin
variables x y
square(x+1) <= sqrt(y) % accepted
max(x,y) == 1 % not DCP
...

Disciplined convex programming error:
Invalid constraint: {convex} == {real constant}
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CVXPY

import cvxpy as cp
x = cp.Variable(n)
cost = cp.sum_squares(A@x-b) + gamma*cp.norm(x,1)
prob = cp.Problem(cp.Minimize(cost),

[cp.norm(x,"inf") <= 1])
opt_val = prob.solve()
solution = x.value

I A, b, gamma are constants (gamma nonnegative)
I variables, expressions, constraints exist outside of problem
I solve method canonicalizes, solves, assigns value

attributes
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Signed DCP in CVXPY

function meaning attributes

abs(x) |x | cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

norm(x, p) ‖x‖p, p ≥ 1 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

square(x) x2 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0
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DCP analysis in CVXPY

expr = (x − y)2

1−max(x , y)

x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x,y))
expr.curvature # CONVEX
expr.sign # POSITIVE
expr.is_dcp() # True
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Parameters in CVXPY

I symbolic representations of constants
I can specify sign
I change value of constant without re-parsing problem

I for-loop style trade-off curve:
x_values = []
for val in numpy.logspace(-4, 2, 100):

gamma.value = val
prob.solve()
x_values.append(x.value)

Modeling Frameworks 40



Parallel style trade-off curve

# Use tools for parallelism in standard library.
from multiprocessing import Pool

# Function maps gamma value to optimal x.
def get_x(gamma_value):

gamma.value = gamma_value
result = prob.solve()
return x.value

# Parallel computation with N processes.
pool = Pool(processes = N)
x_values = pool.map(get_x, numpy.logspace(-4, 2, 100))
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Convex.jl

using Convex
x = Variable(n);
cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve!(prob);
solution = x.value;

I A, b, gamma are constants (gamma nonnegative)
I similar structure to CVXPY
I solve! method canonicalizes, solves, assigns value

attributes
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Conclusions

I DCP is a formalization of constructive convex analysis
I simple method to certify problem as convex

(sufficient, but not necessary)
I basis of several DSLs/modeling frameworks for convex

optimization

I modeling frameworks make rapid prototyping of convex
optimization based methods easy
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