
Constructive Convex Analysis
and Disciplined Convex Programming

Stephen Boyd Steven Diamond
Akshay Agrawal Junzi Zhang

EE & CS Departments
Stanford University

1

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

2

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Convex Optimization 3

Convex optimization problem — standard form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex
for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward
I equality constraints are linear

Convex Optimization 4

Convex optimization problem — conic form

cone program:

minimize cT x
subject to Ax = b, x ∈ K

with variable x ∈ Rn

I linear objective, equality constraints; K is convex cone
I special cases:

I linear program (LP)
I semidefinite program (SDP)

I the modern canonical form
I there are well developed solvers for cone programs

Convex Optimization 5

Other canonical forms
I quadratic program (QP):

minimize 1
2xT Px + qT x

subject to l ≤ Ax ≤ u
I smooth optimization:

minimize f (x)

where f : Rn → R is smooth
I linearly constrained least squares:

minimize ‖Ax − b‖22
subject to Fx = g

I prox-affine:

minimize
∑N

i=1 fi (Hi xi)
subject to

∑N
i=1 Ai xi = b.

Convex Optimization 6

Why convex optimization?

I beautiful, fairly complete, and useful theory
I solution algorithms that work well in theory and practice

I convex optimization is actionable
I many applications in

I control
I combinatorial optimization
I signal and image processing
I communications, networks
I circuit design
I machine learning, statistics
I finance

. . . and many more

Convex Optimization 7

How do you solve a convex problem?

I use an existing custom solver for your specific problem

I develop a new solver for your problem using a currently
fashionable method
I requires work
I but (with luck) will scale to large problems

I transform your problem into a cone program, and use a
standard cone program solver
I can be automated using domain specific languages

Convex Optimization 8

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Constructive Convex Analysis 9

Curvature: Convex, concave, and affine functions

I f is concave if −f is convex, i.e., for any x , y , θ ∈ [0, 1],

f (θx + (1− θ)y) ≥ θf (x) + (1− θ)f (y)

I f is affine if it is convex and concave, i.e.,

f (θx + (1− θ)y) = θf (x) + (1− θ)f (y)

for any x , y , θ ∈ [0, 1]
I f is affine ⇐⇒ it has form f (x) = aT x + b

Constructive Convex Analysis 10

Verifying a function is convex or concave

(verifying affine is easy)

approaches:

I via basic definition (inequality)
I via first or second order conditions, e.g., ∇2f (x) � 0

I via convex calculus: construct f using
I library of basic functions that are convex or concave
I calculus rules or transformations that preserve convexity

Constructive Convex Analysis 11

Convex functions: Basic examples

I xp (p ≥ 1 or p ≤ 0), e.g., x2, 1/x (x > 0)
I ex

I x log x
I aT x + b
I xT Px (P � 0)
I ‖x‖ (any norm)
I max(x1, . . . , xn)

Constructive Convex Analysis 12

Concave functions: Basic examples

I xp (0 ≤ p ≤ 1), e.g.,
√

x
I log x
I √xy
I xT Px (P � 0)
I min(x1, . . . , xn)

Constructive Convex Analysis 13

Convex functions: Less basic examples

I x2/y (y > 0), xT x/y (y > 0), xT Y −1x (Y � 0)
I log(ex1 + · · ·+ exn)
I f (x) = x[1] + · · ·+ x[k] (sum of largest k entries)
I f (x , y) = x log(x/y) (x , y > 0)
I λmax(X) (X = X T)

Constructive Convex Analysis 14

Concave functions: Less basic examples

I log det X , (det X)1/n (X � 0)
I log Φ(x) (Φ is Gaussian CDF)
I λmin(X) (X = X T)

Constructive Convex Analysis 15

Calculus rules

I nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

I sum: f , g convex =⇒ f + g convex

I affine composition: f convex =⇒ f (Ax + b) convex

I pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

I composition: h convex increasing, f convex =⇒ h(f (x)) convex

. . . and similar rules for concave functions

(there are other more advanced rules)

Constructive Convex Analysis 16

Examples

from basic functions and calculus rules, we can show convexity of . . .

I piecewise-linear function: maxi=1....,k(aT
i x + bi)

I `1-regularized least-squares cost: ‖Ax − b‖2
2 + λ‖x‖1, with λ ≥ 0

I sum of largest k elements of x : x[1] + · · ·+ x[k]

I log-barrier: −
∑m

i=1 log(−fi (x)) (on {x | fi (x) < 0}, fi convex)
I KL divergence: D(u, v) =

∑
i (ui log(ui/vi)− ui + vi) (u, v > 0)

Constructive Convex Analysis 17

A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine

I there’s a similar rule for concave compositions
(just swap convex and concave above)

I this one rule subsumes all of the others
I this is pretty much the only rule you need to know

Constructive Convex Analysis 18

Example

let’s show that

f (u, v) = (u + 1) log((u + 1)/min(u, v))

is convex

I u, v are variables with u, v > 0
I u + 1 is affine; min(u, v) is concave
I since x log(x/y) is convex in (x , y), decreasing in y ,

f (u, v) = (u + 1) log((u + 1)/min(u, v))

is convex

Constructive Convex Analysis 19

Example

I log(eu1 + · · ·+ euk) is convex, increasing
I so if f (x , ω) is convex in x for each ω and γ > 0,

log
((

eγf (x ,ω1) + · · ·+ eγf (x ,ωk)
)
/k
)

is convex
I this is log E eγf (x ,ω), where ω ∼ U ({ω1, . . . , ωk})
I arises in stochastic optimization via bound

log Prob(f (x , ω) ≥ 0) ≤ log E eγf (x ,ω)

Constructive Convex Analysis 20

Constructive convexity verification

I start with function given as expression
I build parse tree for expression

I leaves are variables or constants/parameters
I nodes are functions of children, following general rule

I tag each subexpression as convex, concave, affine, constant
I variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative
I sufficient (but not necessary) for convexity

Constructive Convex Analysis 21

Example

for x < 1, y < 1
(x − y)2

1−max(x , y)
is convex

I (leaves) x , y , and 1 are affine expressions
I max(x , y) is convex; x − y is affine
I 1−max(x , y) is concave
I function u2/v is convex, monotone decreasing in v for v > 0

hence, convex with u = x − y , v = 1−max(x , y)

Constructive Convex Analysis 22

Example
analyzed by dcp.stanford.edu (Diamond 2014)

Constructive Convex Analysis 23

Example

I f (x) =
√

1 + x2 is convex

I but cannot show this using constructive convex analysis
I (leaves) 1 is constant, x is affine
I x2 is convex
I 1 + x2 is convex
I but

√
1 + x2 doesn’t match general rule

I writing f (x) = ‖(1, x)‖2, however, works
I (1, x) is affine
I ‖(1, x)‖2 is convex

Constructive Convex Analysis 24

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Disciplined Convex Programming 25

Disciplined convex programming (DCP)

(Grant, Boyd, Ye, 2006)

I framework for describing convex optimization problems
I based on constructive convex analysis
I sufficient but not necessary for convexity
I basis for several domain specific languages and tools for

convex optimization

Disciplined Convex Programming 26

Disciplined convex program: Structure

a DCP has
I zero or one objective, with form

I minimize {scalar convex expression} or
I maximize {scalar concave expression}

I zero or more constraints, with form
I {convex expression} <= {concave expression} or
I {concave expression} >= {convex expression} or
I {affine expression} == {affine expression}

Disciplined Convex Programming 27

Disciplined convex program: Expressions

I expressions formed from
I variables,
I constants/parameters,
I and functions from a library

I library functions have known convexity, monotonicity, and
sign properties

I all subexpressions match general composition rule

Disciplined Convex Programming 28

Disciplined convex program

I a valid DCP is
I convex-by-construction (cf. posterior convexity analysis)
I ‘syntactically’ convex (can be checked ‘locally’)

I convexity depends only on attributes of library functions,
and not their meanings
I e.g., could swap

√
· and 4

√
·, or exp · and (·)+, since their

attributes match

Disciplined Convex Programming 29

Canonicalization

I easy to build a DCP parser/analyzer
I not much harder to implement a canonicalizer, which

transforms DCP to equivalent cone program
I then solve the cone program using a generic solver

I yields a modeling framework for convex optimization

Disciplined Convex Programming 30

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Modeling Frameworks 31

Optimization modeling languages

I domain specific language (DSL) for optimization
I express optimization problem in high level language

I declare variables
I form constraints and objective
I solve

I long history: AMPL, GAMS, . . .
I no special support for convex problems
I very limited syntax
I callable from, but not embedded in other languages

Modeling Frameworks 32

Modeling languages for convex optimization

all based on DCP

YALMIP Matlab Löfberg 2004
CVX Matlab Grant, Boyd 2005
CVXPY Python Diamond, Boyd; Agrawal et al. 2013; 2018
Convex.jl Julia Udell et al. 2014
CVXR R Fu, Narasimhan, Boyd 2017

some precursors

I SDPSOL (Wu, Boyd, 2000)
I LMITOOL (El Ghaoui et al., 1995)

Modeling Frameworks 33

CVX

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1

cvx_end

I A, b, gamma are constants (gamma nonnegative)
I variables, expressions, constraints exist inside problem
I after cvx_end

I problem is canonicalized to cone program
I then solved

Modeling Frameworks 34

Some functions in the CVX library

function meaning attributes
norm(x, p) ‖x‖p, p ≥ 1 cvx
square(x) x2 cvx
pos(x) x+ cvx, nondecr
sum_largest(x,k) x[1] + · · ·+ x[k] cvx, nondecr
sqrt(x)

√
x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr
max(x) max{x1, . . . , xn} cvx, nondecr
quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y
lambda_max(X) λmax(X), X = X T cvx

Modeling Frameworks 35

DCP analysis in CVX

cvx_begin
variables x y
square(x+1) <= sqrt(y) % accepted
max(x,y) == 1 % not DCP
...

Disciplined convex programming error:
Invalid constraint: {convex} == {real constant}

Modeling Frameworks 36

CVXPY

import cvxpy as cp
x = cp.Variable(n)
cost = cp.sum_squares(A@x-b) + gamma*cp.norm(x,1)
prob = cp.Problem(cp.Minimize(cost),

[cp.norm(x,"inf") <= 1])
opt_val = prob.solve()
solution = x.value

I A, b, gamma are constants (gamma nonnegative)
I variables, expressions, constraints exist outside of problem
I solve method canonicalizes, solves, assigns value

attributes

Modeling Frameworks 37

Signed DCP in CVXPY

function meaning attributes

abs(x) |x | cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

norm(x, p) ‖x‖p, p ≥ 1 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

square(x) x2 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

Modeling Frameworks 38

DCP analysis in CVXPY

expr = (x − y)2

1−max(x , y)

x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x,y))
expr.curvature # CONVEX
expr.sign # POSITIVE
expr.is_dcp() # True

Modeling Frameworks 39

Parameters in CVXPY

I symbolic representations of constants
I can specify sign
I change value of constant without re-parsing problem

I for-loop style trade-off curve:
x_values = []
for val in numpy.logspace(-4, 2, 100):

gamma.value = val
prob.solve()
x_values.append(x.value)

Modeling Frameworks 40

Parallel style trade-off curve

Use tools for parallelism in standard library.
from multiprocessing import Pool

Function maps gamma value to optimal x.
def get_x(gamma_value):

gamma.value = gamma_value
result = prob.solve()
return x.value

Parallel computation with N processes.
pool = Pool(processes = N)
x_values = pool.map(get_x, numpy.logspace(-4, 2, 100))

Modeling Frameworks 41

Convex.jl

using Convex
x = Variable(n);
cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve!(prob);
solution = x.value;

I A, b, gamma are constants (gamma nonnegative)
I similar structure to CVXPY
I solve! method canonicalizes, solves, assigns value

attributes

Modeling Frameworks 42

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Conclusions 43

Conclusions

I DCP is a formalization of constructive convex analysis
I simple method to certify problem as convex

(sufficient, but not necessary)
I basis of several DSLs/modeling frameworks for convex

optimization

I modeling frameworks make rapid prototyping of convex
optimization based methods easy

Conclusions 44

References

I Disciplined Convex Programming (Grant, Boyd, Ye)
I Graph Implementations for Nonsmooth Convex Programs

(Grant, Boyd)
I Matrix-Free Convex Optimization Modeling

(Diamond, Boyd)
I A Rewriting System for Convex Optimization Problems

(Agrawal, Verschueren, Diamond, Boyd)

I CVX: http://cvxr.com/
I CVXPY: https://www.cvxpy.org/
I Convex.jl: http://convexjl.readthedocs.org/
I CVXR: https://cvxr.rbind.io/
I DCP tools: https://dcp.stanford.edu/

Conclusions 45

http://cvxr.com/
https://www.cvxpy.org/
http://convexjl.readthedocs.org/
https://cvxr.rbind.io/
https://dcp.stanford.edu/

	Convex Optimization
	Constructive Convex Analysis
	Disciplined Convex Programming
	Modeling Frameworks
	Conclusions

