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Abstract

In closed-loop convez analysis and design, the linear con-
" troller design problem is reformulated as a convex optimiza-
tion problem, which may be more easily solved than the
problems resulting from conventional formulations. This
reformulation has several unconventional aspects: it syn-
thesizes control laws that have high degree, but neverthe-
Jess can be implemented using digital signal processors; the
“solution” is rarely expressed in a “closed-form,” but nev-
ertheless is readily computable. .

This paper describes some of the basic ideas of closed-
loop convex analysis and design, in genera! terms. Full
details can be found in the references cited.

1 Motivation

Closed-loop convex methods are motivated in part by the
following technological developments: high quality inte-
grated sensors and actuators, powerful control processors
that can implement complex control algorithms, and pow-
erful computer hardware and software that can be used to
design and analyze control systems, We believe that these
technological developments have the following ramifications
for linear controller design:

e When many high quality sensors and actuators are in-
corporated into the design of a system, sophisticated
control algorithms can outperform the simple control
algorithms that have sufficed in the past.

o Current methods of computer-aided control system de-
sign underutilize available computing power and need
to be rethought.

These technology advances present a number of chal-
lenges for controller design:

o More sensors and actuators. For only a modest cost,
it is possible to incorporate many more sensors, and
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possibly more actuators, into the design of a system.
Clearly the extra information coming from the sensors
and the extra degrees of freedom in manipulating the
system make better control system performance pos-
sible. The challenge for controller design is to take
advantage of this extra information and degrees of free-
dom.

Higher quality systems. As higher quality sensors and
actuators are incorporated into the system, the system
behavior becomes more repeatable and can be more ac-
curately modeled. The challenge for controller design
is to take advantage of this more detailed knowledge
of the system.

More powerful control processors. Very complex con-
trol laws can be implemented using digital control pro-
cessors. Clearly a more complex control law could im-
prove control system performance (it could also de-
grade system performance, if improperly designed).
The challenge for controller design is to fully utilize
the control processor power to achieve better control
system performance.

In particular, control law specifications should be ex-
amined carefully. Historically relevant measures of
control law complexity, such as the order of an LTI
controller, are now less relevant. For example, the or-
der of the compensator used in a vacuum tube feed-
back amplifier is the number of inductors and capac-
itors needed to synthesize the compensation network,
and was therefore related to cost, size, and reliability.
On a particular digital control processor, however, the
order of the controller is essentially unrelated to cost,
size, and reliability.

Powerful compulers to design controllers. The chal-
lenge for controller design is to productively use the
enormous computing power available. Many current
methods of computer-aided controller design simply
automate procedures developed in the 1930’s through
the 1950's, for example, plotting root loci or Bode



plots. Even the “modern” state-space and frequency-
domain methods (which require the solution of alge-
braic Riccati equations) greatly underutilize available
computing power.

2 Summary

Closed-loop convex analysis addresses a restricted but im-
portant class of control system problems. The restriction
on the systems considered is that they must be linear and
time-invariant (LTI). The restriction on the design specifi-
cations is that they be closed-loop convez, which means that
the specifications can be expressed as convex constraints on
some closed-loop transfer function or transfer matrix of the
closed-loop system. The precise definition, and many ex-
amples, can be found in the references. This restricted set
of design specifications includes a wide class of performance
specifications, and a less complete class of robustness spec-
ifications.

Specifications that limit the order or constrain the stuc-
ture of a control law are generally not closed-loop convex.
Our opinion is that many of these specifications are no
longer relevant in view of the technology advances described
above.

The basic approach involves directly designing a good
closed-loop response, as opposed to designing an open-loop
controller that yields a good closed-loop response. Given a
system that is LTI, and a set of closed-loop convex design
specifications, the controller design problem can be cast as
a convex optimization problem, and consequently, can be
effectively solved. This means that if the specifications are
achievable, we can find a controller that meets the specifi-
cations; if the specifications are not achievable, this fact can
be determined, i.e., we will know that the specifications are
not achievable. Since we can determine numerically which
specifications can be achieved and which cannot, we can
determine the limits of performance for a given system and
control configuration.

In contrast, the designer using a classical controller de-
sign scheme is only likely to find a controller that meets a
given set of specifications that is achievable; and, of course,
certain not to find a controller that meets a set of spec-
ifications that is not achievable. The problem, however,
is to know when to abandon the search for a control law
that achieves the specifications, since many controller de-
sign techniques do not have any way to determine unam-
biguously that a set of specifications is not achievable.

No matter which controller design method is used by the
engineer, knowledge of the achievable performance is ex-
tremely valuable practical information, since it provides an
absolute yardstick against which any designed controller
can be compared. To know that a certain candidate con-
troller that is easily implemented, or has some other advan-
tage, achieves regulation only 10% worse than the best reg-
ulation achievable by any LTI controller, is 2 strong point
in favor of the design. In this sense, closed-loop convex
analysis is not a particular controller design method or syn-

thesis procedure; rather it is a method of determining what
specifications (of a large but restricted class) can be met
using any controller design method, for a given system and
control configuration.

3 An Example

We can demonstrate some of the main ideas with an ex-
ample. We will consider a specific system that has one
actuator and one output that is supposed to track a com-
mand input, and is affected by some noises; the system is
described in detail in section 2.4 of [4], but the details are
not relevant for this example.

Goals for the design of a controller for this system might
be:

o Good RMS regulation, i.e., the root-mean-square
(RMS) value of the output, due to the noises, should
be small.

o Low RMS actuator effort, i.e., the RMS value of the
actuator signal should be small.

It is intuitively clear that by using a larger actuator sig-
nal, we may improve the regulation, since we can expend
more effort counteracting the effect of the noises. The exact
nature of this tradeoff between RMS regulation and RMS
actuator effort can be determined; it is shown in figure 1.
The shaded region shows every pair of RMS regulation and
RMS actuator effort specifications that can be achieved by
a contrgller; the designer must, of course, pick one of these.
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Figure 1 The shaded region shows specifications on
RMS actuator effort and RMS regulation that are
achievable. The unshaded region, at the lower left,
shows specifications that no controller can achieve: this
region shows a fundamental limit of performance for
this system.

The unshaded region at the lower left is very important:
it consists of RMS regulation and RMS actuator effort spec-
ifications that cannot be achieved by any controller, no
matter which design method is used. This unshaded re-
gion therefore describes a fundamental limit of performance
for this system. It tells us, for example, that if we require
an RMS regulation of 0.05, then we cannot simultaneously
achieve an RMS actuator effort of 0.05.
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Each shaded point in figure 1 represents a possible design;
we can view many controller design methods as “rummag-
ing around in the shaded region”. If the designer knows
that a point is shaded, then the designer can find a con-
troller that achieves the corresponding specifications, if the
designer is clever enough. On the other hand, each un-
shaded point represents a limit of performance for our sys-
tem. Knowing that a point is unshaded is perhaps disap-
pointing, but still very useful information for the designer.

This tradeoff of RMS regulation against RMS actuator
effort can be determined using LQG theory. The main point
of closed-loop convex analysis is that for a much wider class
- of specifications, a similar tradeoff curve can be computed.
Suppose, for example, that we add the following specifica-
tion to our goals above:

o Command to output overshoot limit, i.e., the step re-
sponse overshoot of the closed-loop system, from the
command to the output, does not exceed 10%.

Of course, intuition tells us that by adding this speci-
fication. we make the design problem “harder”: certain
RMS regulation and RMS actuator effort specifications that
could be achieved without this new specification will no
longer be achievable once we impose it.

In this case there is no analytical theory, such as LQG,
that shows us the exact tradeoff. Closed-loop convex analy-
sis, however, can be used to determine the exact tradeoff of
RMS regulation versus RMS actuator effort with the over-
shoot limit imposed. This tradeoff is shown in figure 2. The
dashed line, below the shaded region of achievable specifi-
cations, is the tradeoff boundary when the overshoot limit
is not imposed. The “lost ground” represents the cost of
imposing the overshoot limit. We can compute this new
region because limits on RMS actuator effort, RMS regula-
tion. and step response overshoot are all closed-loop convex

specifications.
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Figure 2 The shaded region shows specifications on
RMS actuator effort and RMS regulation that are
achievable when an additional limit of 10% step re-
sponse overshoot is imposed; it can be computed using
closed-loop convex methods. The dashed line shows
the tradeoff boundary without the overshoot limit; the
gap between this line and the shaded region shows the
cost of imposing the overshoot limit.

In contrast, suppose that instead of the overshoot limit,
we impose the following control law constraint:

o The controller is proportional plus derivative (PD),
i.e., the control law has a specific form.

This constraint might be needed to implement the con-
troller using a specific commercially available control pro-
cessor. This specification is not closed-loop convex, so
closed-loop convex methods cannot be used to determine
the exact tradeoff between RMS actuator effort and RMS
regulation. This tradeoff can be computed, however, using
a brute force global optimization approach (see for exam-
ple, [1]) and is shown in figure 3. The dashed line is the
tradeoff boundary when the PD controller constraint is not
imposed. Specifications on RMS actuator effort and RMS
regulation that lie in the region between the dashed line
and the shaded region can be achieved by some controller,

but no PD controller.
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Figure 3 The shaded region shows specifications on
RMS actuator effort and RMS regulation that can be
achieved using a PD controller; it cannot be computed
using closed-loop convex methods. It can be computed,
at much greater cost, using global optimization meth-
ods. The dashed line shows the tradeoff boundary when
no constraint on the control law is imposed.

An important conclusion is that we can compute trade-
offs among closed-loop convex specifications, such as shown
in figure 2, although it requires more computation than de-
termining the tradeoff for a problem that has an analytical
solution, such as shown in figure 1; in return, however, a
much larger class of problems can be considered. While the
computation needed to determine a tradeoff such as shown
in figure 2 is more than that required to compute the trade-
off shown in figure 1, it is much less than the computation
required to compute tradeoffs such as the one shown in fig-
ure 3.

The fact that a tradeoff like the one shown in figure 3 is
much harder to compute than a tradeoff like the one shown
in figure 2 presents a paradox. To produce figure 2 we
search over the set of all possible LTI controllers, which has
infinite dimension. To produce figure 3, however, we search
over the set of all PD controllers, which has dimension two.
In fact, convexity makes figure 2 “easier” to produce than




figure 3, even though we must search over a far “larger” set
of potential controllers.

4 Notes

The survey paper|5] and book[4] contain extensive sum-
maries of the closed-loop convex method and large bibli-
ographies. We note here that the method can be traced
back at least forty years, to Truxal’s 1950 Ph.D. thesis (13
and 1955 book, Automatic Feedback Control System Syn-
thesis, in which he credits Guilleman with developing the
idea in 1947. The idea comes up again in a series of papers
by Fegley and colleagues in the sixties (a summary appears
in [7]). In the eighties, the method is considered by Des-
oer and colleagues (for example, [6, 8]), by Salcudean and
Polak {12, 11}, and Boyd and colleagues (3].

The article [10] describes the implementation of a con-
troller designed by closed-loop convex methods for a flexi-
ble robotic arm. This short and preliminary paper demon-
strates, at the least, that it is possible to design and imple-
ment on a real physical system a very high order controller
which works. (See the discussion above regarding measures
of controller complexity—in this case the MacMillan degree
of the controller is a traditional but inappropriate measure,
while the elapsed real time per sample is more appropriate.)
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