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Abstract—We formulate the problem of hyperspectral im- and pixel dissimilarity. The SUP (1) is not convex; it is
age unmixing as a nonconvex optimization problem, similar however biconvex, meaning that for fixédl it is convex in
to nonnegative matrix factorization. We present a heuristic r; \unile for fixed H it is convex ini.

for approximately solving this problem using an alternating . . .
projected subgradient approach. Finally, we present the results The SUP (1) is a variation of the so-called nonnegative

of applying this method on the 1990 AVIRIS image of Cuprite, Matrix factorization (NMF) problem which includes a pegalt
Nevada and show that our results are in agreement with similar term for pixel dissimilarities in the objective. NMF has Inee

studies on the same data. the focus of an extensive body of research in a wide range of
machine learning and signal processing applications ], [
) _ ) [3], [4], [5], [6], [7]. There has been a considerable instriz
‘We are givenY € R™, a hyperspectral image with  geveloping efficient heuristics for solving NMF problemieT
pixels andm frequency bands. This means they is the first method proposed in [8] consists of a set of multiplicati
reflectance of thgth image pixel to theth frequency band. pqates that can be shown to converge to a local minimum.
Thke spectral unmixing problem consists Ofkf'”d'm € A method based on alternating least squares is proposed in
R (called theendmember matrix) and 1 € RT*", where (9] Methods based on alternating convex programming have
k < min(m, n) (called theabundance matrix), that explain the aiso been proposed [10], [11]. Finally, some authors have
data welli.e, Y ~ W H. In other words, we want the columnsconsidered methods based on alternating projected gtadien
of Y to be approximately linear combinations of the columng 2] [13].
of H and the columng/ to be similar for neighboring pixels. | this paper we propose a heuristic for approximately
Furthermore the elements & and [/ must be nonnegative, so\ving the SUP (1), which is based on the idea of alternating
since the elements of the former represent reflectance,whigoiected subgradient descent. As such our method is glosel
are inherently nonnegative quantities, while the elemefits rejateq to the work presented in [12]. The main difference is
the latter represent mixing coefficients. Finally, we waim t that we use a subgradient method for one of the alternations.
columns of /1 to sum tol. The matricesll” and 1 have & pyrthermore the objective of the problem that we want toesolv
very natural interpretation. The columns6f can be thought hag strong coupling terms between the columngfof
of as a nonnegative basis for the imgge spec’_trg. The columngpe rest of this paper is organized as follows. §ih we
of H can be thought of as the mixing coefficients of eachesent our method. 1gIll we show the performance of this
individual pixel. Therefore we can view spectral uUnmixing amnethod on a real hyperspectral dataset taken from Cuprite,

a special type of blind source separation. Nevada. Finally in§IV we provide our concluding remarks.
We formulate the spectral unmixing problem (SUP) as

I. INTRODUCTION

) n II. METHOD
minimize ||Y - WH A h; — h; . .
| I ;1 je%(i) i sl Q) The method that we propose for solving problem (1) is an
subjectto W, H >0, 1TH =17, alternating projected gradient method. We initialidé and

o . . H and then alternate between fixidg and taking a few
where _the _opt|m|zat|on varlab_les W and H, and is the subgradient steps ol and fixing H and taking a gradient
regularization parameter. Hetes the vector of all ones Whosestep on. This method is guaranteed to converge to a local
dimension is clear from the context afid || = /Tr(AT A) minimum of the SUP (1).
denotes the matrix Frobenius norfg, denotes théth column
of H, |lz|ly = }_; || denotes the vectof;-norm andA (i) A, Abundance matrix update
denotes the set of pixels which are neighboring pixeThe

parameterA > 0 controls the trade-off between data fidelity. We first quk at the problem th.at. we have to solve when
is fixed. In this case, for each pixélwe need to solve
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with variable h;. Problem (2) is a convex nondifferentiableno guarantee for a reduction of the objective. However, the
optimization problem. This problem can be easily transfedm objective is reduced eventually since the method converges
into a smooth problem and solved in a variety of ways suchlIn fact we can update all columns df simultaneously,

as interior point methods [14]. However, we use instead despite the coupling between different columns in the diyec

subgradient method on this problem. Specifically let of problem (1). This corresponds to each pixehaving a
local copy ofh; for all neighboring pixelsj, which is updated
_ L 2 B J
fi(h) = llyi = Whilz + A %: 7 = Ryl after each subgradient step. This technique is known asaprim
JEN(4)

decomposition in the optimization literature.
Supposes € R* has elements; = sgn(h; — H;;), wheresgn Let S € R*" have elements
is the sign function. Then we have that

9 Sz(f) _ Z sgn( Hz(f) _ Hz(;))-

g=2WITWh —2WTy; + \s € 0f, JEN ()
i.e, g is a subgradient of at h. By this we mean that Then the projected subgradient update fbris
FR) > f(h) + g7 (W — h), HED .= (H<t> —AOWTWH® — 2w Ty + )\S(t)))P

for all 7. Here (H)p means projecting each column df on the

A projected subgradient method for solving problem (2 opapility simplex. This update rule is guaranteed to esge
proceeds by iteratively taking a step in a negative subgredi g the solution of (2); the reader is referred to [£8,1] for
direction and then projecting onto the feasible set. Thaifis 5 convergence proof.

at iterationt the value ofh; is hl(.t), then att+1 h; is updated

according to B. Endmember matrix update
N (h(_t) B 7(t)g> 3) For a fixed abundance matrik, finding the endmember
v ' v ’ matrix reduces to solving the convex problem
wherey() > 0 is the step size an@l)» denotes projection on minimize ||Y — WH||%
the probability simplexj.e., subject to W > 0. (4)
(z)p = argmin lz —yll2. The objective is separable in the rows @f. The gradient
y>0, 17y=1

update rule for this problem is
The projection on the probability simplex can be carried out
very efficiently by a technique similar to waterfilling. Ugin WD = (W(t) +y(WOH - Y)HT)+»
Lagrange duality arguments, we can show that findjnghe ) ] ]
projection ofz € R¥ on the probability simplex, is equivalentWherey > 0 is the step size and); denotes taking the
to finding \ € Ri and . € R such that positive part. It can be shown that this update will converge
to the solution of problem (4) as long as
r—y+pl—XA=0.

. v <2/|HHT|,
These can be found up to a tolerance 0 by the following
algorithm: where ||A|| denotes the spectral norm.e., the maximum
given: z € R¥, ¢ > 0 singular value. For a proof of this result see [18,2.1].
initialize: =0, A=0,y==xa C. Overall algorithm
while: 17y —1 > € ory; < —e for somel <1<k To approximately solve problem (1), we first initialize the
dp = 1Ty —1)/k columns of W from £k randomly chosen columns df and
o=+ dp initialize H;; = 1/k for all i and j. We then proceed to
Y=y —dul iteratively take P subgradient updates ol and a single
) gradient step ofl¥. We alternate the steps fdr times. The
A= )\ — d\ overall algorithm is described below:
y:i=y—d\ given: T, P, A
end initialize: H = H©, W = w©)
Here (y)_— Qenotes the negative part gf . for t=1t0 T
Thfa projected subgradient update (3) W|Il_conv<_arge to the for, p=1to P
solution of the SUP (2) as long as the step sizesatisfy the H .= (H _ (1/\/13)(2wTWH —owTy + )\S)P

so-called diminishing step size rules. For a convergenoefpr
see [15,83.4] or [16,§7.2.2].
We want to point out that the projected subgradient method
is not a descent method. Therefore at each iteration, tisere i end

end
W= W+ (1/|HHT|)(WH - Y)HT)



approach. We demonstrated the heuristic on a real hyperspec
6000 ] tral image. The techniques presented in this paper should be
well suited for other nonnegative matrix factorization lplems
with different penalty functions added to the original attjee.
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Fig. 2. Left. Endmember identified as Alunite type 1 (solid) and the mathceerairfrom the USGS library (dashedjight. Estimated mineral abundance.
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Fig. 4. Left. Endmember identified as Kaolinite (solid) and the matched miifieyan the USGS library (dashedRight. Estimated mineral abundance.
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Fig. 5. Left. Endmember identified as Halloysite (solid) and the matched miiieym the USGS library (dashedRight. Estimated mineral abundance.
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Fig. 6. Left. Endmember identified as Jarosite (solid) and the matched mifieralthe USGS library (dashedRight. Estimated mineral abundance.



