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Abstract—We formulate the problem of hyperspectral im-
age unmixing as a nonconvex optimization problem, similar
to nonnegative matrix factorization. We present a heuristic
for approximately solving this problem using an alternating
projected subgradient approach. Finally, we present the results
of applying this method on the 1990 AVIRIS image of Cuprite,
Nevada and show that our results are in agreement with similar
studies on the same data.

I. I NTRODUCTION

We are givenY ∈ Rm×n
+ , a hyperspectral image withn

pixels andm frequency bands. This means thatYij is the
reflectance of thejth image pixel to theith frequency band.

The spectral unmixing problem consists of findingW ∈
Rm×k

+ (called theendmember matrix) andH ∈ Rk×n
+ , where

k < min(m,n) (called theabundance matrix), that explain the
data well,i.e., Y ≈ WH. In other words, we want the columns
of Y to be approximately linear combinations of the columns
of H and the columnsH to be similar for neighboring pixels.
Furthermore the elements ofW andH must be nonnegative,
since the elements of the former represent reflectance, which
are inherently nonnegative quantities, while the elementsof
the latter represent mixing coefficients. Finally, we want the
columns ofH to sum to1. The matricesW and H have a
very natural interpretation. The columns ofW can be thought
of as a nonnegative basis for the image spectra. The columns
of H can be thought of as the mixing coefficients of each
individual pixel. Therefore we can view spectral unmixing as
a special type of blind source separation.

We formulate the spectral unmixing problem (SUP) as

minimize ‖Y − WH‖2
F + λ

n
∑

i=1

∑

j∈N (i)

||hi − hj ||1
subject to W,H ≥ 0, 1T H = 1T ,

(1)

where the optimization variables areW andH, andλ is the
regularization parameter. Here1 is the vector of all ones whose
dimension is clear from the context and‖A‖F =

√

Tr(AT A)
denotes the matrix Frobenius norm,hi denotes theith column
of H, ‖x‖1 =

∑

i |xi| denotes the vectorℓ1-norm andN (i)
denotes the set of pixels which are neighboring pixeli. The
parameterλ ≥ 0 controls the trade-off between data fidelity
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and pixel dissimilarity. The SUP (1) is not convex; it is
however biconvex, meaning that for fixedW it is convex in
H, while for fixed H it is convex inW .

The SUP (1) is a variation of the so-called nonnegative
matrix factorization (NMF) problem which includes a penalty
term for pixel dissimilarities in the objective. NMF has been
the focus of an extensive body of research in a wide range of
machine learning and signal processing applications [1], [2],
[3], [4], [5], [6], [7]. There has been a considerable interest in
developing efficient heuristics for solving NMF problems. The
first method proposed in [8] consists of a set of multiplicative
updates that can be shown to converge to a local minimum.
A method based on alternating least squares is proposed in
[9]. Methods based on alternating convex programming have
also been proposed [10], [11]. Finally, some authors have
considered methods based on alternating projected gradients
[12], [13].

In this paper we propose a heuristic for approximately
solving the SUP (1), which is based on the idea of alternating
projected subgradient descent. As such our method is closely
related to the work presented in [12]. The main difference is
that we use a subgradient method for one of the alternations.
Furthermore the objective of the problem that we want to solve
has strong coupling terms between the columns ofH.

The rest of this paper is organized as follows. In§II we
present our method. In§III we show the performance of this
method on a real hyperspectral dataset taken from Cuprite,
Nevada. Finally in§IV we provide our concluding remarks.

II. M ETHOD

The method that we propose for solving problem (1) is an
alternating projected gradient method. We initializeW and
H and then alternate between fixingW and taking a few
subgradient steps onH and fixing H and taking a gradient
step onW . This method is guaranteed to converge to a local
minimum of the SUP (1).

A. Abundance matrix update

We first look at the problem that we have to solve whenW
is fixed. In this case, for each pixeli we need to solve

minimize ‖yi − Whi‖2
2 + λ

∑

j∈N (i) ||hi − hj ||1
subject to hi ≥ 0, 1T hi = 1,

(2)



with variable hi. Problem (2) is a convex nondifferentiable
optimization problem. This problem can be easily transformed
into a smooth problem and solved in a variety of ways such
as interior point methods [14]. However, we use instead a
subgradient method on this problem. Specifically let

fi(h) = ‖yi − Wh‖2
2 + λ

∑

j∈N (i)

||h − hj ||1.

Supposes ∈ Rk has elementssl = sgn(hl−Hlj), wheresgn

is the sign function. Then we have that

g = 2WT Wh − 2WT yi + λs ∈ ∂f,

i.e., g is a subgradient off at h. By this we mean that

f(h′) ≥ f(h) + gT (h′ − h),

for all h′.
A projected subgradient method for solving problem (2)

proceeds by iteratively taking a step in a negative subgradient
direction and then projecting onto the feasible set. That is, if
at iterationt the value ofhi is h

(t)
i , then att+1 hi is updated

according to

h
(t+1)
i :=

(

h
(t)
i − γ(t)g

)

P
, (3)

whereγ(t) > 0 is the step size and(·)P denotes projection on
the probability simplex,i.e.,

(x)P = argmin
y≥0, 1T y=1

‖x − y‖2.

The projection on the probability simplex can be carried out
very efficiently by a technique similar to waterfilling. Using
Lagrange duality arguments, we can show that findingy, the
projection ofx ∈ Rk on the probability simplex, is equivalent
to finding λ ∈ Rk

+ andµ ∈ R such that

x − y + µ1 − λ = 0.

These can be found up to a toleranceǫ > 0 by the following
algorithm:

given: x ∈ Rk, ǫ > 0

initialize: µ = 0, λ = 0, y = x

while: 1T y − 1 > ǫ or yl < −ǫ for some1 ≤ l ≤ k

dµ := (1T y − 1)/k
µ := µ + dµ
y := y − dµ1

dλ := (y)−
λ := λ − dλ
y := y − dλ

end
Here (y)− denotes the negative part ofy.

The projected subgradient update (3) will converge to the
solution of the SUP (2) as long as the step sizesγt satisfy the
so-called diminishing step size rules. For a convergence proof,
see [15,§3.4] or [16, §7.2.2].

We want to point out that the projected subgradient method
is not a descent method. Therefore at each iteration, there is

no guarantee for a reduction of the objective. However, the
objective is reduced eventually since the method converges.

In fact we can update all columns ofH simultaneously,
despite the coupling between different columns in the objective
of problem (1). This corresponds to each pixeli having a
local copy ofhj for all neighboring pixelsj, which is updated
after each subgradient step. This technique is known as primal
decomposition in the optimization literature.

Let S(t) ∈ Rk×n have elements

S
(t)
li =

∑

j∈N (i)

sgn(H
(t)
li − H

(t)
lj ).

Then the projected subgradient update forH is

H(t+1) :=
(

H(t) − γ(t)(2WT WH(t) − 2WT Y + λS(t))
)

P
.

Here (H)P means projecting each column ofH on the
probability simplex. This update rule is guaranteed to converge
to the solution of (2); the reader is referred to [15,§4.1] for
a convergence proof.

B. Endmember matrix update

For a fixed abundance matrixH, finding the endmember
matrix reduces to solving the convex problem

minimize ‖Y − WH‖2
F

subject to W ≥ 0.
(4)

The objective is separable in the rows ofW . The gradient
update rule for this problem is

W (t+1) :=
(

W (t) + γ(W (t)H − Y )HT
)

+
,

where γ > 0 is the step size and(·)+ denotes taking the
positive part. It can be shown that this update will converge
to the solution of problem (4) as long as

γ < 2/‖HHT ‖,

where ‖A‖ denotes the spectral norm,i.e., the maximum
singular value. For a proof of this result see [16,§7.2.1].

C. Overall algorithm

To approximately solve problem (1), we first initialize the
columns ofW from k randomly chosen columns ofY and
initialize Hij = 1/k for all i and j. We then proceed to
iteratively take P subgradient updates onH and a single
gradient step onW . We alternate the steps forT times. The
overall algorithm is described below:

given: T , P , λ

initialize: H = H(0), W = W (0)

for: t = 1 to T
for: p = 1 to P

H :=
(

H − (1/
√

p)(2WT WH − 2WT Y + λS
)

P
end

W :=
(

W + (1/‖HHT ‖)(WH − Y )HT
)

+

end
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Fig. 1. Objective versus iteration for a single run of our method.

III. N UMERICAL RESULTS

In this section we give the result of applying our method to
the data described in [17]. This dataset is a hyperspectral im-
age of a mining site at Cuprite, Nevada, which was taken using
the airborne AVIRIS imaging system. It is a350 × 400 × 50
sized image, with each pixel corresponding to a20m by 20m
area. Each pixel spectrum consists of50 wavelength bands,
linearly spaced in the2.0µm to 2.5µm range. This dataset has
been used in a number of studies related to spectral unmixing
[18], [19], [20], which allows us to compare our method to
other methods.

We applied our method to this dataset for a number of
different values ofk and λ. We found that settingλ = 0.01
gives a good tradeoff between data fidelity and abundance
correlation. We set the number of endmembers tok = 10
Finally, we found that for this value ofλ, 10 subgradient
steps are enough to ensure that our method converges and
that the algorithm converges in about50 iterations (i.e., we
setP = 10 andT = 50). Each iteration takes about10s so, in
total, the algorithm requires about10 minutes to reach a local
minimum of this problem. Figure 1 shows the objective value
versus iteration for a single run of our method.

Our method correctly identified a number of endmembers
that are actually present in the dataset. Specifically our method
identified two types of alunite (figures 2 and 3), a type
of kaolinite (figure 4), a type of halloysite (figure 5), as
well a type of jarosite (figure 6). These figures show the
corresponding mineral spectra (i.e., columns ofW ) on the left
and the pixel abundances (i.e., rows ofH) for each identified
mineral. We also plot the spectra taken from [21] which are
closest to the estimated endmembers. Our results are in good
agreement with similar studies performed on this data [18],
[19], [20], especially for the estimated abundances of alunite
and kaolinite.

IV. CONCLUSIONS

In this paper we have formulated the hyperspectral image
unmixing problem as a nonconvex optimization problem. We
have described a heuristic for obtaining a good approximate
solution to the problem using an alternating projected gradient

approach. We demonstrated the heuristic on a real hyperspec-
tral image. The techniques presented in this paper should be
well suited for other nonnegative matrix factorization problems
with different penalty functions added to the original objective.

REFERENCES

[1] D. Lee and S. Seung, “Learning the parts of objects by non-negative
matrix factorization,”Nature, vol. 401, pp. 788–791, 1999.

[2] F. Sha, L. Saul, and D. Lee, “Multiplicative updates for nonnegative
quadratic programming in support vector machines,” inAdvances in
Neural Information Processing Systems 15, S. Becker, S. Thrun, and
K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 1065–
1073.
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Fig. 2. Left. Endmember identified as Alunite type 1 (solid) and the mathced mineral from the USGS library (dashed).Right. Estimated mineral abundance.
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Fig. 3. Left. Endmember identified as Alunite type 2 (solid) and the matched mineral from the USGS library (dashed).Right. Estimated mineral abundance.
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Fig. 4. Left. Endmember identified as Kaolinite (solid) and the matched mineral from the USGS library (dashed).Right. Estimated mineral abundance.
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Fig. 5. Left. Endmember identified as Halloysite (solid) and the matched mineral from the USGS library (dashed).Right. Estimated mineral abundance.
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Fig. 6. Left. Endmember identified as Jarosite (solid) and the matched mineralfrom the USGS library (dashed).Right. Estimated mineral abundance.


