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Optimization problem

minimize  fo(x)
subject to fi(x) <0, i=1,....,m

» x € R" is (vector) variable to be chosen
» fy is the objective function, to be minimized
» fi,...,fy are the inequality constraint functions

» g1,...,8p are the equality constraint functions

» variations: maximize objective, multiple objectives, ...
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Finding good (or best) actions

» x represents some action, e.g.,
» trades in a portfolio
» airplane control surface deflections
» schedule or assignment
> resource allocation
P transmitted signal

» constraints limit actions or impose conditions on outcome

» the smaller the objective fy(x), the better

> total cost (or negative profit)

» deviation from desired or target outcome
> fuel use

> risk
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Engineering design

> x represents a design (of a circuit, device, structure, ...
» constraints come from

» manufacturing process
» performance requirements

> objective fy(x) is combination of cost, weight, power, ...
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Finding good models

» x represents the parameters in a model

» constraints impose requirements on model parameters
(e.g., nonnegativity)

» objective fy(x) is the prediction error on some observed data
(and possibly a term that penalizes model complexity)
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Inversion

> x is something we want to estimate/reconstruct, given
some measurement y

» constraints come from prior knowledge about x

» objective fy(x) measures deviation between predicted and
actual measurements
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Worst-case analysis (pessimization)

» variables are actions or parameters out of our control
(and possibly under the control of an adversary)

» constraints limit the possible values of the parameters

» minimizing —fy(x) finds worst possible parameter values

\4

if the worst possible value of fy(x) is tolerable, you're OK

» it's good to know what the worst possible scenario can be
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Optimization-based models

» model an entity as taking actions that solve an optimization
problem
» an individual makes choices that maximize expected utility
P an organism acts to maximize its reproductive success
P reaction rates in a cell maximize growth
P currents in an electric circuit minimize total power
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Optimization-based models

» model an entity as taking actions that solve an optimization
problem

» an individual makes choices that maximize expected utility
P an organism acts to maximize its reproductive success

P reaction rates in a cell maximize growth

P currents in an electric circuit minimize total power

> (except the last) these are very crude models

» and vyet, they often work very well
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Summary

» summary: optimization arises everywhere
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Summary

» summary: optimization arises everywhere

» the bad news: most optimization problems are intractable
i.e., we cannot solve them
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Summary

» summary: optimization arises everywhere

» the bad news: most optimization problems are intractable
i.e., we cannot solve them

» an exception: convex optimization problems are tractable
i.e., we (generally) can solve them
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Convex optimization problem

convex optimization problem:

minimize  fo(x)
subject to fi(x) <0, i=1,....m
Ax=0b

» variable x € R"”
» equality constraints are linear

> fo,...,Im are convex: for 6 € [0,1],
fi(0x + (1 — 0)y) < 0fi(x) + (1 — 0)fi(y)
i.e., f; have nonnegative (upward) curvature
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Why

» beautiful, nearly complete theory

» duality, optimality conditions, ...
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> effective algorithms, methods (in theory and practice)

> get global solution (and optimality certificate)
» polynomial complexity
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Why

» beautiful, nearly complete theory
» duality, optimality conditions, ...

> effective algorithms, methods (in theory and practice)
> get global solution (and optimality certificate)

» polynomial complexity

» conceptual unification of many methods

> lots of applications (many more than previously thought)
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Application areas

machine learning, statistics

finance

supply chain, revenue management, advertising
control

signal and image processing, vision

networking

circuit design

combinatorial optimization

quantum mechanics

VVyVVVVVVYYVYY

flux-based analysis

Convex Optimization
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The approach

» try to formulate your optimization problem as convex
» if you succeed, you can (usually) solve it (numerically)

P using generic software if your problem is not really big
» by developing your own software otherwise
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The approach

» try to formulate your optimization problem as convex
» if you succeed, you can (usually) solve it (numerically)

P using generic software if your problem is not really big
» by developing your own software otherwise

» some tricks:

» change of variables
» approximation of true objective, constraints
» relaxation: ignore terms or constraints you can't handle
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Medium-scale solvers

v

1000s—10000s variables, constraints

» reliably solved by interior-point methods on single machine
(especially for problems in standard cone form)

» exploit problem sparsity

v

not quite a technology, but getting there
» used in control, finance, engineering design, ...
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Large-scale solvers

» 100k — 1B variables, constraints
» solved using custom (often problem specific) methods

» limited memory BFGS

P stochastic subgradient

» block coordinate descent
» operator splitting methods

» require custom implementation, tuning for each problem

» used in machine learning, image processing, ...
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Modeling languages

» (new) high level language support for convex optimization

» describe problem in high level language

» description automatically transformed to a standard form

P solved by standard solver, transformed back to original form
» implementations:

> YALMIP, CVX (Matlab)

> CVXPY (Python)

» Convex.jl (Julia)

> CVXR (R)
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CvX

(Grant & Boyd, 2005)

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <=1

cvx_end

> A, b, gamma are constants (gamma nonnegative)
» after cvx_end

» problem is converted to standard form and solved
> variable x is over-written with (numerical) solution
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CVXPY
(Diamond & Boyd, 2013); (Agrawal et al., 2018)

import cvxpy as cp

x = cp.Variable(n)

cost = cp.sum_squares(A@x-b) + gamma*cp.norm(x,1)

prob = cp.Problem(cp.Minimize(cost),
[cp.norm(x,"inf") <= 1])

opt_val = prob.solve()

solution = x.value

> A b, gamma are constants (gamma nonnegative)

» solve method converts problem to standard form, solves,
assigns value attributes
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Convex.jl

(Udell et al., 2014)

using Convex

x = Variable(n);

cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve! (prob);

solution = x.value;

> A, b, gamma are constants (gamma nonnegative)

» solve! method converts problem to standard form, solves,
assigns value attributes

Solvers & Modeling Languages
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Modeling languages

» enable rapid prototyping (for small and medium problems)

» ideal for teaching (can do a lot with short scripts)

» slower than custom methods, but often not much

» current work focuses on extension to large problems
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Radiation treatment planning

radiation beams with intensities x; > 0 directed at patient
radiation dose y; received in voxel i

y = Ax

A € R™*" comes from beam geometry, physics

goal is to choose x to deliver prescribed radiation dose d;

» d; = 0 for non-tumor voxels
» d; > 0 for tumor voxels

vvyyvyVvyy

\4

y = d not possible, so we'll need to compromise

v

typical problem has n = 103 beams, m = 10° voxels
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Radiation treatment planning via convex optimization

v

vy

minimize Y. fi(yi)
subjectto x>0, y=Ax

variables x € R", y € R™

objective terms are

fi(yi)) = w" (yi — di)+ + w/™ " (d; — i)+

over under

wPV and w; are positive weights
i.e., we charge linearly for over- and under-dosing

a convex problem

Examples
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Example

» real patient case with n = 360 beams, m = 360000 voxels

» optimization-based plan essentially the same as plan used
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Example

» real patient case with n = 360 beams, m = 360000 voxels

» optimization-based plan essentially the same as plan used

» but we computed the plan in a few seconds on a GPU
» original plan took hours of least-squares weight tweaking
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Image in-painting

» guess pixel values in obscured/corrupted parts of image

» total variation in-painting: choose pixel values x;; € R3 to

minimize total variation
Xi41,j — Xij
TV(x) = |||
Xij+1 — Xjj

ij 2

» a convex problem
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Example

512 x 512 grayscale image (n ~ 300000 variables)

Original Image Corrupted Image

ecover the orlginalimageé

Examples

his is'the Loki testimage 488
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Example

In-Painted Image Difference Image

|
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Example

512 x 512 color image (n =~ 800000), 80% of pixels removed

Original Image Corrupted Image
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Example

80% of pixels removed

In-Painted Image

¥
b

Examples

Difference Image
Iy
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Control

minimize "t 0(xe, ur) + 07 (xT)
subject to  x;41 = Axt + Bu:
(Xt, Ut) eC, xtelCr

» variables are

» system states xj,...,x7 € R”
» inputs or actions ug,...,ur_; € R™

» /[ is stage cost, 1 is terminal cost

» ( is state/action constraints; Ct is terminal constraint

» convex problem when costs, constraints are convex

» applications in many fields

Examples
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Example

n = 8 states, m = 2 inputs, horizon T = 50
randomly chosen A, B (with A~ /)

input constraint ||u]|eo <1

terminal constraint x7 = 0 (‘regulator’)
O(x, u) = ||x||3 + |lul|3 (traditional)

random initial state xp

vVvyVYyVvyVYyvyy
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Examples
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Support vector machine classifier with /;-regularization

» given data (x;,y), i=1,...,m
» x; € R" are feature vectors
» y € {£1} are associated boolean outcomes

» linear classifier § = sign(37x — v)

» find parameters (3, v by minimizing (convex function)

/m) > (1875 =)+ MBlL

1

» first term is average hinge loss
» second term shrinks coefficients in 8 and encourages sparsity
> )\ > 0is (regularization) parameter

» simultaneously selects features and fits classifier

Examples 37



Example

» n = 20 features
» trained and tested on m = 1000 examples each

0.6 T

— Train error
05} — Test error
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Example

Bi vs. A (regularization path)

Examples
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Summary

» convex optimization problems arise in many applications

» convex optimization problems can be solved effectively

» using generic methods for not huge problems
» by developing custom methods for huge problems

» high level language support
(CVX/CVXPY /Convex.jl/CVXR) makes prototyping easy

Summary
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Resources

many researchers have worked on the topics covered

» Convex Optimization (book)
» EE364a (course slides, videos, code, homework, .. .)
» software CVX, CVXPY, Convex.jl, CVXR

all available online

Summary
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https://web.stanford.edu/~boyd/cvxbook/
http://web.stanford.edu/class/ee364a/
http://cvxr.com/
https://cvxpy.org
https://convexjl.readthedocs.io/en/latest/
https://cvxr.rbind.io/
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