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Abstract
Weconsider a collection of derivatives that depend on the price of an underlying asset at
expiration or maturity. The absence of arbitrage is equivalent to the existence of a risk-
neutral probability distribution on the price; in particular, any risk neutral distribution
can be interpreted as a certificate establishing that no arbitrage exists.We are interested
in the case when there are multiple risk-neutral probabilities. We describe a number of
convex optimization problems over the convex set of risk neutral price probabilities.
These include computation of bounds on the cumulative distribution, VaR, CVaR,
and other quantities, over the set of risk-neutral probabilities. After discretizing the
underlying price, these problems become finite dimensional convex or quasiconvex
optimization problems, and therefore are tractable. We illustrate our approach using
real options and futures pricing data for the S&P 500 index and Bitcoin.

1 Introduction

The arbitrage theorem is a central result in finance originally proposed by Ross (1973).
For a market with a finite number of investments and possible outcomes, the arbitrage
theorem states that there either exists a probability distribution (called a risk-neutral
probability) over the outcomes such that the expected return of all possible investments
is nonpositive (i.e., arbitrage does not exist), or there exists a linear combination of
the investments that guarantees positive expected return (i.e., arbitrage exists). The
no-arbitrage assumption is that financial markets are arbitrage-free. For the most
part, this holds, since if the markets were not arbitrage-free, someone would take
advantage of the arbitrage, changing the price until it no longer exists. Under the
no-arbitrage assumption, a notable implication of the arbitrage theorem is that a risk-
neutral probability serves both as a conceivable distribution over the outcomes and as
a certificate ensuring that arbitrage is impossible.
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For a givenmarket, the set of risk-neutral probabilities is a polyhedron, and arbitrage
is impossible if the set is nonempty. We can verify that the market is arbitrage-free by
finding a point in the feasible set of a particular system of linear equalities. Apart from
verifying the no-arbitrage assumption, this set has many other uses. For example, it
has been used for projecting onto the set of risk-neutral probabilities using various
distance measures (e.g., �2 norm, �1 norm, and KL-divergence) (Rubenstein 1994;
Jackwerth and Rubinstein 1996; Stutzer 1996; Buchen and Kelly 1996; Jackwerth
1999; Branger 2004), as well as for computing bounds on option prices givenmoments
or other information (Bertsimas and Tsitsiklis 1997; Bertsimas and Popescu 2002;
Jackwerth 2004). These methods have been applied to various derivative markets,
including equity indices (Bates 2000; Äijö 2008), currencies (Castrén 2004), and
commodities (Melick and Thomas 1997). We consider nonparametric models of risk-
neutral probabilities in this paper; another viable option is to consider parametric
models, i.e., choose a distribution and fit its parameters to observed pricing data (see,
e.g., (Bahra 1997; Jackwerth 1999) and the references therein). We note that once a
risk-neutral distribution is found, it is often used to construct stochastic processes of
the price of the underlying asset, e.g., as a binomial tree (Rubenstein 1994; Jackwerth
1996). Risk-neutral probabilities have also been used to infer properties of investor’s
utility functions (Aıt-Sahalia and Lo 2000; Jackwerth 2000).

In this paper we consider the general problem of minimizing a convex or quasicon-
vex function over the (convex) set of risk-neutral probabilities. By considering convex
optimization problems, finding a solution is tractable, and indeed has linear complex-
ity in the number of outcomes, which lets us scale the number of outcomes to the tens
of thousands. Moreover, the advent of domain-specific languages (DSLs) for convex
optimization, e.g., CVXPY (Diamond and Boyd 2016; Agrawal et al. 2018), make not
just solving, but also formulating these problems straightforward; they require just a
few lines of a high-level language such as Python. We show that there are many useful
applications of convex optimization problems over risk-neutral probabilities, which
encompass a lot of prior work, including computation of bounds on expected values
of arbitrary functions of the expiration price, estimation of the risk-neutral probabil-
ity using other information, computation of bounds on the cost of existing or new
investments, and sensitivities of various quantities to the cost of each investment. We
illustrate a number of these applications using real derivatives pricing data for the S&P
500 index and Bitcoin.

There are a number of notable limitations to our approach. First, we require the
number of outcomes to be finite and reasonably small. Suppose, e.g., that we tried
to apply our approach to American-style options, which can be exercised at any time
up until expiration. Even if we discretized the price of the underlying asset and time,
the number of outcomes would be exponentially large, since we would need to con-
sider the price of the asset at each time point until expiration. (We note however
that precise valuation and optimal exercise of American options is still mostly an
unsolved problem.) Second, we consider static investments, i.e., the investment is
fixed until expiration. This precludes multi-period investment models (Duffie 2010),
dynamic hedging strategies that are at the core of derivative pricing models like the
Black-Scholes model (Black and Scholes 1973; Merton 1973), as well as treatment of
American options, since we need to decide whether to exercise an option or not based
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on the current price. Despite these limitations, we find that our approach can be very
useful in practice and is also very interpretable, as demonstrated by our examples in
Sect. 4.
Outline The remainder of the paper is organized as follows. In Sect. 2 we describe
the setting of the paper, define risk-neutral probabilities, and give a characterization
of the set of risk-neutral probabilities. In Sect. 3 we present the problem of convex
optimization over risk-neutral probabilities and give a number of applications of this
problem. Finally, in Sect. 4, we illustrate our approach on real derivatives pricing data
for the S&P 500 Index and Bitcoin.

2 Risk-neutral probabilities

SettingWe consider a market for an asset, referred to as the underlying, with a number
of derivatives that provide payoffs at the same future date or time, referred to as
expiration or maturity. We assume that there are n possible investments that include,
e.g., buying or (short) selling the underlying, as well as buying or selling (writing)
derivatives. We let p > 0 denote the price of the underlying at expiration.

Payoff The payoff function fi : R+ → R denotes the dollar amount received (or
paid, if negative) per unit held of the i th investment; we give some examples of payoff
functions below. If we own a quantitywi ≥ 0 of the i th investment, then at expiration,
we would receive fi (p)wi dollars. (We note that we do not discount payoffs at the
risk-free rate, but we could easily do this in our formulation.)

Cost We let c ∈ Rn denote the cost in dollars to acquire one unit of each investment
(ci < 0 means that we are paid to acquire the investment). The cost is the ask price
if we are purchasing and the negative bid price if we are selling, adjusted for fees
and rebates. If we acquired a quantity wi ≥ 0 of the i th investment, it would cost us
ciwi dollars, and the return of our investment, at expiration, would be ( fi (p) − ci )wi

dollars.

2.1 Examples of payoff functions

In this section we give some examples of payoff functions (see, e.g., Hull (2006) for
an overview of various derivatives).
Underlying In many cases we can directly invest in the underlying. We allow both
going long (buying), and going short (selling borrowed shares). Going long in the
underlying has a payoff function

f (p) = p,

and going short in the underlying has the payoff function

f (p) = −p.
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European options A European option is a contract that gives one party the right to
buy or sell an underlying asset at an agreed upon strike price. If the right is to buy
the underlying asset (a call option), the option will only be exercised if the underlying
price is greater than the strike price. Conversely, if the right is to sell the underlying
asset (a put option), the option will only be exercised if the underlying price is less than
the strike price. Under this logic, the payoff functions for buying European options
with a strike price s are

f call(p) = (p − s)+, f put(p) = (p − s)−,

where x+ = max(x, 0) and x− = (−x)+. The payoff function for selling (writing) a
European option is

f w,call(p) = − f call(p), f w,put(p) = − f put(p).

Futures Futures are contracts that obligate the buyer of the contract to buy or sell
the underlying asset at an agreed upon strike price. A long futures contract means the
party must buy the underlying asset at that strike price. Denoting the strike price of
the future by s, the payoff for buying a long futures contract is

f (p) = p − s.

A short futures contract means the party must sell the underlying asset at that strike
price. The return function for buying a short futures contract is

f (p) = s − p.

Binary optionsA binary option is a contract that pays either a fixed monetary amount
or nothing depending on the underlying’s price. For example, a binary option that
pays the buyer one dollar if the underlying asset is above a strike price s has a payoff
function

f (p) =
{
1 p ≥ s,

0 otherwise.

If we sell that same binary option, the payoff function is

f (p) =
{

−1 p ≥ s,

0 otherwise.

2.2 Discretized outcomes

For the remainder of the paper we will work with a discretized version of the price
p, meaning it can only take one of m values p1, . . . , pm , where we assume p1 <

p2 < · · · < pm . (We note that the discretization can be unequally spaced.) Since
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the methods that we describe involve convex optimization, they scale well (and often
linearly) with m (Boyd and Vandenberghe 2004); this implies that m can be chosen to
be large enough that the discretization error is negligible.

We can define a probability distribution over p as a vector π ∈ Rm , with Prob(p =
pi ) = πi . Such a vector is in the set

� = {π ∈ Rm | π ≥ 0, 1Tπ = 1},

i.e., the probability simplex in Rm .

2.3 The set of risk-neutral probabilities

Payoff matrix We can summarize the payoffs of each investment for each possible
outcome with the payoff matrix P ∈ Rm×n , with entries given by

Pi j = f j (pi ), i = 1, . . . ,m, j = 1, . . . , n.

Here Pi j is the payoff in dollars per unit invested in investment j , if outcome i occurs.
Arbitrage Let w ∈ Rn+ denote an investment vector, meaning we invest in a quantity
wi of the i th investment, and hold these investments until expiration. The overall
investment will cost us cTw now, and our expected payoff at expiration will beπT Pw,
meaning our expected return is (PTπ − c)Tw. Arbitrage is said to exist if there exists
an investment vector that guarantees positive expected return, i.e., there exists w ≥ 0
with (PTπ − c)Tw > 0. Equivalently, arbitrage is said to exist if the homogeneous
linear program (LP)

maximize (PTπ − c)Tw

subject to w ≥ 0,
(1)

with variable w, is unbounded above.

The set of risk-neutral probabilities We say that π is a risk-neutral probability (or
no-arbitrage distribution) if arbitrage is impossible, that is, if the optimal value of
problem (1) is bounded. By LP duality (von Neumann 1947; Dantzig 1963) or the
Farkas lemma (Farkas 1902), (1) is bounded if and only if PTπ ≤ c. This means that
the set of risk-neutral probabilities is the (convex) polyhedron

� = {π ∈ � | PTπ ≤ c}.

We note that if � is empty, then arbitrage exists. We can interpret π ∈ � as a
distribution over the outcomes for which it is impossible to invest and receive positive
expected return.
Another interpretation Consider the problem

maximize t
subject to Pw − (cTw)1 ≥ t1,

w ≥ 0,
(2)
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Fig. 1 An example of the set of risk-neutral probabilities �, denoted by the thick line segment. Here Pi
denotes the i th column of P

with variable w. (This problem is equivalent to problem 1.) If it is unbounded above,
then for every R > 0, there exists an investment vector w that guarantees our return
will be at least R, no matter what the outcome is. The dual is

maximize 0
subject to π ∈ �,

(3)

with variable π . Therefore, another interpretation of π ∈ � is as a certificate guaran-
teeing that it is impossible to always have positive return regardless of the outcome.
Example Suppose there are n = 2 investments, m = 2 outcomes, the prices are
c = (1, 1), and the payoff matrix is

P =
[
3/2 0
1/2 3/2

]
.

Then the set of risk-neutral probability distributions is

� = {(x, 1 − x) | 1/3 ≤ x ≤ 1/2}.

We visualize the construction of this set in Fig. 1.
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3 Convex optimization over risk-neutral probabilities

The general problem of convex optimization over risk-neutral probabilities is

minimize L(π)

subject to π ∈ �,
(4)

with variable π , where L : Rm → R ∪ {+∞} is convex (or quasiconvex). We use
infinite values of L to encode constraints. � is a polyhedron, so (4) is a convex
optimization problem (Boyd andVandenberghe 2004). In general problem (4) does not
have an analytical solution, but we can numerically find the global optimum efficiently
using modern convex optimization solvers (Boyd and Vandenberghe 2004). All of the
problems we describe below (and many others) are readily expressed in a few lines of
code using domain specific languages for convex optimization, such as CVX (Grant
and Boyd 2008, 2014), CVXPY (Diamond and Boyd 2016; Agrawal et al. 2018),
Convex.jl (Udell et al. 2014), or CVXR (Fu et al. 2019).

3.1 Functions of the price

Suppose g : R → R is some function of the underlying’s price at expiration; the
expectation of g is

Eg(p) =
m∑
i=1

πi g(pi ),

which is a linear function of π . Some examples of functions of the price include:

• The price Here g(p) = p. The expected value is the expected price.
• The return on an investment. Here g(p) = ∑n

i=1( fi (p)− ci )wi for an investment
w ∈ Rn+. The expected value is the expected return of the investment.

• Indicator functions of arbitrary sets Here g(p) = 1 if p ∈ C and 0 otherwise, for
some set C ⊆ R. The expected value is Prob(p ∈ C).

Bounds on expected values We can compute lower and upper bounds on expected
values of functions of the price by respectively letting L(π) = Eg(p) and L(π) =
−Eg(p) and solving problem (4). For example, we could compute bounds on the
expected price or the return on a given investment.

Bounds on ratios of expected values If we have another function f of the price, and
g(p) > 0, then the function

E f (p)

Eg(p)
=

∑
i πi f (pi )∑
i πi g(pi )

,

is quasilinear. We can find bounds on this ratio by minimizing and maximizing this
quantity, both of which are quasiconvex optimization problems. For example, we can
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compute bounds on Prob(p ∈ A | p ∈ B) for two sets A ⊆ R and B ⊆ R, since it is
equal to

Prob(p ∈ A ∩ B)

Prob(p ∈ B)
.

CDF The cumulative distribution function (CDF) of g is the function

F(x) = Prob(g(p) ≤ x) =
∑

g(pi )≤x

πi ,

which, for each x , is linear in π . For example, if g(p) = p, then F(x) is just the CDF
of the price. We can compute lower and upper bounds on the CDF at x = p1, . . . , pm,

by minimizing and maximizing F(x) subject to π ∈ �.
VaR The value-at-risk of g(p) at probability ε ∈ [0, 1] is defined as

VaR(g(p); ε) = inf{α | Prob(g(p) ≤ α) ≥ ε} = F−1(ε),

where F−1(ε) = inf{x | F(x) ≥ ε} (Duffie and Pan 1997). From the bounds on the
CDF, we can compute bounds on the value at risk as

F−1
max(ε) ≤ VaR(g(p); ε) ≤ F−1

min(ε).

CVaR The conditional value-at-risk of g(p) at probability ε is defined as (see, e.g.,
Rockafellar and Uryasev (2000))

CVaR(g(p); ε) = inf
β

(
β + E(g(p) − β)+

1 − ε

)
= min

i

⎛
⎝pi +

m∑
j=1

π j
(g(p j ) − pi )+

1 − ε

⎞
⎠ ,

which is a concave function of π . Therefore, we can find an upper bound onCVaR by
letting L(π) = −CVaR(g(p); ε). Since conditional value-at-risk is bounded below
by value-at-risk, F−1

max(ε) is a (trivial) lower bound.

Constraints We can incorporate upper or lower bounds on the expected values of
functions of the price as linear inequality constraints in the function L . These linear
inequality constraints can be interpreted as adding another investment. For example,
if we add the constraint aTπ ≤ b for a ∈ Rm and b ∈ R, this is the same as if we had
originally included an investment with a payoff function f (pi ) = ai and cost b.

3.2 Estimation

Maximum entropy We can find the maximum entropy risk-neutral probability by
letting

L(π) =
m∑
i=1

πi log(πi ).
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Minimum KL-divergence Given another distribution η ∈ �, we can find the clos-
est risk-neutral probability distribution to η as measured by Kullback–Leibler (KL)
divergence by letting

L(π) =
m∑
i=1

πi log(πi/ηi ).

Closest log-normal distribution We can approximately find the closest log-normal
distribution to�byperforming the following alternating projection procedure, starting
with π0 ∈ �:

• Fit a log-normal distribution to πk with mean and variance

μ =
m∑
i=1

πi log(pi ), σ 2 =
m∑
i=1

πi (log(pi ) − μ)2.

• Discretize this distribution, resulting in ηk ∈ �.
• Set πk+1 equal to the closest risk-neutral probability distribution to ηk , in terms of
KL-divergence. If πk+1 is close enough to ηk , then quit.

For better performance, this process may be repeated for various π0 ∈ �.

3.3 Bounds on costs

Suppose that wewant to add another investment, and would like to come upwith lower
and upper bounds on its cost subject to the constraint that arbitrage is impossible, i.e.,
there exists a risk-neutral probability distribution. Suppose the payoff function of the
new investment is f (pi ) = (pnew)i , where pnew ∈ Rm . We can find lower and upper
bounds on the cost of this new investment by respectively letting L(π) = pTnewπ and
L(π) = −pTnewπ and solving problem (4). (Bertsimas and Popescu 2002, Sect. 3)
were among the first to propose computing bounds on option prices based on prices
of other options.

Validation We can check whether our prediction is accurate by holding out each
investment one at a time and comparing the lower and upper bounds that we find with
the true price.

3.4 Sensitivities

Suppose L is convex and letλ� ∈ Rn+ denote the optimal dual variable for the constraint
PTπ ≤ c in problem (4), and let L�(c) denote the optimal value as a function of c.

A global inequality For �c ∈ Rn , the following global inequality holds (Boyd and
Vandenberghe 2004, Sect. 5.6):

L�(c + �c) ≥ L�(c) − (λ�)T�c.
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Local sensitivity Suppose L�(c) is differentiable at c. Then∇L�(c) = −λ� (Boyd and
Vandenberghe 2004, Sect. 5.6). This means that changing the costs of the investments
by �c ∈ Rn will decrease L� by roughly (λ�)T�c.

4 Numerical examples

We implemented all examples using CVXPY (Diamond and Boyd 2016; Agrawal
et al. 2018), and each required just a few lines of code. The code and data for all of
these examples have been made freely available online at www.github.com/cvxgrp/
cvx_opt_risk_neutral

4.1 Standard & poor’s 500 index

In our first example, we consider the Standard & Poor’s 500 index (SPX) as the
underlying, which is a market-capitalization-weighted index of 500 of the largest
publicly traded U.S. companies, and excludes dividends. We gathered the end-of-day
(EOD) best bid and ask price of all SPX options on June 3, 2019, as well as the price
of the index, which was 2744.45 dollars, from the OptionMetrics Ivy database via the
Wharton Research Data Services [1].

We discretized the expiration price from 1500 to 3999.50 dollars, in 50 cent incre-
ments, resulting inm = 5000 outcomes. We allowed six possible investments: buying
or selling puts, buying or selling calls, and buying or selling the underlying. The pay-
offs for each of these investments are described in Sect. 2. The cost of each investment
is the ask price if buying, the negative bid price if selling, plus a 65 cent fee for buy-
ing/selling each option (which at the time of writing are the fees for the TDAmeritrade
brokerage), and a 0.3% fee for buying or selling the underlying.

We consider the options that expire 25 days into the future, on June 28, 2019. There
were 112 puts and 81 calls expiring on June 28 that had non-empty order books, i.e.,
had at least one bid and ask quote. Therefore, we allow n = 2(112 + 81) + 2 = 388
investments.

Functions of the priceWe calculated bounds on the expected value of the expiration
price. The lower bound was 2745.77 dollars and the upper bound was 2747.03 dollars.
We then computed bounds on the probability that the expiration price is 20% below
the current price, given that the expiration price is less than the current price; this
probability was found to be between 0.4% and 2%. We also computed bounds on the
CDF, complementary CDF (CCDF), and VaR of the expiration price, and plot these
bounds in Fig. 2.

EstimationWecomputed themaximumentropy risk-neutral distribution, aswell as the
(approximately) closest log-normal distribution to the set of risk-neutral probabilities.
The closest log-normal distribution was log(p) ∼ N (7.917, 0.05). Via Monte-Carlo
simulation, we found that the annualized volatility of the index, assuming this log-
normal distribution, was 19%, which is on par with SPX’s historical volatility of 15%.
The resulting distributions are visualized in Fig. 3, and appear to be heavy-tailed to
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Fig. 2 SPX example. Bounds on CDF, VaR, and CCDF
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Fig. 4 SPX example. Bounds on costs

the left, meaning a large decrease in price is more probable than a large increase in
price.

Bounds on costs We held out each put and call option one at a time and computed
bounds on their bid and ask prices. In Fig. 4 we plot our computed lower and upper
bounds along with the true prices. We observe that the bounds seem to be quite tight,
and indeed bound the observed prices.

4.2 Bitcoin

In our next example, we consider the crypto-currency Bitcoin as the underlying. As
derivatives, we use Deribit European-style options and futures, whose underlying is
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Table 1 Bitcoin example. Dual
variables for entropy
maximization problem

Investment ci λ�
i

Short underlying −9847.65 0.001

Buy 9000 call 1191.268 0.001

Write 18000 call −19.69 0.0004

Buy 10000 call 659.63 0.0004

Buy 8000 call 1973.96 0.0002

the Deribit BTC index, which is the average of six leading BTC-USD exchange prices:
Bitstamp, Bittrex, Coinbase Pro, Gemini, Itbit, and Kraken. We gathered the prices of
March 27, 2020 Bitcoin options and futures on February 20, 2020 using the Deribit
API [15].

We discretized the expiration price from 5 to 29995 dollars, in 5 dollar increments,
resulting inm = 6000 outcomes. We allow six possible investments: buying or selling
puts, buying or selling calls, and buying or selling futures. The cost of each investment
is the ask price if buying, the negative bid price if selling, plus a 0.04% fee for option
transactions, a 0.075% fee for buying futures, and a 0.025% (market-maker) rebate
for selling futures (which at the time of writing are the fees for the Deribit exchange).

In total, there were 16 puts and 19 calls expiring on March 27, with strike prices
ranging from 4000 to 18000. This means there were n = 2(16+19)+2 = 72 possible
investments.

Functions of the priceWe calculated bounds on the expected value of the expiration
price. The lower bound was 9847.7 dollars and the upper bound was 9852.57 dollars.
We also computed bounds on the CDF, CCDF, and the value-at-risk of the expiration
price. In Fig. 5 we plot these bounds.

EstimationWecomputed themaximumentropy risk-neutral distribution, aswell as the
(approximately) closest log-normal distribution to the set of risk-neutral probabilities.
The closest log-normal distribution was log(p) ∼ N (9.174, 0.204). Via Monte-Carlo
simulation, we found that the annualized volatility of the index, assuming this log-
normal distribution,was 71.8%.The resulting distributions are visualized in Fig. 6, and
appear to be heavy-tailed to the right, which is the opposite of the S&P 500 example.

Bounds on costs We held out each put and call option one at a time and computed
bounds on their bid and ask prices. In Fig. 7 we plot our computed lower and upper
bounds along with the true prices. We observe that the bounds are quite tight, and
indeed bound the observed prices.

Sensitivities We computed the optimal dual variable of the constraint PTπ ≤ c for
the entropy maximization problem. In Table 1 we list the five largest dual variables,
along with their corresponding investments and costs. We observe that shorting the
underlying, as well as buying/writing various calls have the most effect on the max-
imum entropy risk-neutral probability. For example, if we decrease the price of the
9000 call by ten dollars, then the entropy will decrease by at least 0.01.
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Fig. 5 Bitcoin example. Bounds on CDF, VaR, and CCDF
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Fig. 6 Bitcoin example. Left: maximum entropy risk-neutral distribution; Right: closest log-normal distri-
bution
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Fig. 7 Bitcoin example. Bounds on costs

5 Conclusion

In this paper we described applications of minimizing a convex or quasiconvex func-
tion over the set of convex risk-neutral probabilities. These include computation of
bounds on the cumulative distribution, VaR, conditional probabilities, and prices of
new derivatives, as well as estimation problems. We reiterate that all of the aforemen-
tioned problems can be tractably solved, and due to DSLs, are easy to implement. A
potential avenue for future research is use the set of risk-neutral probabilities for mul-
tiple expiration dates to somehow connect the distribution of the underlying’s price
movements between those dates.
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