IEEE

L css

|IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022 2653
Embedded Code Generation With CVXPY
Maximilian Schaller™, Goran Banjac™', Steven Diamond, Member, IEEE, Akshay Agrawal,
Bartolomeo Stellato, Member, IEEE, and Stephen Boyd“, Fellow, IEEE
Abstract—We introduce CVXPYgen, a tool for generating We require that fy, . .., f, are convex functions, and g, ..., g

custom C code, suitable for embedded applications, that
solves a parameterized class of convex optimization prob-
lems. CVXPYgen is based on CVXPY, a Python-embedded
domain-specific language that supports a natural syntax
(that follows the mathematical description) for specifying
convex optimization problems. Along with the C implemen-
tation of a custom solver, CVXPYgen creates a Python
wrapper for prototyping and desktop (non-embedded)
applications. We give two examples, position control of
a quadcopter and back-testing a portfolio optimization
model. CVXPYgen outperforms a state-of-the-art code gen-
eration tool in terms of problem size it can handle, binary
code size, and solve times. CVXPYgen and the generated
solvers are open-source.

Index Terms—Computational embedded

systems, optimization.

methods,

[. INTRODUCTION

ONVEX optimization is used in many domains, includ-

ing signal and image processing [1], [2], control [3], [4],
and finance [5], [6], to mention just a few. A (parameterized)
convex optimization problem can be written as

minimize fy(x,)
subject to fi(x,0) <0,
4. 0) = 0, (1)

where x € R” is the optimization variable, fj is the objective
function to be minimized, f1, . . ., f,, are the inequality constraint
functions, and g; ..., g, are the equality constraint functions.

i=1,...,p
j=1,...,r

Manuscript received March 21, 2022; accepted April 21, 2022. Date
of publication May 6, 2022; date of current version May 16, 2022.
This work was supported in part by the European Research Council
(ERC) through the European Union’s Horizon 2020 Research and
Innovation Programme grant agreement under Grant 787845; in part
by the Stanford’s SystemX; and in part by the Al Chip Center for
Emerging Smart Systems (ACCESS). Recommended by Senior Editor
F. Dabbene. (Corresponding author: Maximilian Schaller.)

Maximilian Schaller and Goran Banjac are with the Department of
Information Technology and Electrical Engineering, ETH Zurich, 8092
Zurich, Switzerland (e-mail: mschaller@ethz.ch; gbanjac @ethz.ch).

Steven Diamond is with Gridmatic, Campbell, CA 95008 USA (e-mail:
steven @ gridmatic.com).

Akshay Agrawal and Stephen Boyd are with the Department of
Electrical Engineering, Stanford University, Stanford, CA 94305 USA
(e-mail: akshayka @ stanford.edu; boyd @ stanford.edu).

Bartolomeo Stellato is with the Department of Operations Research
and Financial Engineering, Princeton University, Princeton, NJ 08544
USA (e-mail: bstellato @princeton.edu).

Digital Object Identifier 10.1109/LCSYS.2022.3173209

are affine functions [7]. The parameter § € R? specifies data
that can change, but is constant and given when we solve
an instance of the problem. We refer to the parameterized
problem (1) as a problem family, when we specify a fixed
value of 6, we refer to it as a problem instance. We let x*
denote an optimal point for the problem (1), assuming it exists.

The problem family can be specified using a domain-
specific language (DSL) for convex optimization. Such
systems allow the user to specify the functions f; and g;
in a simple format that closely follows the mathematical
description of the problem. Examples include YALMIP [8]
and CVX [9] (in MATLAB), CVXPY [10] (in Python),
Convex.jl [11] and JuMP [12] (in Julia), and CVXR [13]
(in R). We focus on CVXPY, which provides an efficient way
of dealing with parameters, specifying problem families, not
just problem instances.

DSLs parse the problem description and translate (or canon-
icalize) it to an equivalent problem that is suitable for a solver
that handles some generic class of problems, such as linear
programs (LPs), quadratic programs (QPs), second-order cone
programs (SOCPs), semidefinite programs (SDPs), and others
such as exponential cone programs [7]. We focus on solvers
that are suitable for embedded applications, i.e., are single-
threaded, can be statically compiled, and do not make system
calls: OSQP [14] handles QPs, SCS [15] and ECOS [16]
handle cone programs that include SOCPs. After the canoni-
calized problem is solved, a solution of the original problem
is retrieved from a solution of the canonicalized problem.

It is useful to think of the whole process as a function that
maps 6, the parameter that specifies the problem instance,
into x*(0), an optimal value of the variable. With a DSL,
this process consists of three steps. First the original problem
description is canonicalized to a problem in some standard
(or canonical) form; then the canonicalized problem is solved
using a solver; and finally, a solution of the original problem
is retrieved from a solution of the canonicalized problem.

Most of these DSLs are organized as parser-solvers, which
carry out the canonicalization each time the problem is solved
(with different parameter values). This simple setting is illus-
trated in Figure 1(a). We are interested in applications where
we solve many instances of the problem, possibly in an
embedded application with hard real-time constraints. For such
applications, a code generator makes more sense. A code
generator takes as input a description of a problem family,
and generates specialized solver source code for that specific

2475-1456 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3743-3638
https://orcid.org/0000-0001-6038-1587
https://orcid.org/0000-0003-4684-7111
https://orcid.org/0000-0001-8353-6000

2654

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

I Parser-Solver

(a) Parser-solver calculating solution z* for problem instance with
parameter 6.

&

O Data/Information |:| Program

Source
Code

Compiler

Custom
Solver

—» Reading > Creating/Calculating

(b) Source code generation for problem family, followed by compi-
lation to custom solver. The compiled solver computes a solution z*
to the problem instance with parameter 6.

Fig. 1. Comparison of convex optimization problem parsing and solving
approaches.

family. That source code is then compiled, and we have an
efficient solver for the specific family.

This workflow is illustrated in Figure 1(b). The compiled
solver has a number of advantages over parser-solvers. First,
the compiled solver can be deployed in embedded systems, ful-
filling rules for safety-critical code [17]. Second, by caching
canonicalization and exploiting the problem structure, the
compiled solver is faster.

A well known code generator is CVXGEN [18]. It han-
dles problems that can be transformed to QPs and includes
a custom interior-point solver. CVXGEN is used in many
applications, including autonomous driving, dynamic energy
management, and real-time trading in finance. SpaceX uses
CVXGEN to generate flight code for high-speed onboard con-
vex optimization for precision landing of space rockets [19].

CVXGEN was designed for use in real-time control
systems, where the problems solved are not too big, either
in terms of the number of variables or number of parame-
ters. CVXGEN aggressively unrolls for-loops in its generated
source code files, which means that every iteration of a for-
loop is written as a separate instruction. This increases the
solving speed, but can also result in large compiled code
size. Due to the flat and explicit code generated, CVXGEN
only handles problems with up to around a few thousand
parameters. (More accurately, CVXGEN is limited to 4000
nonzero entries in the linear system of equations solved in
each iteration.)

A. Contribution

In this letter, we introduce the code generation tool
CVXPYgen, which produces custom C code to solve a param-
eterized family of convex optimization problems. The design
decisions for CVXPYgen are somewhat different from those
made for CVXGEN. First, CVXPYgen is built on top of the
DSL CVXPY, whereas CVXGEN is entirely self-contained.
This means that prototypes can be developed, prototyped,
and simulated in Python using CVXPY. Second, CVXPYgen
interfaces with multiple solvers, currently OSQP, SCS, and
ECOS. This means that CVXPYgen supports problems more

general than those that can be transformed to QPs. As far as we
know, CVXPYgen is the first generic code generator for con-
vex optimization that supports SOCPs. When using OSQP or
SCS (both based on first-order methods), the generated solvers
support warm-starting, which can bring more speed in some
applications [4]. Third, CVXPYgen does not aggressively
unroll loops in the generated code, which allows it to support
high-dimensional parameters. In addition, matrix parameters
can have any user-defined sparsity pattern. CVXPYgen uses
partial update canonicalization, in which only the parame-
ters changed are processed when solving a new problem
instance. Fourth, CVXPYgen and its generated solvers are
fully open-source, whereas CVXGEN is proprietary.

CVXPYgen (and more generally, code generation) is useful
for two families of practical applications. The first is solving
convex optimization problems in real-time settings on embed-
ded devices, as is done in control systems, real-time resource
allocators, and other applications. The second is in solving a
large number of instances of a problem family, possibly on
general-purpose computers. One example is back-testing in
finance, where a trading policy based on convex optimization
is simulated on historical or simulated data over many periods.
Typical back-tests involve solving thousands or more instances
of a problem family. In these applications, there is no hard
real-time constraint; the goal is simply to speed up solving by
avoiding repeatedly canonicalizing the problem.

B. Prior Work

Several other code generators for optimization have been
developed in addition to CVXGEN. FORCESPRO [20] and
FORCES NLP [21] are proprietary code generators for multi-
stage control problems. They handle problems that can be
transformed to multi-stage quadratically constrained quadratic
programs and nonlinear programs, respectively. The modu-
lar code generator acados [22] is open-source and specific to
nonlinear optimal control problems. We focus on general con-
vex problems up to SOCPs, as done by the open-source code
generators QCML [23] and CVXPY-CODEGEN [24], which
interface with ECOS. These early prototypes were developed
before CVXPY included support for parameters and are no
longer actively supported or maintained.

C. Outline

The remainder of this letter is structured as follows. In
Section II we describe, at a high level, how CVXPYgen
works, and in Section III, we illustrate how it is used with
a simple example. In Section IV and Section V we compare
CVXPYgen to CVXGEN (for embedded use) and CVXPY
(for general purpose use), respectively. We conclude this letter
in Section VI

Il. CVXPYGEN

CVXPYgen is based on the open-source Python-embedded
DSL CVXPY. CVXPY handles many types of conic programs
and certain types of nonconvex problems, whereas we focus on
LPs, QPs, and SOCPs for code generation. CVXPY provides
modeling instructions that follow the mathematical description
for convex optimization problems. It ensures that the modeled

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

SCHALLER et al.: EMBEDDED CODE GENERATION WITH CVXPY

2655

problems are convex, using disciplined convex programming
(DCP). DCP is the process of constructing convex functions
by assembling given base functions in mathematical expres-
sions using a simple set of rules [25]. DCP ensures that the
resulting problem is convex, and also, readily canonicalized to
a standard form.

In DCP, parameters are treated as constants, optionally
with specified sign, and there are no restrictions about how
these constants appear in the expressions defining the problem
family. The recently developed concept of disciplined param-
eterized programming (DPP) puts additional restrictions on
how parameters can enter a problem description. If a problem
family description is DPP-compliant, then canonicalization
and retrieval can be represented as affine mappings [26].
Thus DPP-compliant problems are reducible to ASA-form,
which stands for Affine-Solve-Affine [26]. This is the key prop-
erty we exploit in CVXPYgen. More about the DCP and
DPP rules can be found in the aforementioned papers, or at
https://www.cvxpy.org.

After CVXPY has reduced the DPP-compliant problem to
ASA-form, CVXPYgen extracts a sparse matrix C that canon-
icalizes the user-defined parameters 6 to the parameters 6
appearing in the standard form solver:

é:cﬁ}

CVXPYgen analyzes C to determine the user-defined param-
eters (i.e., components of 6) that every standardized form
parameter depends on. This information is used when generat-
ing the custom solver, where only slices of the above mapping
are computed if not all user-defined parameters are updated
between solves. In addition, it is very useful to know the set
of updated canonical parameters when using the OSQP solver
or SCS, as detailed below.

In a similar way the retrieval of the solution x* for the orig-
inal problem from a solution X* of the canonicalized problem

is an affine mapping,
-]

where R is a sparse matrix. Typically R is a selector matrix,
with only one nonzero entry in each row, equal to one, in
which case this step can be handled via simple pointers in C.

CVXPYgen generates allocation-, library-, and division-free
C code for the canonicalization and retrieval steps, which
in essence are nothing more than sparse matrix-vector mul-
tiplication, with some logic that exploits pointers or partial
updates. Sparse matrices are stored in compressed sparse col-
umn format [27] and dense matrices are stored as vectors via
column-major flattening.

Any solver can be used to solve the canonicalized problem,
which provides the final link:

¥ =38@0),

where S denotes the mapping from the canonicalized param-
eters to a solution of the canonicalized problem. (We assume
here that the problem instance is feasible, and that when
there are multiple solutions, we simply pick one.) If avail-
able, CVXPYgen uses the canonical solver’s code generation

method to produce C code for canonical solving. As of now,
only OSQP provides this functionality [28]. Otherwise, the
solver’s C code is simply copied, possibly modified for use in
embedded applications.

OSQP and SCS provide a set of C functions for updat-
ing their parameters. This way, when only canonical vector
parameters are updated, the factorization of the linear system
involved in the OSQP or SCS algorithms can be cached
and re-used, which can lead to substantial speed up and
division-free code. In the same way as only the parts of 6
are re-canonicalized that depend on the updated parts of 6,
only the OSQP or SCS update functions associated with these
parameters are called before the canonicalized problem is
solved.

The code and the full documentation for
CVXPYgen with its generated solvers are available at
https://pypi.org/project/cvxpygen.

Il1. SIMPLE EXAMPLE

We consider the nonnegative least squares problem
minimize [|Gx — hl|3
subject to x > 0, 2)

where x € R" is the variable and G € R™" h € R™ are
parameters, so 6 = (G, h). We will canonicalize this to the
standard form accepted by OSQP,

1
minimize EchPic +4'%
subject to | < AX < u, (3)

where ¥ € R” is the canonical variable and all other symbols
are canonical parameters, i.e., 6 = (P, q,A, L, u). (In this form,
entries of / can be —o0, and entries of u can be +00.)

The naive canonicalization of (2) to (3) takes X = x and

P=2G"G, ¢q=2G"h, A=11=0, u=oo.

In this canonicalization, 6 is not an affine function of 6, since
some entries of € are products of entries of 6.

The canonicalization that uses DPP first expresses
problem (2) as
minimize %2113

subject to X, = GX; —h, X1 >0,

with variable X = (X, x), where X} = x and X, € R”. We
can express this as (3) with parameters

0 0 G -1
PZ[O 21}’ =0, Az[[0]’
I=(h,0), u=(h,o00),

where the second part of # has oo in every entry, i.e., there is
no upper bound on the second part of Ax. In this canonical-
ization, 6 is indeed an affine function of 8. The retrieval map
has the simple (linear) form x* = [0]x*.

We generate code for this problem as shown in Figure 2.
The problem is modeled with CVXPY in lines 5-9. The actual
code generation is done in line 11. The variable and parameters
are named in lines 5-7 via their name attributes. These names
are used for C variable and function naming.

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

2656

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

import cvxpy as cp
from cvxpygen import cpg

model problem

x=cp.Variable (n, name='x")

G=cp.Parameter ((m,n), name='G")

h=cp.Parameter (m, name='h'")

p=cp.Problem(cp.Minimize (cp.sum_squares (G@x-h)),
[x>=01)

generate code

cpg.generate_code (p)

Fig. 2. Code generation for example (2). We assume that the
dimensions m and n have been previously defined.

1.0
z
P
5 0.5
g —e— CVXGEN
E —o— CVXPYgen
0.0 : . ! . !]
10 20 30 40 50 60
1000 1
(5]
N
S
> 500 -
2
2
0 : ! ! ! ! |
10 20 30 40 50 60
H

Fig. 3. Comparison of solve times (top) and binary sizes (bottom) with
CVXGEN (magenta) and CVXPYgen (blue) used for code generation.

IV. COMPARISON TO CVXGEN

We compare CVXPYgen to CVXGEN for a model
predictive control (MPC) problem family, described in
Appendix A. In particular, we compare solve times of the C
interface and executable sizes. The MPC problems are param-
eterized by their horizon length H € {6, 12, 18, 30, 60}; the
number of variables is around 10H. Figure 3 shows the result-
ing solve times averaged over 100 simulation steps, without
warm-starting. CVXGEN is not able to generate code for
H > 18, where the aforementioned limit of a few thou-
sand parameters is exceeded. More precisely, there would be
more than 4000 nonzero entries in the linear system of equa-
tions that is solved in every iteration. This limit is due to the
very explicit coding style of CVXGEN. In contrast, the cod-
ing style of CVXPYgen is less explicit, e.g., making use of
for-loops, thus longer horizons can be handled. CVXPYgen
outperforms CVXGEN for all problem sizes. The automati-
cally chosen OSQP solver is based on a very fast first-order
method, whereas CVXGEN uses an interior-point method. The
canonicalization and retrieval times with CVXPYgen are about
two orders of magnitude smaller than the canonical solve
times. Together, the overall solve times are smaller than with
CVXGEN. In fact, enabling warm-starting with CVXPYgen
(not possible with CVXGEN’s interior-point method) can
yield even more speed-up. The bottom of Figure 3 presents
the example executable sizes for CVXGEN and CVXPYgen,
respectively. For all values of H, the executables corresponding

Z,]
© —e— CVXPY
= —e— CVXPYgen
L 24
2
o}
s} ./‘_//./’
0 T T T T T
0 20 40 60 80 100
N
Fig. 4. Comparison of solve times with CVXPY (magenta) and the

CVXPY interface of CVXPYgen (blue).

to CVXPYgen are considerably smaller. The main reason is
the very explicit coding style of CVXGEN.

The execution times cited above are on a MacBook Pro
2.3GHz Intel i5. We have also used these generated solvers to
control the position of a custom-built 14-by-14 cm quadcopter.
The generated code was compiled in a robot operating system
(ROS) node, and run on the drone’s Intel Atom x5-Z8350
processor, at 30 Hz. We provide a video of the quadcopter
following a circle trajectory at https://bit.ly/30XzOnq.

V. COMPARISON TO CVXPY

Here we compare CVXPYgen to CVXPY, for a (finan-
cial) portfolio optimization problem family, described in
Appendix B. This family of problems is parameterized by the
number of assets in the portfolio N € {10, 20, 40, 60, 100}.
The number of variables in these problems is around 2N.
Figure 4 gives the results for 500 solves, a two year back-
test using historical data. We see that the average solver speed
is about 6 times faster with CVXPYgen, for N = 10, with
the ratio dropping to 2.5 for N = 100. The execution times
are measured on the same MacBook described in the previous
section.

An interesting metric is the break-even point, which is the
number of instances that need to be solved before CVXPYgen
is faster than CVXPY, when we include the code generation
and compilation time. This number is around 5000, and not too
dependent on N. A typical back-test might involve daily trading,
with around 250 trading days in each year, over 4 years, with
hundreds of different hyper-parameter values, which gives on
the order of 100,000 solves, well above this break-even point.

VI. CONCLUSION

We have described CVXPYgen, a tool for generating cus-
tom C code that solves instances of a family of convex
optimization problems specified within CVXPY. This gives
a seemless path from prototyping an application using Python
and CVXPY, to a final embedded implementation in C. In
addition to CVXPYgen supporting a wider variety of prob-
lems (such as SOCPs) than the state-of-the-art code generator
CVXGEN, numerical experiments show that it outperforms
CVXGEN in terms of allowable problem size, compiled code
size, and solve times. For applications running on general pur-
pose machines, we obtain a significant speedup over CVXPY
when many problem instances are to be solved. In the future,
it might be of interest to optimize the canonical problem

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

SCHALLER et al.: EMBEDDED CODE GENERATION WITH CVXPY

2657

representations for solve times or binary sizes, while retaining
ASA-representability.

APPENDIX A
MPC EXAMPLE

We use MPC to track the position and velocity of a quad-
copter with mass m, experiencing gravitational acceleration g.
We model the quadcopter as a point mass with position error
Pk € R? and velocity error vy € R3, where k denotes the
time step or period. We concatenate the position and veloc-
ity error to the state zx = (pg, vk) € RS, which we regulate
to 0. The input is the force vector u; € R without gravity
compensation. The dynamics are

Zk+1 = Az + Buy,

where A € R®%¢ and B € R®%3,

We limit the tilt angle of the quadcopter. Since the quad-
copter’s attitude is tied to the pointing direction of u plus
gravity compensation, we impose a (polyhedral) tilt angle
constraint as

of o <y () +mg), j=0,...,N®—1,

where (-)o.1 and (-)» denote the horizontal and vertical part
of a vector in R3 space, respectively, and y > 0. We use N
halfspaces parameterized through c¢;. Compared to a spheri-
cal (natural) tilt angle constraint, when added to the MPC
constraints, this formulation renders the problem QP repre-
sentable. The lower and upper thrust limits of the propellers
are represented as Uymin < (Ur)2 < Uymax With uymin < 0 and
Uymax > 0.
Up to horizon H, we penalize state errors and control effort
via the traditional quadratic cost
H-1
hQrzi + Y (zh Oz + uf Ruy),
k=0
with diagonal positive definite matrices Q and R, and positive
definite Qr, which is the solution to the discrete-time algebraic
Riccati equation (as a function of A, B, Q, and R). In addition,
at every stage, we discourage rapid changes of the input (that
the low-level attitude control system cannot follow) with the
additional cost term
H-1
D Gt — w) T(ur — w),
k=0
where T is diagonal positive definite. Combining all the above
constraints and cost terms, we arrive at the MPC problem
H-1
minimize zITJQTzH + Z (z,{sz + u,{Ruk—i—
k=0
(1 — w) T (g — ug))
subject 0 20 = Zmeas» U0 = Uprev
Zkt1 =Azr +Bug, k=0,...,H—1
Uymin < (Up)2 < Uymax, k=1,...,H—1
cf o < v (g +mg),

j=1,...,N®—1, k=1,...,H—1,

where the states z; and inputs u; are optimization variables.
The current state measurement iS Zmeas and the solution for
the input at the first stage from the previous solve is uprey. In
practice, these two would most certainly be the only param-
eters of the problem. However, for demonstration purposes,
we declare all other symbols (except for variables, all c;, Nbs,
and H) as parameters. This problem formulation is not DPP-
compliant, e.g., because of the multiplication of parameters y,
m, and g.

Before rewriting the problem in DPP-compliant form, we
define the following convenience notation for matrix slicing.
We use the zero-based counting scheme. M,.; .4 is the slice
of some matrix M from its rth to its rth row (included) and
from its cth to its dth column (included). We slice full columns
by omitting the row indices, i.e., M, is the cth column of M.
Finally, we write the DPP-compliant problem as

minimize [|Qy/*Zyll3 + 10" Zo.—1 1%
+ IR Uosi—1F + IT"*(Ur. — Uou-)I7
subject to Zy = Zmeas,
Zi.q = AZy.y—1 +BUp.p—1
Uymin < U2, 1:H-1 < Uymax
¢/ Uniii—1 < yUs a1 +d,
j=0,...,N®™—1,

Uy = Uprev

where Z € R&>*H+D and U € R¥>*#H+D are the variables and
contain the state and input vectors, respectively, for increasing
stage count in their columns. The vector d € R”~! contains
ymg in all its entries. The problem is parameterized by

1/2
QT/ , QI/Z’ R1/2’ T1/2’ A, B,
¥, d, Uymin, Uymax> Zmeas Uprev -

In the expressions above, M'/? denotes any squareroot of the
positive definite matrix M, e.g., the transposed Cholesky factor,
| - |r denotes the Frobenius norm, and the inequalities are
elementwise.

APPENDIX B
PORTFOLIO OPTIMIZATION EXAMPLE

We search for a portfolio of holdings in N assets and a cash
balance. The corresponding weights are w € RNT! where
the last entry represents the cash balance, and 17w = 1. We
impose a leverage limit ||w||; < L, where L > 1 is a parameter.

The return r € R¥*! has mean (or forecast) o € RV*!, so
the expected portfolio return is o’ w. The risk or variance of
the portfolio return is w’ Zw, where X is the positive definite
covariance matrix of the asset returns.

We consider two additional objective terms. One is a trad-
ing or transaction cost (x')7|w — wP™|, where the absolute
value is elementwise, wP™ is the previous period weights,
and «' > 0 is a parameter. The other is a short-selling cost
(T (w)_, where (w)_ = max{—w, 0} (elementwise), and
P> 0is a parameter.

The overall objective function is

. T
. T . ;
TW)/mkWTZW ytc (Ktc) lw Wprevl ysh (Ksh) w)_,

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

2658

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

where ™K, 1 and " are positive parameters that scale the
risk, transaction cost, and shorting cost, respectively.

Our final optimization problem is

T

maximize ol w — y" kT Tw

T
_ th(Ktc)T|W — WP 7/sh (KSh) (w)_

subject to 1'w =1, |lwl; <L,

where w € RVt! ig the variable, and all other symbols are
parameters.

The covariance matrix X takes the standard factor model
form,

> =FFT +D,

where F € RV+D>XK and D is positive definite diagonal. The
number of factors in this risk model is K, which is usually
much less than N.

This problem formulation is not DPP-compliant, but we
can rewrite it in DPP-compliant form by eliminating quadratic
forms and collecting products of parameters, as in

T
o
s T. 112 172, 112
maximize <W> w— F'wl; — D / wll3

tc T sh T
- () 1wt = (Tt -

Iwlh <L

subject to 17w = 1,

rev
Aw =w — wP™®,

where the portfolio weight vector w € R¥*! and the weight
change vector Aw € R¥*! are the variables. The problem is

parameterized by
t h
4 ¢ s ys sh
Y risk ’ y Tisk

o

prev
Y risk ’ w :

F, D' , L
We consider N stock assets, chosen randomly from the S&P
500, with historical return data from 2017-2019. For each

value of N, we set K = max(N/10, 5).

ACKNOWLEDGMENT

The authors would like to express their gratitude to John
Lygeros for enabling this collaboration. Moreover, the authors
would like to thank JunEn Low and Mac Schwager for provid-
ing the quadcopter testing environment at the Stanford Flight
Room. M. Schaller received the scholarship of the “German
Academic Scholarship Foundation™ for his studies at ETH,
where he conducted the research presented in this paper.

REFERENCES

[1] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 50-61,
May 2010.

[2] M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image
processing,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 76-88,
May 2010.

[3]

[4]

[5]

[6]

[7

—

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2,
pp. 267-278, Mar. 2010.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive con-
trol: Theory and practice—A survey,” Automatica, vol. 25, no. 3,
pp. 335-348, 1989.

S. Boyd et al, “Multi-period trading via convex optimization,”
Foundations Trends Optimization, vol. 3. Hanover, MA, USA: Now
Publ., 2017, pp. 1-76.

H. Markowitz, “Portfolio selection,” J. Finan., vol. 7, no. 1, pp. 77-91,
1952.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

J. Lofberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2004,
pp. 284-289.

M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex
Programming, Version 2.1, CVX Res., Austin, TX, USA, 2014.

S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling lan-
guage for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 1,
pp- 2909-2913, 2016.

M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd,
“Convex optimization in Julia,” in Proc. SC Workshop High Perform.
Tech. Comput. Dyn. Lang., 2014, pp. 18-28.

I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language
for mathematical optimization,” SIAM Rev., vol. 59, no. 2, pp. 295-320,
2017.

A. Fu, B. Narasimhan, and S. Boyd, “CVXR: An R package for disci-
plined convex optimization,” J. Stat. Softw., vol. 94, no. 14, pp. 1-34,
2020.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Math. Program.
Comput., vol. 12, no. 4, pp. 637-672, 2020.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” J. Optim.
Theory Appl., vol. 169, no. 3, pp. 1042-1068, 2016.

A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in Proc. IEEE Eur. Control Conf. (ECC), 2013,
pp- 3071-3076.

G. Holzmann, “The power of 10: Rules for developing safety-critical
code,” Computer, vol. 39, no. 6, pp. 95-99, 2006.

J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optim. Eng., vol. 13, no. 1, pp. 1-27, 2012.

L. Blackmore, “Autonomous precision landing of space rockets,” in
Proc. Front. Eng. Rep. Leading-Edge Eng. Symp., Washington, DC,
USA, 2016, pp. 15-20.

A. Domabhidi and J. Jerez. “FORCES Professional.” Embotech AG. 2019.
[Online]. Available: https://embotech.com/FORCES-Pro

A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP: An
efficient implementation of interior-point methods for multistage non-
linear nonconvex programs,” Int. J. Control, vol. 93, no. 1, pp. 13-29,
2020.

R. Verschueren et al., “acados—A modular open-source framework
for fast embedded optimal control,” Math. Program. Comput., vol. 14,
pp. 147-183, Oct. 2021.

E. Chu and S. Boyd. “QCML: Quadratic Cone Modeling Language.”
2017. [Online]. Available: https://github.com/cvxgrp/qcml

N. Moehle, J. Mattingley, and S. Boyd. “Embedded Convex
Optimization with CVXPY.” 2017. [Online]. Available:
https://github.com/moehle/cvxpy_codegen

M. Grant, “Disciplined convex programming,” Dept. Electr. Eng.,
Stanford Univ., Stanford, CA, USA, 2004.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing System (NeurIPS). Red Hook, NY, USA: Curran,
2019.

A. Bulug, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proc. Symp. Parallelism Algorithms
Archit. (SPAA), 2009, pp. 233-244.

G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd, “Embedded code generation using the OSQP solver,” in Proc.
IEEE Conf. Decis. Control (CDC), 2017, pp. 1906-1911.

Authorized licensed use limited to: Stanford University. Downloaded on May 18,2022 at 02:45:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

