
Differentiable Convex Optimization Layers

Akshay Agrawal Brandon Amos Shane Barratt Stephen Boyd
Steven Diamond J. Zico Kolter

Stanford University Carnegie Mellon University Facebook AI

Convex optimization

Convex optimization problems

minimize f (x ; θ)
subject to g(x ; θ) ≤ 0

A(θ)x = b(θ)

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex

i.e., graphs of fi curve upward

I equality constraints are linear

I find a value for x that minimizes objective, while satisfying constraints

Why convex optimization?

I beautiful, fairly complete, and useful theory

I solution algorithms that work well, in theory and practice

I many applications in
I machine learning, statistics
I control
I signal, image processing
I networking
I engineering design
I finance

. . . and many more

How do you solve a convex optimization problem?

use someone else’s (‘standard’) solver

I your problem must be written in a standard form

I analogous to writing machine code

write your own (custom) solver

I lots of work, but can take advantage of special structure

use a domain-specific language

I transforms user-friendly format into solver-friendly standard form

I extends reach of problems solvable by standard solvers

Domain-specific languages (DSLs)

I DSLs make it easy to specify and solve convex problems

I Grammar and semantics based on a rule from convex analysis [GBY06]

I Examples: CVXPY, CVXR, Convex.jl, CVX

p0

DSL Front End Analyzer

LP

QP

SDP

CFP

Back Ends

Si

S2

S1
...

...

Sk

Rewriting System

pn

Solver

Example

CVXPY is a Python-embedded DSL [DB16; AVD+18]

1 import cvxpy as cp

2 import numpy as np

3

4 m, n = 30, 20

5 A = np.random.randn(m, n)

6 b = np.random.randn(m)

7

8 x = cp.Variable(n)

9 objective = cp.Minimize(cp.sum_squares(A @ x - b))

10 constraints = [0 <= x, x <= 1]

11 problem = cp.Problem(objective, constraints)

12 problem.solve()

Neural networks?

Differentiable programming

I Deep learning uses derivatives (“backpropagation”) to train neural networks

I A special case of differentiable programming
I Library of parametrized atomic functions
I Each atomic function is differentiable
I A differentiable program is a composition of atomic functions
I Use chain rule to tune parameters to better achieve some goal

Differentiable programming

This talk: (analytically) differentiating through CVXPY

Why?

I encode prior knowledge (e.g., physics) into a differentiable program

I implement hard constraints or specialized operations in a neural network

I sensitivity analysis

I learn the structure of convex problems
I learn to control a vehicle
I model utility functions for agents
I tune portfolio optimization policies

and more . . .

Differentiating through convex optimization problems

Parametrized convex optimization problems

A convex optimization problem with variable x ∈ Rn can be parametrized by
numerical data θ ∈ Rp:

minimize f0(x ; θ)
subject to fi(x ; θ) ≤ 0, i = 1, . . . ,m

A(θ)x = b(θ),

(here, A and b are functions of θ).

Parametrized convex optimization problems

Toy example:
minimize (x − 2θ)2,

with variable x ∈ R and parameter θ ∈ R.

I Each choice of θ induces a new optimization problem.

Parametrized convex optimization problems

Toy example, in CVXPY:

1 import cvxpy as cp

2

3 theta = cp.Parameter()

4 x = cp.Variable()

5 objective = (x - 2*theta)**2

6 problem = cp.Problem(cp.Minimize(objective))

7

8 # solve an instance of problem with theta == 3.0

9 theta.value = 3.0

10 problem.solve()

Solution mapping of a convex optimization problem

I A convex problem can be viewed as a map from parameters to solutions

x?(θ) = argmin f0(x ; θ)
subject to fi(x ; θ) ≤ 0, i = 1, . . . ,m

A(θ)x = b(θ)

I x?(θ) = {2θ} for the problem of minimizing (x − 2θ)2

I For most problems x?(θ) cannot be written down analytically

Derivative of the solution map of a convex problem

I When x?(θ) is single-valued, we can compute its derivative [ABB+19]

I requires implicitly differentiating optimality conditions of a cone program

I For our toy example, x?(θ) = 2θ, dx?

dθ (θ) = 2

I Can efficiently differentiate through problems, even when solution is not analytical

Differentiating through CVXPY

Solution map of a parametrized CVXPY problem: x?(θ) = (R ◦ S ◦ C)(θ)

I Problem is canonicalized (C) to a standard form

I The canonicalized problem is solved (S)

I A solution for the original problem is retrieved (R)

θ x (θ)C S R

Differentiating through CVXPY

We can efficiently differentiate through C , S , and R [AAB+19]

I in fact, we ensure C and R are affine

I we call this affine-solver-affine (ASA) form

I we introduce a grammar that ensures problem is in ASA form

Differentiating through CVXPY

Differentiate through the solver (S) by differentiating through a cone program

I every convex program can be written as a convex cone program

I solving a cone program equivalent to finding a 0 of a map N
I a vector z can be used to construct a solution of a cone program if and only

if N (z ,Q) = 0, where Q is an embedding of problem data

I if technical conditions are satisfied, the solution z is given by a function of
Q, and we can compute its derivative

I application of implicit function theorem

I details in [ABB+19]

Differentiating through CVXPY

1 import cvxpy as cp

2

3 theta = cp.Parameter()

4 x = cp.Variable()

5 objective = (x - 2*theta)**2

6 problem = cp.Problem(cp.Minimize(objective))

7

8 theta.value = 3.0

9 problem.solve(requires_grad=True)

10 problem.backward() # backpropagate through solution

11 print(theta.gradient) # theta.gradient now equals 2.0

Exporting to PyTorch and TensorFlow

cvxpylayers: an open-source library for exporting CVXPY problems to PyTorch
and TensorFlow

Exporting to PyTorch and TensorFlow

1 from cvxpylayers.torch import CvxpyLayer

2 import torch

3

4 # export to torch (or tensorflow) with just one line

5 layer = CvxpyLayer(problem, parameters=[theta], variables=[x])

6

7 theta_tch = torch.tensor(3.0, requires_grad=True)

8 soln = layer(theta_tch)[0]

9 soln.backward()

10 print(theta_tch.grad)

Examples

Learning convex-optimization control policies

Consider a stochastic control problem

minimize lim
T→∞

E
[

1
T

∑T−1
t=0 ‖xt‖2

2 + ‖φ(xt)‖2
2

]
subject to xt+1 = Axt + Bφ(xt) + ωt , t = 0, 1, . . . ,

‖φ(xt)‖∞ ≤ umax, t = 0, 1, . . . ,

I xt ∈ Rn is the state, φ(xt) ∈ Rm the control, ωt is random

I expectation is over ωt and x0

I optimization is over states xt and policy φ : Rn → Rm

I this problem is computationally intractable

Learning convex-optimization control policies

I Common heuristic for stochastic control is approximate dynammic
programming (ADP), which parametrizes φ

I ADP replaces minimization over functions φ with minimization over
parameters

I Differentiable convex optimization layers can be used in an ADP method

Learning convex-optimization control policies

I Take φ to be the solution of a convex optimization problem:

φ(xt) = argmin
u

‖P1/2(Axt + Bu)‖2
2 + ‖u‖2

2

subject to ‖u‖∞ ≤ umax

I Here, the parameter is P1/2 ∈ Rn×n

I Learning method:
I simulate the system with the policy in the loop
I approximate expected cost
I update P1/2 using gradient descent

Learning convex-optimization control policies

0 20 40 60 80 100
iteration

101

1.1 × 101

1.2 × 101

1.3 × 101

1.4 × 101

1.5 × 101

1.6 × 101

1.7 × 101

1.8 × 101

ex
pe

ct
ed

 c
os

t
clf_lqr
clipped LQR
clf_lb
lower bound

Learning convex-optimization control policies

I Many real-world applications, including
I finance
I vehicle control
I supply-chain management

I See our paper: “Learning convex-optimization control policies”

Data poisoning attack

I given data (xi , yi), i = 1, . . . ,m
I xi ∈ Rn are feature vectors
I yi ∈ {0, 1} are associated boolean outcomes

I linear classifier: ŷ = 1[βTx ≥ 0]

I find optimal weights β? by minimizing

(1/m)
∑
i

L(β; xi , yi) + r(β)

I L(β; xi , yi) = log(1 + exp(βT xi + b))− yiβ
T xi is the logistic loss

I r(β) = 0.1‖β‖1 + 0.1‖β‖2
2 is elastic-net regularization

I adversary seeks to increase test loss Ltest(β?) by (just barely) perturbing
training data

Data poisoning attack
I β? is a solution to a convex problem parametrized by xi
I ∇xiLtest(β?) gives direction xi should be moved to achieve greatest increase

in test loss

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8
train
test

Data poisoning attack

X = cp.Parameter((m, n))

beta = cp.Variable(n)

log_likelihood = cp.sum(

cp.multiply(Y, X @ beta) - cp.logistic(X @ beta)

)

r = 0.1*cp.norm(beta, 1) + 0.1*cp.norm(beta, 2)**2)

problem = cp.Problem(cp.Minimize(-log_likelihood/m + r))

fit_logreg = CvxpyLayer(problem, parameters=[X], variables=[beta])

beta_star = fit_logreg(X_train)[0]

test_loss = compute_loss(beta_star, X_test, Y_test)

test_loss.backward()

Summary

Our software makes it easy to differentiate through DSLs for convex
optimization, letting you pair

I convex optimization
I rich modelling capabilities
I large number of applications
I efficient solution algorithms
I mature, high-level software libraries

I with machine learning

Software

https://github.com/cvxgrp/cvxpylayers

https://github.com/cvxgrp/cvxpy

https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpy

References

[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances
in Neural Information Processing Systems. 2019.

[ABB+19] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone program. Journal of Applied and
Numerical Optimization 1.2 (2019), pp. 107–115.

[AVD+18] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex optimization problems. Journal of
Control and Decision 5.1 (2018), pp. 42–60.

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine
Learning Research 17.1 (2016), pp. 2909–2913.

[GBY06] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global optimization. Springer, 2006, pp. 155–210.

Additional examples

Tuning a Markowitz policy

0 5 10 15 20

Stage

−0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Untuned

0 5 10 15 20

Stage

−0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Tuned

0 5 10 15 20

Stage

�0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Tuned

VTI

VEA

VWO

VNQ

XLE

BND

SCHP

VTEB

VIG

Figure: left: untuned; right: policy with tuned constraints, mean and covariance

Tracking a vehicle trajectory

10 0 10 20 30 40
0

10

20

30

40

50

60

30 20 10 0 10 20 30 40
0

10

20

30

40

50

60

70

100 101

expected cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

co
un

t

untrained COCP
trained COCP

Figure: left: untrained path; middle: trained path: right: expected cost histogram.

