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Convex optimization



Convex optimization problems

minimize  f(x; )
subject to g(x;0) <0
A(0)x = b(0)
with variable x € R”
» objective and inequality constraints fy, ..., f,, are convex

i.e., graphs of f; curve upward
» equality constraints are linear

» find a value for x that minimizes objective, while satisfying constraints



Why convex optimization?

» beautiful, fairly complete, and useful theory
» solution algorithms that work well, in theory and practice
» many applications in

» machine learning, statistics

» control

» signal, image processing

» networking

> engineering design

» finance

...and many more



How do you solve a convex optimization problem?

use someone else’s (‘standard’) solver
» your problem must be written in a standard form

» analogous to writing machine code

write your own (custom) solver

» lots of work, but can take advantage of special structure

use a domain-specific language
» transforms user-friendly format into solver-friendly standard form

» extends reach of problems solvable by standard solvers



Domain-specific languages (DSLs)

» DSLs make it easy to specify and solve convex problems

» Grammar and semantics based on a rule from convex analysis [GBY06]
» Examples: CVXPY, CVXR, Convex.jl, CVX
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Example

CVXPY is a Python-embedded DSL [DB16; AVD 18]

1 import cvxpy as cp

2 import numpy as np

3

4 m, n = 30, 20

5 A = np.random.randn(m, n)

6 b = np.random.randn(m)

7

8 x = cp.Variable(n)

9 objective = cp.Minimize(cp.sum_squares(A @ x - b))
10 constraints = [0 <= x, x <= 1]

11 problem = cp.Problem(objective, constraints)
12 problem.solve()



Neural networks?



Differentiable programming

» Deep learning uses derivatives (“backpropagation”) to train neural networks
» A special case of differentiable programming

» Library of parametrized atomic functions

» Each atomic function is differentiable

» A differentiable program is a composition of atomic functions

» Use chain rule to tune parameters to better achieve some goal



Differentiable programming

This talk: (analytically) differentiating through CVXPY

Why?
» encode prior knowledge (e.g., physics) into a differentiable program
» implement hard constraints or specialized operations in a neural network
» sensitivity analysis
» learn the structure of convex problems

» learn to control a vehicle
» model utility functions for agents
» tune portfolio optimization policies

and more . ..



Differentiating through convex optimization problems



Parametrized convex optimization problems

A convex optimization problem with variable x € R" can be parametrized by
numerical data 6 € R”:

><
>
~

minimize  fo(x;
subject to  f;(x;

(here, A and b are functions of 6).



Parametrized convex optimization problems

Toy example:
minimize (x — 260)?,

with variable x € R and parameter 6 € R.

» Each choice of # induces a new optimization problem.



Parametrized convex optimization problems

Toy example, in CVXPY:

import cvxpy as cp

1
2
3 theta = cp.Parameter()

4 x = cp.Variable()

5 objective = (x - 2*theta)*x2

6 problem = cp.Problem(cp.Minimize(objective))
7
8
9

# solve an instance of problem with theta == 3.0
theta.value = 3.0
10 problem.solve()



Solution mapping of a convex optimization problem

» A convex problem can be viewed as a map from parameters to solutions

x*(f#) = argmin fo(x; 6)
subject to fi(x;0) <0, i=1,....m
A(0)x = b(0)

» x*(0) = {20} for the problem of minimizing (x — 26)?
» For most problems x*(#) cannot be written down analytically



Derivative of the solution map of a convex problem

» When x*(0) is single-valued, we can compute its derivative [ABBT19]
» requires implicitly differentiating optimality conditions of a cone program

» For our toy example, x*(6) = 26, ‘3(0* 6)=2

» Can efficiently differentiate through problems, even when solution is not analytical



Differentiating through CVXPY

Solution map of a parametrized CVXPY problem: x*(#) = (Ro S o C)(0)
» Problem is canonicalized (C) to a standard form
» The canonicalized problem is solved (S)

» A solution for the original problem is retrieved (R)

6——| C S + R ——Xx*(6)




Differentiating through CVXPY

We can efficiently differentiate through C, S, and R [AAB*19]
» in fact, we ensure C and R are affine
» we call this affine-solver-affine (ASA) form

» we introduce a grammar that ensures problem is in ASA form



Differentiating through CVXPY

Differentiate through the solver (S) by differentiating through a cone program
> every convex program can be written as a convex cone program
» solving a cone program equivalent to finding a 0 of a map NV

» a vector z can be used to construct a solution of a cone program if and only
if N(z, Q) =0, where Q is an embedding of problem data

if technical conditions are satisfied, the solution z is given by a function of
Q, and we can compute its derivative

v

» application of implicit function theorem

details in [ABB*19]

v



Differentiating through CVXPY

1 import cvxpy as cp

2

3 theta = cp.Parameter()

4 X = cp.Variable()

5 objective = (x - 2*theta)**2

6 problem = cp.Problem(cp.Minimize(objective))

7

8 theta.value = 3.0

9 problem.solve(requires_grad=True)

10 problem.backward() # backpropagate through solution
11 print(theta.gradient) # theta.gradient now equals 2.0



Exporting to Py Torch and TensorFlow

cvxpylayers: an open-source library for exporting CVXPY problems to PyTorch
and TensorFlow

LXpy | O PyTorch

x*(6) = argmin f(x;0)

bj x ;0)<0
subject to ‘}qlg‘ gg =0 q Tensor




Exporting to Py Torch and TensorFlow

1 from cvxpylayers.torch import CvxpyLayer

2 import torch

3

4 # export to torch (or tensorflow) with just one line

5 layer = CvxpyLayer(problem, parameters=[thetal], variables=[x])
6

7 theta_tch = torch.tensor(3.0, requires_grad=True)

8 soln = layer(theta_tch) [0]

9 soln.backward()

10 print (theta_tch.grad)



Examples



Learning convex-optimization control policies

Consider a stochastic control problem

minimize TlinooE [% ZtT;ol |xe||3 + ||¢(Xt)||§]

subject to  x;y1 = Axs + Bo(x:) +we, t=0,1,...

||¢(Xt)||00 S umax7 t:0717"'a

v

x; € R" is the state, ¢(x;) € R™ the control, w; is random

expectation is over w; and xg

v

v

optimization is over states x; and policy ¢ : R” — R™

v

this problem is computationally intractable



Learning convex-optimization control policies

» Common heuristic for stochastic control is approximate dynammic
programming (ADP), which parametrizes ¢

» ADP replaces minimization over functions ¢ with minimization over
parameters

» Differentiable convex optimization layers can be used in an ADP method



Learning convex-optimization control policies

» Take ¢ to be the solution of a convex optimization problem:

¢(x) = argmin  ||PY2(Ax + Bu)|[3 + [|ull3

u
subject to  ||u||eo < U™

» Here, the parameter is PY/2 ¢ R"™*"

» Learning method:
» simulate the system with the policy in the loop
» approximate expected cost
» update P'/2 using gradient descent



Learning convex-optimization control policies
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Learning convex-optimization control policies

» Many real-world applications, including

» finance
» vehicle control
» supply-chain management

» See our paper: “Learning convex-optimization control policies”



Data poisoning attack

» given data (x;,y), i=1,....,m
» x; € R" are feature vectors
» y; € {0,1} are associated boolean outcomes

» linear classifier: § = 1[37x > 0]

» find optimal weights 5* by minimizing

(1/m) Z L(B: xi, i) + r(B)

» L(B;xi,yi) = log(1 + exp(87 x; + b)) — y; 7 x; is the logistic loss
» r(B) = 0.1||8]]1 + 0.1||3||3 is elastic-net regularization
» adversary seeks to increase test loss £''(3*) by (just barely) perturbing
training data



Data poisoning attack

» [5* is a solution to a convex problem parametrized by x;
» V, L'(3*) gives direction x; should be moved to achieve greatest increase
in test loss

—== train
64 >~ — test




Data poisoning attack

X = cp.Parameter((m, n))
beta = cp.Variable(n)
log_likelihood = cp.sum(

cp.multiply(Y, X @ beta) - cp.logistic(X @ beta)
)
r = 0.1*cp.norm(beta, 1) + 0.1xcp.norm(beta, 2)*%*2)
problem = cp.Problem(cp.Minimize(-log_likelihood/m + 1))
fit_logreg = CvxpylLayer (problem, parameters=[X], variables=[betal)
beta_star = fit_logreg(X_train) [0]
test_loss = compute_loss(beta_star, X_test, Y_test)
test_loss.backward()



Summary

Our software makes it easy to differentiate through DSLs for convex
optimization, letting you pair
» convex optimization
» rich modelling capabilities
» large number of applications
» efficient solution algorithms
» mature, high-level software libraries

» with machine learning



Software

https://github.com/cvxgrp/cvxpylayers

https://github.com/cvxgrp/cvxpy


https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpy
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Additional examples



Tuning a Markowitz policy
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Figure: left: untuned; right: policy with tuned constraints, mean and covariance



Tracking a vehicle trajectory
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Figure: left: untrained path; middle: trained path: right: expected cost histogram.
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