Differentiable Convex Optimization Layers

Akshay Agrawal Brandon Amos Shane Barratt Stephen Boyd
Steven Diamond J. Zico Kolter

Stanford University Carnegie Mellon University Facebook Al

Convex optimization

Convex optimization problems

minimize f(x;)
subject to g(x;0) <0
A(0)x = b(0)
with variable x € R”
» objective and inequality constraints fy, ..., f,, are convex

i.e., graphs of f; curve upward
» equality constraints are linear

» find a value for x that minimizes objective, while satisfying constraints

Why convex optimization?

» beautiful, fairly complete, and useful theory
» solution algorithms that work well, in theory and practice
» many applications in

» machine learning, statistics

» control

» signal, image processing

» networking

> engineering design

» finance

...and many more

How do you solve a convex optimization problem?

use someone else’s (‘standard’) solver
» your problem must be written in a standard form

» analogous to writing machine code

write your own (custom) solver

» lots of work, but can take advantage of special structure

use a domain-specific language
» transforms user-friendly format into solver-friendly standard form

» extends reach of problems solvable by standard solvers

Domain-specific languages (DSLs)

» DSLs make it easy to specify and solve convex problems

» Grammar and semantics based on a rule from convex analysis [GBY06]
» Examples: CVXPY, CVXR, Convex.jl, CVX

. Rewriting System

= Analyzer

®

N

[@Front End

Solver

Example

CVXPY is a Python-embedded DSL [DB16; AVD 18]

1 import cvxpy as cp

2 import numpy as np

3

4 m, n = 30, 20

5 A = np.random.randn(m, n)

6 b = np.random.randn(m)

7

8 x = cp.Variable(n)

9 objective = cp.Minimize(cp.sum_squares(A @ x - b))
10 constraints = [0 <= x, x <= 1]

11 problem = cp.Problem(objective, constraints)
12 problem.solve()

Neural networks?

Differentiable programming

» Deep learning uses derivatives (“backpropagation”) to train neural networks
» A special case of differentiable programming

» Library of parametrized atomic functions

» Each atomic function is differentiable

» A differentiable program is a composition of atomic functions

» Use chain rule to tune parameters to better achieve some goal

Differentiable programming

This talk: (analytically) differentiating through CVXPY

Why?
» encode prior knowledge (e.g., physics) into a differentiable program
» implement hard constraints or specialized operations in a neural network
» sensitivity analysis
» learn the structure of convex problems

» learn to control a vehicle
» model utility functions for agents
» tune portfolio optimization policies

and more . ..

Differentiating through convex optimization problems

Parametrized convex optimization problems

A convex optimization problem with variable x € R" can be parametrized by
numerical data 6 € R”:

><
>
~

minimize fo(x;
subject to f;(x;

(here, A and b are functions of 6).

Parametrized convex optimization problems

Toy example:
minimize (x — 260)?,

with variable x € R and parameter 6 € R.

» Each choice of # induces a new optimization problem.

Parametrized convex optimization problems

Toy example, in CVXPY:

import cvxpy as cp

1
2
3 theta = cp.Parameter()

4 x = cp.Variable()

5 objective = (x - 2*theta)*x2

6 problem = cp.Problem(cp.Minimize(objective))
7
8
9

solve an instance of problem with theta == 3.0
theta.value = 3.0
10 problem.solve()

Solution mapping of a convex optimization problem

» A convex problem can be viewed as a map from parameters to solutions

x*(f#) = argmin fo(x; 6)
subject to fi(x;0) <0, i=1,....m
A(0)x = b(0)

» x*(0) = {20} for the problem of minimizing (x — 26)?
» For most problems x*(#) cannot be written down analytically

Derivative of the solution map of a convex problem

» When x*(0) is single-valued, we can compute its derivative [ABBT19]
» requires implicitly differentiating optimality conditions of a cone program

» For our toy example, x*(6) = 26, ‘3(0* 6)=2

» Can efficiently differentiate through problems, even when solution is not analytical

Differentiating through CVXPY

Solution map of a parametrized CVXPY problem: x*(#) = (Ro S o C)(0)
» Problem is canonicalized (C) to a standard form
» The canonicalized problem is solved (S)

» A solution for the original problem is retrieved (R)

6——| C S + R ——Xx*(6)

Differentiating through CVXPY

We can efficiently differentiate through C, S, and R [AAB*19]
» in fact, we ensure C and R are affine
» we call this affine-solver-affine (ASA) form

» we introduce a grammar that ensures problem is in ASA form

Differentiating through CVXPY

Differentiate through the solver (S) by differentiating through a cone program
> every convex program can be written as a convex cone program
» solving a cone program equivalent to finding a 0 of a map NV

» a vector z can be used to construct a solution of a cone program if and only
if N(z, Q) =0, where Q is an embedding of problem data

if technical conditions are satisfied, the solution z is given by a function of
Q, and we can compute its derivative

v

» application of implicit function theorem

details in [ABB*19]

v

Differentiating through CVXPY

1 import cvxpy as cp

2

3 theta = cp.Parameter()

4 X = cp.Variable()

5 objective = (x - 2*theta)**2

6 problem = cp.Problem(cp.Minimize(objective))

7

8 theta.value = 3.0

9 problem.solve(requires_grad=True)

10 problem.backward() # backpropagate through solution
11 print(theta.gradient) # theta.gradient now equals 2.0

Exporting to Py Torch and TensorFlow

cvxpylayers: an open-source library for exporting CVXPY problems to PyTorch
and TensorFlow

LXpy | O PyTorch

x*(6) = argmin f(x;0)

bj x ;0)<0
subject to ‘}qlg‘ gg =0 q Tensor

Exporting to Py Torch and TensorFlow

1 from cvxpylayers.torch import CvxpyLayer

2 import torch

3

4 # export to torch (or tensorflow) with just one line

5 layer = CvxpyLayer(problem, parameters=[thetal], variables=[x])
6

7 theta_tch = torch.tensor(3.0, requires_grad=True)

8 soln = layer(theta_tch) [0]

9 soln.backward()

10 print (theta_tch.grad)

Examples

Learning convex-optimization control policies

Consider a stochastic control problem

minimize TlinooE [% ZtT;ol |xe||3 + ||¢(Xt)||§]

subject to x;y1 = Axs + Bo(x:) +we, t=0,1,...

||¢(Xt)||00 S umax7 t:0717"'a

v

x; € R" is the state, ¢(x;) € R™ the control, w; is random

expectation is over w; and xg

v

v

optimization is over states x; and policy ¢ : R” — R™

v

this problem is computationally intractable

Learning convex-optimization control policies

» Common heuristic for stochastic control is approximate dynammic
programming (ADP), which parametrizes ¢

» ADP replaces minimization over functions ¢ with minimization over
parameters

» Differentiable convex optimization layers can be used in an ADP method

Learning convex-optimization control policies

» Take ¢ to be the solution of a convex optimization problem:

¢(x) = argmin ||PY2(Ax + Bu)|[3 + [|ull3

u
subject to ||u||eo < U™

» Here, the parameter is PY/2 ¢ R"™*"

» Learning method:
» simulate the system with the policy in the loop
» approximate expected cost
» update P'/2 using gradient descent

Learning convex-optimization control policies

1.8 x 10!

— clf_Igr

—-- clipped LQR]|

T —=-clf Ib [
----- lower bound

1.7 x 10!

1.6 x101 {
1.5 x 10!

1.4 x 10!

13X 10! pmmmmm e T e -

1.2 x 10!

1.1 x 10!

10!

iteration

Learning convex-optimization control policies

» Many real-world applications, including

» finance
» vehicle control
» supply-chain management

» See our paper: “Learning convex-optimization control policies”

Data poisoning attack

» given data (x;,y), i=1,....,m
» x; € R" are feature vectors
» y; € {0,1} are associated boolean outcomes

» linear classifier: § = 1[37x > 0]

» find optimal weights 5* by minimizing

(1/m) Z L(B: xi, i) + r(B)

» L(B;xi,yi) = log(1 + exp(87 x; + b)) — y; 7 x; is the logistic loss
» r(B) = 0.1||8]]1 + 0.1||3||3 is elastic-net regularization
» adversary seeks to increase test loss £''(3*) by (just barely) perturbing
training data

Data poisoning attack

» [5* is a solution to a convex problem parametrized by x;
» V, L'(3*) gives direction x; should be moved to achieve greatest increase
in test loss

—== train
64 >~ — test

Data poisoning attack

X = cp.Parameter((m, n))
beta = cp.Variable(n)
log_likelihood = cp.sum(

cp.multiply(Y, X @ beta) - cp.logistic(X @ beta)
)
r = 0.1*cp.norm(beta, 1) + 0.1xcp.norm(beta, 2)*%*2)
problem = cp.Problem(cp.Minimize(-log_likelihood/m + 1))
fit_logreg = CvxpylLayer (problem, parameters=[X], variables=[betal)
beta_star = fit_logreg(X_train) [0]
test_loss = compute_loss(beta_star, X_test, Y_test)
test_loss.backward()

Summary

Our software makes it easy to differentiate through DSLs for convex
optimization, letting you pair
» convex optimization
» rich modelling capabilities
» large number of applications
» efficient solution algorithms
» mature, high-level software libraries

» with machine learning

Software

https://github.com/cvxgrp/cvxpylayers

https://github.com/cvxgrp/cvxpy

https://github.com/cvxgrp/cvxpylayers
https://github.com/cvxgrp/cvxpy

References

[AABT19]
[ABBT19]
[AVD* 18]
[DB16]

[GBYO6]

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances
in Neural Information Processing Systems. 2019.

A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone program. Journal of Applied and
Numerical Optimization 1.2 (2019), pp. 107-115.

A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex optimization problems. Journal of
Control and Decision 5.1 (2018), pp. 42-60.

S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine
Learning Research 17.1 (2016), pp. 2909-2913.

M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. |n Global optimization. Springer, 2006, pp. 155-210

Additional examples

Tuning a Markowitz policy

Untuned Tuned VI
1.0 4 e ————————" P Y ad Sk P PR Pt L Pl —— VEA
' o — VWO
s 054 “ — VN
B O T e 8 o5 Q
| | —— XLE
2 SR 2
£ 00 2 00 —— — BND
—— SCHP
—0.5 \
=057 e ———— ——i~ie—emee7ct VIEB
T T T T r T T T T - = VIG
0 5 10 15 20 0 5 10 15 20
Stage Stage

Figure: left: untuned; right: policy with tuned constraints, mean and covariance

Tracking a vehicle trajectory

T

s untrained COCP
W trained COCP
€

5

10°

Figure: left: untrained path; middle: trained path: right: expected cost histogram.

expected cost

10!

