
JSS Journal of Statistical Software
August 2020, Volume 94, Issue 14. doi: 10.18637/jss.v094.i14

CVXR: An R Package for Disciplined Convex
Optimization

Anqi Fu
Stanford University

Balasubramanian Narasimhan
Stanford University

Stephen Boyd
Stanford University

Abstract

CVXR is an R package that provides an object-oriented modeling language for convex
optimization, similar to CVX, CVXPY, YALMIP, and Convex.jl. It allows the user to
formulate convex optimization problems in a natural mathematical syntax rather than
the restrictive form required by most solvers. The user specifies an objective and set of
constraints by combining constants, variables, and parameters using a library of func-
tions with known mathematical properties. CVXR then applies signed disciplined convex
programming (DCP) to verify the problem’s convexity. Once verified, the problem is
converted into standard conic form using graph implementations and passed to a cone
solver such as ECOS or SCS. We demonstrate CVXR’s modeling framework with several
applications.

Keywords: convex optimization, disciplined convex optimization, optimization, regression,
penalized regression, isotonic regression, R package CVXR.

1. Introduction

Optimization plays an important role in fitting many statistical models. Some examples in-
clude least squares, ridge and lasso regression, isotonic regression, Huber regression, support
vector machines, and sparse inverse covariance estimation. Koenker and Mizera (2014) dis-
cuss the role of convex optimization in statistics and provide a survey of packages for solving
such problems in R (R Core Team 2020). Our package, CVXR (Fu, Narasimhan, Kang, Dia-
mond, and Miller 2020), solves a broad class of convex optimization problems, which includes
those noted above as well as many other models and methods in statistics. Similar systems
already exist, such as CVX (Grant and Boyd 2014) and YALMIP (Lofberg 2004) in MATLAB
(The MathWorks Inc. 2019), CVXPY (Diamond and Boyd 2016) in Python (Van Rossum
et al. 2011), and Convex.jl (Udell, Mohan, Zeng, Hong, Diamond, and Boyd 2014) in Ju-

https://doi.org/10.18637/jss.v094.i14

2 CVXR: Disciplined Convex Optimization in R

lia (Bezanson, Karpinski, Shah, and Edelman 2012). CVXR brings these capabilities to R,
providing a domain-specific language (DSL) that allows users to easily formulate and solve
new problems for which custom code does not exist. As an illustration, suppose we are given
X ∈ Rm×n and y ∈ Rm, and we want to solve the ordinary least squares (OLS) problem

minimize
β

‖y −Xβ‖22

with optimization variable β ∈ Rn. This problem has a well-known analytical solution, which
can be determined using lm in the default stats package. In CVXR, we can solve for β using
the code

R> beta <- Variable(n)
R> obj <- sum((y - X %*% beta)^2)
R> prob <- Problem(Minimize(obj))
R> result <- solve(prob)

The first line declares our variable, the second line forms our objective function, the third line
defines the optimization problem, and the last line solves this problem by converting it into
a second-order cone program and sending it to one of CVXR’s solvers. The results for the
optimal objective, the optimal variables, and the solver runtime, respectively, are retrieved
with

R> result$value
R> result$getValue(beta)
R> result$solve_time

This code runs slower and requires additional set-up at the beginning. So far, it does not look
like an improvement on stats::lm. However, suppose we add a constraint to our problem:

minimize
β

‖y −Xβ‖22
subject to βj ≤ βj+1, j = 1, . . . , n− 1.

This is a special case of isotonic regression. Now, we can no longer use stats::lm for the
optimization. We would need to find another R package tailored to this type of problem
such as nnls (Mullen and Van Stokkum 2012) or write our own custom solver. With CVXR
though, we need only add the constraint as a second argument to the problem:

R> prob <- Problem(Minimize(obj), list(diff(beta) >= 0))

Our new problem definition includes the coefficient constraint, and a call to solve will produce
its solution. In addition to the usual results, we can get the dual variables with

R> result$getDualValue(constraints(prob)[[1]])

This example demonstrates CVXR’s chief advantage: flexibility. Users can quickly modify
and re-solve a problem, making our package ideal for prototyping new statistical methods.
Its syntax is simple and mathematically intuitive. Furthermore, CVXR combines seamlessly
with native R code as well as several popular packages, allowing it to be incorporated easily

Journal of Statistical Software 3

into a larger analytical framework. The user can, for instance, apply resampling techniques
like the bootstrap to estimate variability, as we show in Section 3.2.
DSLs for convex optimization are already widespread on other application platforms. In R,
users have access to the packages listed in the CRAN Task View for Optimization and Math-
ematical Programming (Theußl, Schwendinger, and Borchers 2020a). Packages like optimx
(Nash and Varadhan 2011) and nloptr (Johnson 2008) provide access to a variety of general
algorithms, which can handle nonlinear and certain classes of nonconvex problems. CVXR,
on the other hand, offers a language to express convex optimization problems using R syntax,
along with a tool for analyzing and restructuring them for the solver best suited to their
type. ROI (Theußl, Schwendinger, and Hornik 2020b) is perhaps the package closest to ours
in spirit. It offers an object-oriented framework for defining optimization problems, but still
requires users to explicitly identify the type of every objective and constraint, whereas CVXR
manages this process automatically.
In the next section, we provide a brief mathematical overview of convex optimization. Inter-
ested readers can find a full treatment in Boyd and Vandenberghe (2004). Then we give a
series of examples ranging from basic regression models to semidefinite programming, which
demonstrate the simplicity of problem construction in CVXR. Finally, we describe the imple-
mentation details before concluding. Our package and the example code for this paper are
available on the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=CVXR and the official CVXR site at https://cvxr.rbind.io.

2. Disciplined convex optimization
The general convex optimization problem is of the form

minimize
v

f0(v)
subject to fi(v) ≤ 0, i = 1, . . . ,M

Av = b,

where v ∈ Rn is our variable of interest, and A ∈ Rm×n and b ∈ Rn are constants describing
our linear equality constraints. The objective and inequality constraint functions f0, . . . , fM
are convex, i.e., they are functions fi : Rn → R that satisfy

fi(θu+ (1− θ)v) ≤ θfi(u) + (1− θ)fi(v)

for all u, v ∈ Rn and θ ∈ [0, 1]. This class of problems arises in a variety of fields, including
machine learning and statistics.
A number of efficient algorithms exist for solving convex problems (Wright 1997; Boyd, Parikh,
Chu, Peleato, and Eckstein 2011; Andersen, Dahl, Liu, and Vandenberghe 2011; Skajaa and
Ye 2015). However, it is unnecessary for the CVXR user to know the operational details of
these algorithms. CVXR provides a DSL that allows the user to specify the problem in a
natural mathematical syntax. This specification is automatically converted into the standard
form ingested by a generic convex solver. See Section 4 for more on this process.
In general, it can be difficult to determine whether an optimization problem is convex. We
follow an approach called disciplined convex programming (DCP; Grant, Boyd, and Ye 2006)
to define problems using a library of basic functions (atoms), whose properties like curvature,
monotonicity, and sign are known. Adhering to the DCP rule,

https://CRAN.R-project.org/package=CVXR
https://CRAN.R-project.org/package=CVXR
https://cvxr.rbind.io

4 CVXR: Disciplined Convex Optimization in R

f(g1, . . . , gk) is convex if f is convex and for each i = 1, . . . , k, either

• gi is affine,

• gi is convex and f is increasing in argument i, or

• gi is concave and f is decreasing in argument i,

we combine these atoms such that the resulting problem is convex by construction. Users will
need to become familiar with this rule if they wish to define complex problems.
The library of available atoms is provided in the documentation. It covers an extensive array
of functions, enabling any user to model and solve a wide variety of sophisticated optimization
problems. In the next section, we provide sample code for just a few of these problems, many
of which are cumbersome to prototype or solve with other R packages.

3. Examples
In the following examples, we are given a dataset (xi, yi) for i = 1, . . . ,m, where xi ∈ Rn and
yi ∈ R. We represent these observations in matrix form as X ∈ Rm×n with stacked rows x>i
and y ∈ Rm. Generally, we assume that m > n.

3.1. Regression

Robust (Huber) regression

In Section 1, we saw an example of OLS in CVXR. While least squares is a popular regression
model, one of its flaws is its high sensitivity to outliers. A single outlier that falls outside the
tails of the normal distribution can drastically alter the resulting coefficients, skewing the fit
on the other data points. For a more robust model, we can fit a Huber regression (Huber
1964) instead by solving

minimize
β

∑m
i=1 φ(yi − x>i β)

for variable β ∈ Rn, where the loss is the Huber function with threshold M > 0,

φ(u) =
{1

2u
2 if |u| ≤M

M |u| − 1
2M

2 if |u| > M.

This function is identical to the least squares penalty for small residuals, but on large residuals,
its penalty is lower and increases linearly rather than quadratically. It is thus more forgiving
of outliers.
In CVXR, the code for this problem is

R> beta <- Variable(n)
R> obj <- sum(huber(y - X %*% beta, M))
R> prob <- Problem(Minimize(obj))
R> result <- solve(prob)

Journal of Statistical Software 5

Note the similarity to the OLS code. As before, the first line instantiates the n-dimensional
optimization variable, and the second line defines the objective function by combining this
variable with our data using CVXR’s library of atoms. The only difference this time is we call
the huber atom on the residuals with threshold M, which we assume has been set to a positive
scalar constant. Our package provides many such atoms to simplify problem definition for
the user.

Quantile regression
Another variation on least squares is quantile regression (Koenker 2005). The loss is the tilted
l1 function,

φ(u) = τ max(u, 0)− (1− τ) max(−u, 0) = 1
2 |u|+

(
τ − 1

2

)
u,

where τ ∈ (0, 1) specifies the quantile. The problem as before is to minimize the total residual
loss. This model is commonly used in ecology, healthcare, and other fields where the mean
alone is not enough to capture complex relationships between variables. CVXR allows us to
create a function to represent the loss and integrate it seamlessly into the problem definition,
as illustrated below.

R> quant_loss <- function(u, tau) 0.5 * abs(u) + (tau - 0.5) * u
R> obj <- sum(quant_loss(y - X %*% beta, t))
R> prob <- Problem(Minimize(obj))
R> result <- solve(prob)

Here t is the user-defined quantile parameter. We do not need to create a new ‘Variable’
object, since we can reuse beta from the previous example.
By default, the solve method automatically selects the CVXR solver most specialized to
the given problem’s type. This solver may be changed by passing in an additional solver
argument. For instance, the following line fits our quantile regression with SCS (O’Donoghue,
Chu, Parikh, and Boyd 2016).

R> result <- solve(prob, solver = "SCS")

Elastic net regularization
Often in applications, we encounter problems that require regularization to prevent overfitting,
introduce sparsity, facilitate variable selection, or impose prior distributions on parameters.
Two of the most common regularization functions are the l1-norm and squared l2-norm,
combined in the elastic net regression model (Hastie and Zou 2005; Friedman, Hastie, and
Tibshirani 2010),

minimize
β

1
2m‖y −Xβ‖

2
2 + λ(1−α

2 ‖β‖
2
2 + α‖β‖1).

Here λ ≥ 0 is the overall regularization weight and α ∈ [0, 1] controls the relative l1 versus
squared l2 penalty. Thus, this model encompasses both ridge (α = 0) and lasso (α = 1)
regression.
To solve this problem in CVXR, we first define a function that calculates the regularization
term given the variable and penalty weights.

6 CVXR: Disciplined Convex Optimization in R

R> elastic_reg <- function(beta, lambda = 0, alpha = 0) {
+ ridge <- (1 - alpha) * sum(beta^2)
+ lasso <- alpha * p_norm(beta, 1)
+ lambda * (lasso + ridge)
+ }

Then, we add it to the scaled least squares loss.

R> loss <- sum((y - X %*% beta)^2) / (2 * m)
R> obj <- loss + elastic_reg(beta, lambda, alpha)
R> prob <- Problem(Minimize(obj))
R> result <- solve(prob)

The advantage of this modular approach is that we can easily incorporate elastic net regu-
larization into other regression models. For instance, if we wanted to run regularized Huber
regression, CVXR allows us to reuse the above code with just a single changed line,

R> loss <- sum(huber(y - X %*% beta, M))

Logistic regression

Suppose now that yi ∈ {0, 1} is a binary class indicator. One of the most popular methods
for binary classification is logistic regression (Cox 1958; Freedman 2009). We model the
conditional response as y|x ∼ Bernoulli(gβ(x)), where gβ(x) = 1

1+e−x>β
is the logistic function,

and maximize the log-likelihood function, yielding the optimization problem

maximize
β

∑m
i=1{yi log(gβ(xi)) + (1− yi) log(1− gβ(xi))}.

CVXR provides the logistic atom as a shortcut for f(z) = log(1 + ez), so our problem is
succinctly expressed as

R> obj <- -sum(X[y == 0,] %*% beta) - sum(logistic(-X %*% beta))
R> prob <- Problem(Maximize(obj))
R> result <- solve(prob)

The user may be tempted to type log(1 + exp(X %*% beta)) as in conventional R syntax.
However, this representation of f(z) violates the DCP composition rule, so the CVXR parser
will reject the problem even though the objective is convex. Users who wish to employ
a function that is convex, but not DCP compliant should check the documentation for a
custom atom or consider a different formulation.
We can retrieve the optimal objective and variables just like in OLS. More interestingly,
we can evaluate various functions of these variables as well by passing them directly into
result$getValue. For instance, the log-odds are

R> log_odds <- result$getValue(X %*% beta)

This will coincide with the ratio we get from computing the probabilities directly:

Journal of Statistical Software 7

●

●

● ●

●

●

● ●
●

●

0.5

1.0

Intercept CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate

C
oe

ffi
ce

nt
 V

al
ue

● constrained unconstrained

Figure 1: Logistic regression with constraints using data from The MathWorks Inc. (2018).
The addition of constraint 1 moves the coefficients for customer age and customer income
closer to each other.

R> beta_res <- result$getValue(beta)
R> y_probs <- 1 / (1 + exp(-X %*% beta_res))
R> log(y_probs / (1 - y_probs))

We illustrate with a logistic regression fit from a credit scoring example (The MathWorks
Inc. 2018). The nine regression coefficients other than the intercept are constrained to be in
the unit interval. To reflect the correlation between two of the covariates, customer age (x2)
and customer income (x6), an additional constraint is placed on the respective coefficients β2
and β6:

|β2 − β6| ≤ 0.5. (1)

The code below demonstrates how the latter constraint can be specified by seamlessly com-
bining familiar R functions such as abs with standard indexing constructs.

R> constr <- list(beta[2:10] >= 0, beta[2:10] <= 1,
+ abs(beta[2] - beta[6]) <= 0.05)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob)
R> beta_res_con <- result$getValue(beta)

Figure 1 compares the unconstrained and constrained fits and shows that the addition of
constraint 1 pulls the coefficient estimates for customer age and customer income towards
each other.
Many other classification methods belong to the convex framework. For example, the sup-
port vector classifier is the solution of a l2-norm minimization problem with linear constraints,
which we have already shown how to model. Support vector machines are a straightforward

8 CVXR: Disciplined Convex Optimization in R

extension. The multinomial distribution can be used to predict multiple classes, and esti-
mation via maximum likelihood produces a convex problem. To each of these methods, we
can easily add new penalties, variables, and constraints in CVXR, allowing us to adapt to a
specific dataset or environment.

Sparse inverse covariance estimation

Assume we are given i.i.d. observations xi ∼ N(0,Σ) for i = 1, . . . ,m, and the covariance
matrix Σ ∈ Sn+, the set of symmetric positive semidefinite matrices, has a sparse inverse
S = Σ−1. Let Q = 1

m−1
∑m
i=1(xi − x̄)(xi − x̄)> be our sample covariance. One way to

estimate Σ is to maximize the log-likelihood with an l1-norm constraint (Yuan and Lin 2007;
Banerjee, Ghaoui, and d’Aspremont 2008; Friedman, Hastie, and Tibshirani 2008), which
amounts to the optimization problem

maximize
S

log det(S)− tr(SQ)
subject to S ∈ Sn+,

∑n
i=1

∑n
j=1 |Sij | ≤ α.

The parameter α ≥ 0 controls the degree of sparsity. Our problem is convex, so we can solve
it with

R> S <- Variable(n, n, PSD = TRUE)
R> obj <- log_det(S) - matrix_trace(S %*% Q)
R> constr <- list(sum(abs(S)) <= alpha)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob, solver = "SCS")

The PSD = TRUE argument to the Variable constructor restricts S to the positive semidefinite
cone. In our objective, we use CVXR functions for the log-determinant and trace. The
expression matrix_trace(S %*% Q) is equivalent to sum(diag(S %*% Q)), but the former is
preferred because it is more efficient than making nested function calls. However, a standalone
atom does not exist for the determinant, so we cannot replace log_det(S) with log(det(S))
since det is undefined for a ‘Variable’ object.
Figure 2 depicts the solutions for a particular dataset withm = 1000, n = 10, and S containing
26% non-zero entries represented by the black squares in the top left image. The sparsity
of our inverse covariance estimate decreases for higher α, so that when α = 1, most of the
off-diagonal entries are zero, while if α = 10, over half the matrix is dense. At α = 4, we
achieve the true percentage of non-zeros.

Saturating hinges

The following example comes from work on saturating splines in Boyd, Hastie, Boyd, Recht,
and Jordan (2018). Adaptive regression splines are commonly used in statistical modeling,
but the instability they exhibit beyond their boundary knots makes extrapolation dangerous.
One way to correct this issue for linear splines is to require they saturate: remain constant
outside their boundary. This problem can be solved using a heuristic that is an extension
of lasso regression, producing a weighted sum of hinge functions, which we call a saturating
hinge.

Journal of Statistical Software 9

(a) True inverse. (b) α = 10.

(c) α = 4. (d) α = 1.

Figure 2: Sparsity patterns for (a) inverse of true covariance matrix, and estimated inverse
covariance matrices with (b) α = 10, (c) α = 4, and (d) α = 1. The light blue regions indicate
where Sij = 0.

For simplicity, consider the univariate case with n = 1. Assume we are given knots t1 < t2 <
· · · < tk where each tj ∈ R. Let hj be a hinge function at knot tj , i.e., hj(x) = max(x− tj , 0),
and define f(x) = w0 +∑k

j=1wjhj(x). We want to solve

minimize
w0,w

∑m
i=1 `(yi, f(xi)) + λ‖w‖1

subject to ∑k
j=1wj = 0

for variables (w0, w) ∈ R×Rk. The function ` : R×R→ R is the loss associated with every
observation, and λ ≥ 0 is the penalty weight. In choosing our knots, we set t1 = min(xi) and
tk = max(xi) so that by construction, the estimate f̂ will be constant outside [t1, tk].

10 CVXR: Disciplined Convex Optimization in R

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●●●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

● ●

−0.05

0.00

0.05

0.10

0.15

0.20

10 15 20 25

Age

C
ha

ng
e

in
 B

on
e

D
en

si
ty

λ 1.00 0.50 0.01

(a) Squared error loss.

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●
●●

●

●

●

●

●●

●

●

●●
●
●●
●●

●
●

●

●

●
●●●

●
●
●

●
●●

●

●●

●

●

●●
●

●
●●●
●●●

●●
●●●
●
●
●

●

●
●
●

●

●
●

●●●●
●●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●●●
●
●●
●●

●
●

●

●
●
●●●●

●

● ●●
●
●

●●●●●●●
●
●●

●
●
●

●
●●

●●
●●●

●

●
● ●

●●
●
●
●

●●
●●●●●●●● ●●

●●
●●
●
●

●
●

●

●●●●

●

●
●●

●●
●
●●●

●
●

●
●●●

●

●
●●

●
●●●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

0.00

0.25

0.50

0.75

10 15 20 25

Age

C
ha

ng
e

in
 B

on
e

D
en

si
ty

Loss Huber Squared

(b) Saturating hinges with outliers.

Figure 3: (a) Saturating hinges fit to the change in bone density for female patients with
λ = 0.01 (blue), λ = 0.5 (green), and λ = 1 (red). (b) Hinges refit to the previous data with
additional outliers (orange) using squared error (blue) and Huber loss (red).

We demonstrate this technique on the bone density data for female patients from Hastie,
Tibshirani, and Friedman (2001, Section 5.4). There are a total of m = 259 observations.
Our response yi is the change in spinal bone density between two visits, and our predictor xi
is the patient’s age. We select k = 10 knots about evenly spaced across the range of X and
fit a saturating hinge with squared error loss `(yi, f(xi)) = (yi − f(xi))2.
In R, we first define the estimation and loss functions:

R> f_est <- function(x, knots, w0, w) {
+ hinges <- sapply(knots, function(t) pmax(x - t, 0))
+ w0 + hinges %*% w
+ }
R> loss_obs <- function(y, f) (y - f)^2

This allows us to easily test different losses and knot locations later. The rest of the set-up is
similar to previous examples. We assume that knots is a R vector representing (t1, . . . , tk).

R> w0 <- Variable(1)
R> w <- Variable(k)
R> loss <- sum(loss_obs(y, f_est(X, knots, w0, w)))
R> reg <- lambda * p_norm(w, 1)
R> obj <- loss + reg
R> constr <- list(sum(w) == 0)
R> prob <- Problem(Minimize(obj), constr)
R> result <- solve(prob)

The optimal weights are retrieved using separate calls, as shown below.

R> w0s <- result$getValue(w0)
R> ws <- result$getValue(w)

Journal of Statistical Software 11

We plot the fitted saturating hinges in Figure 3a. As expected, when λ increases, the spline
exhibits less variation and grows flatter outside its boundaries. The squared error loss works
well in this case, but as we saw previously in this section, the Huber loss is preferred when
the dataset contains large outliers. We can change the loss function by simply redefining

R> loss_obs <- function(y, f, M) huber(y - f, M)

and passing an extra threshold parameter in when initializing loss. In Figure 3b, we have
added 50 randomly generated outliers to the bone density data and plotted the re-fitted
saturating hinges. For a Huber loss with M = 0.01, the resulting spline is fairly smooth and
follows the shape of the original data, as opposed to the spline using squared error loss, which
is biased upwards by a significant amount.

3.2. Nonparametric estimation

Log-concave distribution estimation

Let n = 1 and suppose xi are i.i.d. samples from a log-concave discrete distribution on
{0, . . . ,K} for some K ∈ Z+. Define pk := P(X = k) to be the probability mass function.
One method for estimating (p0, . . . , pK) is to maximize the log-likelihood function subject to
a log-concavity constraint (Dümbgen and Rufibach 2009), i.e.,

maximize
p

∑K
k=0Mk log pk

subject to p ≥ 0, ∑K
k=0 pk = 1,

pk ≥
√
pk−1pk+1, k = 1, . . . ,K − 1,

where p ∈ RK+1 is our variable of interest and Mk represents the number of observations
equal to k, so that ∑K

k=0Mk = m. The problem as posed above is not convex. However, we
can transform it into a convex optimization problem by defining new variables uk = log pk
and relaxing the equality constraint to ∑K

k=0 pk ≤ 1, since the latter always holds tightly at
an optimal solution. The result is

maximize
u

∑K
k=0Mkuk

subject to ∑K
k=0 e

uk ≤ 1,
uk − uk−1 ≥ uk+1 − uk, k = 1, . . . ,K − 1.

If counts is the R vector of (M0, . . . ,MK), the code for our convex problem is

R> u <- Variable(K+1)
R> obj <- t(counts) %*% u
R> constr <- list(sum(exp(u)) <= 1, diff(u[1:K)]) >= diff(u[2:(K+1)]))
R> prob <- solve(Maximize(obj), constr)
R> result <- solve(prob)

Once the solver is finished, we can retrieve the probabilities directly with

R> pmf <- result$getValue(exp(u))

12 CVXR: Disciplined Convex Optimization in R

0.000

0.002

0.004

0.006

1400 1600 1800

x

D
en

si
ty

 E
st

im
at

e

CVXR Duembgen_Rufibach

Figure 4: Log-concave estimation using the approach of Dümbgen and Rufibach (2011) and
CVXR.

The above line transforms the variables uk to euk before calculating their resulting values.
This is possible because exp is a member of CVXR’s library of atoms, so it can operate
directly on a ‘Variable’ object such as u.
As an example, we consider the reliability data from Dümbgen and Rufibach (2011) that was
collected as part of a consulting project at the Institute for Mathematical Statistics and
Actuarial Science, University of Bern (Dümbgen and Rufibach 2009). The dataset consists
of n = 786 observations, and the goal is to fit a suitable distribution to this sample that
can be used for simulations. For various reasons detailed in the paper, the authors chose a
log-concave estimator, which they implemented in the R package logcondens (Dümbgen and
Rufibach 2011). Figure 4 shows that the curve obtained from the CVXR code above matches
their results exactly.

Survey calibration

Calibration is a widely used technique in survey sampling. Suppose m sampling units in a
survey have been assigned initial weights di for i = 1, . . . ,m, and furthermore, there are n
auxiliary variables whose values in the sample are known. Calibration seeks to improve the
initial weights di by finding new weights wi that incorporate this auxiliary information while
perturbing the initial weights as little as possible, i.e., the ratio gi = wi/di must be close to
one. Such reweighting improves precision of estimates (Lumley 2010, Chapter 7).
Let X ∈ Rm×n be the matrix of survey samples, with each column corresponding to an
auxiliary variable. Reweighting can be expressed as the optimization problem

minimize ∑m
i=1 diφ(gi)

subject to A>g = r

with respect to g ∈ Rm, where φ : R→ R is a strictly convex function with φ(1) = 0, r ∈ Rn

Journal of Statistical Software 13

survey CVXR
School type Target met? Weight Frequency Weight Frequency

E Yes 29.00 15 29.00 15
H No 31.40 13 31.40 13
M Yes 29.03 9 29.03 9
E No 28.91 127 28.91 127
H Yes 31.50 12 31.50 12
M No 31.53 24 31.53 24

Table 1: Raking weight estimates with survey package and CVXR for California Academic
Performance Index data.

are the known population totals of the auxiliary variables, and A ∈ Rm×n is related to X by
Aij = diXij for i = 1, . . . ,m and j = 1, . . . , n. A common technique is raking, which uses the
penalty function φ(gi) = gi log(gi)− gi + 1.
We illustrate with the California Academic Performance Index data in the survey package
(Lumley 2004, 2020), which also supplies facilities for calibration via the function calibrate.
Both the population dataset (apipop) and a simple random sample of m = 200 (apisrs)
are provided. Suppose that we wish to reweight the observations in the sample using known
totals for two variables from the population: stype, the school type (elementary, middle or
high) and sch.wide, whether the school met the yearly target or not. This reweighting would
make the sample more representative of the general population.
The code below solves the problem in CVXR, where we have used a model matrix to generate
the appropriate dummy variables for the two factor variables.

R> m <- nrow(apisrs)
R> di <- apisrs$pw
R> formula <- ~ stype + sch.wide
R> r <- apply(model.matrix(object = formula, data = apipop), 2, sum)
R> X <- model.matrix(object = formula, data = apisrs)
R> A <- di * X
R> g <- Variable(m)
R> obj <- sum(di * (-entr(g) - g + 1))
R> constr <- list(t(A) %*% g == r)
R> prob <- Problem(Minimize(obj), constr)
R> result <- solve(prob)
R> w_cvxr <- di * result$getValue(g)

Table 1 shows that the results are identical to those obtained from survey. CVXR can also
accommodate other penalty functions common in the survey literature, as well as additional
constraints.

Nearly-isotonic and nearly-convex fits
Given a set of data points y ∈ Rm, Tibshirani, Hoefling, and Tibshirani (2011) fit a nearly-
isotonic approximation β ∈ Rm by solving

minimize
β

1
2
∑m
i=1(yi − βi)2 + λ

∑m−1
i=1 (βi − βi+1)+,

14 CVXR: Disciplined Convex Optimization in R

−0.4

0.0

0.4

0.8

1850 1900 1950 2000
Year

Te
m

pe
ra

tu
re

 A
no

m
al

ie
s

(a) Nearly-isotonic.

−0.4

0.0

0.4

0.8

1850 1900 1950 2000
Year

Te
m

pe
ra

tu
re

 A
no

m
al

ie
s

(b) Nearly-convex.

Figure 5: (a) A nearly-isotonic fit and (b) nearly-convex fit to global warming data on tem-
perature anomalies for λ = 0.44. The 95% normal confidence intervals are shown in gray using
R = 400 and R = 200 bootstrap samples, respectively.

where λ ≥ 0 is a penalty parameter and x+ = max(x, 0). Our CVXR formulation follows
directly as shown below. The pos atom evaluates x+ elementwise on the input expression.

R> near_fit <- function(y, lambda) {
+ m <- length(y)
+ beta <- Variable(m)
+ penalty <- sum(pos(diff(beta)))
+ obj <- 0.5 * sum((y - beta)^2) + lambda * penalty
+ prob <- Problem(Minimize(obj))
+ result <- solve(prob)
+ result$getValue(beta)
+ }

We demonstrate this technique on the global warming data provided by the Carbon Dioxide
Information Analysis Center (CDIAC). Our data points are the annual temperature anomalies
relative to the 1961–1990 mean. Combining near_fit with the boot package (Canty and
Ripley 2020), we can obtain the standard errors and confidence intervals for our estimate in
just a few lines of code. The near_fit_stat function first obtains a bootstrap sample of
rows, orders them by ascending year, and then calls near_fit.

R> near_fit_stat <- function(data, index, lambda) {
+ sample <- data[index,]
+ sample <- sample[order(sample$year),]
+ near_fit(sample$annual, lambda)
+ }
R> boot.out <- boot(CDIAC, near_fit_stat, R = 400, lambda = 0.44)

Figure 5a shows a nearly-isotonic fit with λ = 0.44 and 95% normal confidence bands, which
were generated using R = 400 bootstrap samples. The curve follows the data well, but
exhibits choppiness in regions with a steep trend.

Journal of Statistical Software 15

For a smoother curve, we can solve for the nearly-convex fit described in the same paper:
minimize

β

1
2
∑m
i=1(yi − βi)2 + λ

∑m−2
i=1 (βi − 2βi+1 + βi+2)+

This replaces the first difference term with an approximation to the second derivative at βi+1.
In CVXR, the only change necessary is the penalty line in near_fit,

R> penalty <- sum(pos(diff(beta, differences = 2)))

The resulting curve is depicted in Figure 5b with 95% confidence bands generated from
R = 200 samples. Note the jagged staircase pattern has been smoothed out. We can easily
extend this example to higher-order differences or lags by modifying the arguments to diff.

3.3. Miscellaneous applications

Worst case covariance
Suppose we have i.i.d. samples xi ∼ N(0,Σ) for i = 1, . . . ,m and want to determine the
maximum covariance of y = w>x = ∑m

i=1wixi, where w ∈ Rm is a given vector of weights.
We are provided limited information on the elements of Σ. For example, we may know the
specific value or sign of certain Σjk, which are represented by upper and lower bound matrices
L and U ∈ Rn×n, respectively (Boyd and Vandenberghe 2004, pp. 171–172). This situation
can arise when calculating the worst-case risk of an investment portfolio (Lobo and Boyd
2000). Formally, our optimization problem is

maximize
Σ

w>Σw
subject to Σ ∈ Sn+, Ljk ≤ Σjk ≤ Ujk, j, k = 1, . . . , n.

Consider the specific case

w =


0.1
0.2
−0.05

0.1

 , Σ =


0.2 + + ±
+ 0.1 − −
+ − 0.3 +
± − + 0.1

 ,
where a + means the element is non-negative, a − means the element is non-positive, and a
± means the element can be any real number. In CVXR, this semidefinite program is

R> Sigma <- Variable(n, n, PSD = TRUE)
R> obj <- t(w) %*% Sigma %*% w
R> constr <- list(Sigma[1, 1] == 0.2, Sigma[1, 2] >= 0, Sigma[1, 3] >= 0,
+ Sigma[2, 2] == 0.1, Sigma[2, 3] <= 0, Sigma[2, 4] <= 0,
+ Sigma[3, 3] == 0.3, Sigma[3, 4] >= 0, Sigma[4, 4] == 0.1)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob, solver = "SCS")

Our result for this numerical case is

Σ =


0.2000 0.0967 0.0000 0.0762
0.0967 0.1000 −0.1032 0.0000
0.0000 −0.1032 0.3000 0.0041
0.0762 0.0000 0.0041 0.1000



16 CVXR: Disciplined Convex Optimization in R

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

Figure 6: Solution of the catenary problem (blue) with a ground constraint (brown).

This example can be generalized to include arbitrary convex constraints on Σ. Furthermore,
if we have a target estimate for the covariance, we can bound deviations from the target by
incorporating penalized slack variables into our optimization problem.

Catenary problem
We consider a discretized version of the catenary problem in Griva and Vanderbei (2005). A
chain with uniformly distributed mass hangs from the endpoints (0, 1) and (1, 1) on a 2-D
plane. Gravitational force acts in the negative y direction. Our goal is to find the shape of
the chain in equilibrium, which is equivalent to determining the (x, y) coordinates of every
point along its curve when its potential energy is minimized.
To formulate this as an optimization problem, we parameterize the chain by its arclength and
divide it into m discrete links. The length of each link must be no more than h > 0. Since
mass is uniform, the total potential energy is simply the sum of the y-coordinates. Therefore,
our problem is

minimize
x,y

∑m
i=1 yi

subject to x1 = 0, y1 = 1, xm = 1, ym = 1
(xi+1 − xi)2 + (yi+1 − yi)2 ≤ h2, i = 1, . . . ,m− 1

with variables x ∈ Rm and y ∈ Rm. This basic catenary problem has a well-known analytical
solution (Gelfand and Fomin 1963), which we can easily verify with CVXR.

R> x <- Variable(m)
R> y <- Variable(m)
R> obj <- sum(y)
R> constr <- list(x[1] == 0, y[1] == 0, x[m] == 1, y[m] == 1,
+ diff(x)^2 + diff(y)^2 <= h^2)
R> prob <- Problem(Minimize(obj), constr)
R> result <- solve(prob)

A more interesting situation arises when the ground is not flat. Let g ∈ Rm be the elevation
vector (relative to the x-axis), and suppose the right endpoint of our chain has been lowered

Journal of Statistical Software 17

by ∆ym = 0.5. The analytical solution in this case would be difficult to calculate. However,
we need only add two lines to our constraint definition,

R> constr[[4]] <- (y[m] == 0.5)
R> constr <- c(constr, y >= g)

to obtain the new result. Figure 6 depicts the solution of this modified catenary problem
for m = 101 and h = 0.02. The chain is shown hanging in blue, bounded below by the red
staircase structure, which represents the ground.

Portfolio optimization

In this example, we solve the Markowitz portfolio problem under various different constraints
(Markowitz 1952; Roy 1952; Lobo, Fazel, and Boyd 2007). We have n assets or stocks in
our portfolio and must determine the amount of money to invest in each. Let wi denote the
fraction of our budget invested in asset i = 1, . . . , n, and let ri be the returns (i.e., fractional
change in price) over the period of interest. We model returns as a random vector r ∈ Rn

with known mean E[r] = µ and covariance VAR(r) = Σ. Thus, given a portfolio w ∈ Rn, the
overall return is R = r>w.
Portfolio optimization involves a trade-off between the expected return E[R] = µ>w and
associated risk, which we take as the return variance VAR(R) = w>Σw. Initially, we consider
only long portfolios, so our problem is

maximize
w

µ>w − γw>Σw
subject to w ≥ 0, ∑n

i=1wi = 1,

where the objective is the risk-adjusted return and γ > 0 is a risk aversion parameter.

R> w <- Variable(n)
R> ret <- t(mu) %*% w
R> risk <- quad_form(w, Sigma)
R> obj <- ret - gamma * risk
R> constr <- list(w >= 0, sum(w) == 1)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob)

In this case, it is necessary to specify the quadratic form with quad_form rather than the
usual t(w) %*% Sigma %*% w because the latter will be interpreted by the CVXR parser as
a product of two affine terms and rejected for not being DCP. We can obtain the risk and
return by directly evaluating the value of the separate expressions:

R> result$getValue(risk)
R> result$getValue(ret)

Figure 7a depicts the risk-return trade-off curve for n = 10 assets and µ and Σ1/2 drawn
from a standard normal distribution. The x-axis represents the standard deviation of the
return. Red points indicate the result from investing the entire budget in a single asset. As
γ increases, our portfolio becomes more diverse (Figure 7b), reducing risk but also yielding a
lower return.

18 CVXR: Disciplined Convex Optimization in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

γ = 0.03
γ = 0.09

γ = 0.29

γ = 0.93

0.0

0.5

1.0

1.5

1 2 3

Risk (Standard Deviation)

R
et

ur
n

(a) Risk-return curve.

0.00

0.25

0.50

0.75

1.00

γ = 0.03 γ = 0.09 γ = 0.29 γ = 0.93

Risk Aversion

F
ra

ct
io

n
of

 B
ud

ge
t

(b) Asset portfolios.

Figure 7: (a) Risk-return trade-off curve for various γ. Portfolios that invest completely in
one asset are plotted in red. (b) Fraction of budget invested in each asset.

Many variations on the classical portfolio problem exist. For instance, we could allow long
and short positions, but impose a leverage limit ‖w‖1 ≤ Lmax by changing

R> constr <- list(p_norm(w, 1) <= Lmax, sum(w) == 1)

An alternative is to set a lower bound on the return and minimize just the risk. To account
for transaction costs, we could add a term to the objective that penalizes deviations of w from
the previous portfolio. These extensions and more are described in Boyd, Busseti, Diamond,
Kahn, Koh, Nystrup, and Speth (2017). The key takeaway is that all of these convex problems
can be easily solved in CVXR with just a few alterations to the code above.

Kelly gambling

In Kelly gambling (Kelly 1956), we are given the opportunity to bet on n possible outcomes,
which yield a random non-negative return of r ∈ Rn

+. The return r takes on exactly K values
r1, . . . , rK with known probabilities π1, . . . , πK . This gamble is repeated over T periods. In a
given period t, let bi ≥ 0 denote the fraction of our wealth bet on outcome i. Assuming the
nth outcome is equivalent to not wagering (it returns one with certainty), the fractions must
satisfy ∑n

i=1 bi = 1. Thus, at the end of the period, our cumulative wealth is wt = (r>b)wt−1.
Our goal is to maximize the average growth rate with respect to b ∈ Rn:

maximize
b

∑K
j=1 πj log(r>j b)

subject to b ≥ 0, ∑n
i=1 bi = 1.

In the following code, rets is the K by n matrix of possible returns with rows rj , while ps is
the vector of return probabilities (π1, . . . , πK).

R> b <- Variable(n)
R> obj <- t(ps) %*% log(rets %*% b)
R> constr <- list(b >= 0, sum(b) == 1)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob)

Journal of Statistical Software 19

1e+01

1e+03

1e+05

0 25 50 75 100
Time

W
ea

lth

Strategy Kelly Optimal Bets Naive Bets

Figure 8: Wealth trajectories for the Kelly optimal bets (red) and naïve bets (cyan). The
naïve betting scheme holds onto 15% of the wealth and splits the rest in direct proportion to
the expected returns.

We solve the Kelly gambling problem for K = 100 and n = 20. The probabilities πj ∼
Uniform(0, 1), and the potential returns rji ∼ Uniform(0.5, 1.5) except for rjn = 1, which
represents the payoff from not wagering. With an initial wealth of w0 = 1, we simulate the
growth trajectory of our Kelly optimal bets over P = 100 periods, assuming returns are i.i.d.
over time.

R> bets <- result$getValue(b)
R> idx <- sample.int(K, size = P, probs = ps, replace = TRUE)
R> winnings <- rets[idx,] %*% bets
R> wealth <- w0 * cumprod(winnings)

For comparison, we also calculate the trajectory for a naïve betting scheme, which holds onto
15% of the wealth at the beginning of each period and divides the other 85% over the bets in
direct proportion to their expect returns.
Growth curves for five independent trials are plotted in Figure 8. Red lines represent the
wealth each period from the Kelly bets, while cyan lines are the result of the naïve bets.
Clearly, Kelly optimal bets perform better, producing greater net wealth by the final period.
However, as observed in some trajectories, wealth tends to drop by a significant amount before
increasing eventually. One way to reduce this drawdown risk is to add a convex constraint as
proposed in Busseti, Ryu, and Boyd (2016, Section 5.3),

log

 K∑
j=1

exp(log πj − λ log(r>j b))

 ≤ 0,

where λ ≥ 0 is the risk-aversion parameter. With CVXR, this can be accomplished in a single
line using the log_sum_exp atom. Other extensions like wealth goals, betting restrictions,
and VaR/CVaR bounds are also readily incorporated.

20 CVXR: Disciplined Convex Optimization in R

Channel capacity
The following problem comes from an exercise in Boyd and Vandenberghe (2004, pp. 207–
208). Consider a discrete memoryless communication channel with input X(t) ∈ {1, . . . , n}
and output Y (t) ∈ {1, . . . ,m} for t = 1, 2, The relation between the input and output is
given by a transition matrix P ∈ Rm×n

+ with

Pij = P(Y (t) = i|X(t) = j), i = 1, . . . ,m, j = 1, . . . , n.

Assume that X has a probability distribution denoted by x ∈ Rn, i.e., xj = P(X(t) = j) for
j = 1, . . . , n. A famous result by Shannon and Weaver (1949) states that the channel capacity
is found by maximizing the mutual information between X and Y ,

I(X,Y) =
n∑
j=1

xj

m∑
i=1

Pij log2 Pij −
m∑
i=1

yi log2 yi,

where y = Px is the probability distribution of Y . Since I is concave, this is equivalent to
solving the convex optimization problem

maximize
x,y

∑n
j=1 xj

∑m
i=1 Pij logPij −

∑m
i=1 yi log yi

subject to x ≥ 0, ∑m
i=1 xi = 1, y = Px

for x ∈ Rn and y ∈ Rm. The associated code in CVXR is

R> x <- Variable(n)
R> y <- P %*% x
R> c <- apply(P * log2(P), 2, sum)
R> obj <- t(c) %*% x + sum(entr(y))
R> constr <- list(sum(x) == 1, x >= 0)
R> prob <- Problem(Maximize(obj), constr)
R> result <- solve(prob)

The channel capacity is simply the optimal objective, result$value.

Fastest mixing Markov chain
This example is derived from the results in Boyd, Diaconis, and Xiao (2004, Section 2).
Let G = (V, E) be a connected graph with vertices V = {1, . . . , n} and edges E ⊆ V × V.
Assume that (i, i) ∈ E for all i = 1, . . . , n, and (i, j) ∈ E implies (j, i) ∈ E . Under these
conditions, a discrete-time Markov chain on V will have the uniform distribution as one of its
equilibrium distributions. We are interested in finding the Markov chain, i.e., constructing
the transition probability matrix P ∈ Rn×n

+ , that minimizes its asymptotic convergence rate
to the uniform distribution. This is an important problem in Markov chain Monte Carlo
(MCMC) simulations, as it directly affects the sampling efficiency of an algorithm.
The asymptotic rate of convergence is determined by the second largest eigenvalue of P , which
in our case is µ(P) := σmax(P − 1

n11>) where σmax(A) denotes the maximum singular value
of A. As µ(P) decreases, the mixing rate increases and the Markov chain converges faster to
equilibrium. Thus, our optimization problem is

minimize
P

σmax(P − 1
n11>)

subject to P ≥ 0, P1 = 1, P = P>

Pij = 0, (i, j) /∈ E .

Journal of Statistical Software 21

0.55

0.36

0.36

0.45

0.45

0.27

0.27 0.27

0.36
0.27

0.36

1

2

3

4

(a) Triangle + 1 edge.

0.14

0.43

0.14

0.43

0.43
0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

1

2

3

4

5

(b) Bipartite 2 + 3.

Figure 9: Markov chains with transition probabilities that achieve the fastest mixing rate.

The element Pij of our transition matrix is the probability of moving from state i to state j.
Our assumptions imply that P is non-negative, symmetric, and doubly stochastic. The last
constraint ensures transitions do not occur between unconnected vertices.
The function σmax is convex, so this problem is solvable in CVXR. For instance, the code for
the Markov chain in Figure 9a is

R> P <- Variable(n, n)
R> ones <- matrix(1, nrow = n, ncol = 1)
R> obj <- sigma_max(P - 1/n)
R> constr1 <- list(P >= 0, P %*% ones == ones, P == t(P))
R> constr2 <- list(P[1, 3] == 0, P[1, 4] == 0)
R> prob <- Problem(Minimize(obj), c(constr1, constr2))
R> result <- solve(prob, solver = "SCS")

where we have set n = 4. We could also have specified P1 = 1 with sum_entries(P, 1) ==
1, which uses the sum_entries atom to represent the row sums.
It is easy to extend this example to other Markov chains. To change the number of vertices,
we would simply modify n, and to add or remove edges, we need only alter the constraints in
constr2. For instance, the bipartite chain in Figure 9b is produced by setting n = 5 and

R> constr2 <- list(P[1, 3] == 0, P[2, 4] == 0, P[2, 5] == 0, P[4, 5] == 0)

4. Implementation
CVXR represents the atoms, variables, constraints, and other parts of an optimization prob-
lem using S4 class objects. S4 enables us to overload standard mathematical operations so
CVXR combines seamlessly with native R code and other packages. When an operation is
invoked on a variable, a new object is created that represents the corresponding expression

22 CVXR: Disciplined Convex Optimization in R

tree with the operator as the root node and the arguments as leaves. This tree grows auto-
matically as more elements are added, allowing us to encapsulate the structure of an objective
function or constraint.
Once the user calls solve, DCP verification occurs. CVXR traverses the expression tree
recursively, determining the sign and curvature of each sub-expression based on the properties
of its component atoms. If the problem is deemed compliant, it is transformed into an
equivalent cone program using graph implementations of convex functions (Grant et al. 2006).
Then, CVXR passes the problem’s description to the CVXcanon C++ library (Miller, Quigley,
and Zhu 2015), which generates data for the cone program, and sends this data to the solver-
specific R interface. The solver’s results are returned to the user in a list. This object-oriented
design and infrastructure were largely borrowed from CVXPY.
CVXR interfaces with the open-source cone solvers ECOS (Domahidi, Chu, and Boyd 2013)
and SCS (O’Donoghue et al. 2016) through their respective R packages. ECOS is an interior-
point solver, which achieves high accuracy for small and medium-sized problems, while SCS is
a first-order solver that is capable of handling larger problems and semidefinite constraints. As
noted by Domahidi et al. (2013, Section I.A), first-order methods can be slow if the problem
is not well conditioned or if it has a feasible set that does not allow for an efficient projection,
while interior-point methods have a convergence rate that is independent of the problem data
and the particular feasible set. Furthermore, starting from version 0.99, CVXR also provides
support for the commercial solvers MOSEK (Andersen and Andersen 2000) and GUROBI
(Gurobi Optimization, Inc 2016) through binary R packages published by the respective ven-
dors. It is not difficult to connect additional solvers so long as the solver has an API that can
communicate with R. Users who wish to employ a custom solver may obtain the canonical-
ized data for a problem and solver combination directly with get_problem_data(problem,
solver). When more than one solver is capable of solving a problem, the solver argument
to the solve function can be used to indicate a preference. Available solvers, depending on in-
stalled packages in a session, are returned via installed_solvers(). Interested users should
consult tutorial examples on the web page https://cvxr.rbind.io for further guidance.
We have provided a large library of atoms, which should be sufficient to model most convex
optimization problems. However, it is possible for a sophisticated user to incorporate new
atoms into this library. The process entails creating a S4 class for the atom, overloading
methods that characterize its DCP properties, and representing its graph implementation as
a list of linear operators that specify the corresponding feasibility problem. For instance,
the absolute value function f(x) = |x| is represented by the ‘Abs’ class, which inherits from
‘Atom’. We defined its curvature by overloading the S4 method is_atom_convex, used in the
DCP verification step, to return TRUE when called on an ‘Abs’ object. Then, we derived the
graph form of the absolute value to be f(x) = inf{t| − t ≤ x ≤ t}. This form’s objective
and constraints were coded into lists in the atom’s graph_implementation function. A full
mathematical exposition may be found in Grant et al. (2006, Section 10). In general, we
suggest users try to reformulate their optimization problem first before attempting to add a
novel atom.

4.1. Speed considerations

Usually, CVXR will be slower than a direct call to a solver, because in the latter case, the
user would have already done the job of translating a mathematical problem into code and

https://cvxr.rbind.io

Journal of Statistical Software 23

constraints ingestible by the solver. CVXR does this translation for the user starting from a
DCP formulation of the problem by walking the abstract syntax tree, which represents the
canonicalized objectives and constraints, and building appropriate matrix structures for the
solver. The matrix data are passed to a compatible solver using either Rcpp (Eddelbuettel and
François 2011) or calls to a solver-specific R package. CVXR stores data in sparse matrices,
thereby allowing large problems to be specified. However, the restrictions imposed by R on
sparse matrices (Bates and Maechler 2019) still apply: each dimension cannot exceed the
integer limit of 231 − 1.
Currently, the canonicalization and construction of data in R for the solver dominates com-
putation time, particularly for complex expressions that involve indexing into individual el-
ements of a matrix or vector. Using available CVXR functions for vectorized operations
provides substantial speed improvements.
CVXR also provides a ‘Parameter’ object that can be combined with warm starts, if such an
option is available in the solver. A ‘Parameter’ is a constant expression whose value can be
modified after a ‘Problem’ is created. This can yield significant reductions in computation
time when solving a family of parametrized problems. The code below exploits warm starts
to solve a lasso problem with two different values of the penalization parameter λ.

R> beta <- Variable(n)
R> lambda <- Parameter(pos = TRUE)
R> obj <- 0.5 * sum((y - X %*% beta)^2) + lambda * p_norm(beta, 1)
R> constr <- list(beta >= 0)
R> prob <- Problem(Minimize(obj), constr)

The problem is solved with a first value of lambda:

R> value(lambda) <- 1
R> result <- solve(prob, solver = "OSQP")

The problem is solved again with a second value of lambda and using a warm start:

R> value(lambda) <- 2
R> result <- solve(prob, solver = "OSQP", warm_start = TRUE)

On a commodity Macintosh laptop, with X ∈ R2000×500 and y ∈ R2000, the first solution
took 7.153 seconds, while the second took only 0.763 seconds.

5. Conclusion
Convex optimization plays an essential role in many fields, particularly machine learning and
statistics. CVXR provides an object-oriented language with which users can easily formulate,
modify, and solve a broad range of convex optimization problems. While other R packages
may perform faster on a subset of these problems, CVXR’s advantage is its flexibility and
simple intuitive syntax, making it an ideal tool for prototyping new models for which custom
R code does not exist. For more information, see the official web page of the package on
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
CVXR and documentation.

https://CRAN.R-project.org/package=CVXR
https://CRAN.R-project.org/package=CVXR

24 CVXR: Disciplined Convex Optimization in R

Acknowledgments
The authors would like to thank Trevor Hastie, Robert Tibshirani, John Chambers, and
David Donoho for their thoughtful advice and comments on this project. The authors also
thank the referees for suggesting improvements and drawing our attention to some references.
We are grateful to Steven Diamond, John Miller, and Paul Kunsberg Rosenfield for their
contributions to the software’s development. In particular, we are indebted to Steven for his
work on CVXPY. Most of CVXR’s code, documentation, and examples were ported from his
Python library.
Anqi Fu’s research was supported by the Stanford Graduate Fellowship and DARPA X-DATA
program. Balasubramanian Narasimhan’s work was supported by the Clinical and Transla-
tional Science Award 1UL1 RR025744 for the Stanford Center for Clinical and Translational
Education and Research (Spectrum) from the National Center for Research Resources, Na-
tional Institutes of Health.

References

Andersen ED, Andersen KD (2000). “The MOSEK Interior Point Optimizer for Linear Pro-
gramming: An Implementation of the Homogeneous Algorithm.” In High Performance
Optimization, pp. 197–232. Springer-Verlag.

Andersen M, Dahl J, Liu Z, Vandenberghe L (2011). “Interior-Point Methods for Large-
Scale Cone Programming.” In Optimization for Machine Learning. MIT. doi:10.7551/
mitpress/8996.003.0005.

Banerjee O, Ghaoui LE, d’Aspremont A (2008). “Model Selection Through Sparse Maximum
Likelihood Estimation for Multivariate Gaussian or Binary Data.” Journal of Machine
Learning Research, 9, 485–516.

Bates D, Maechler M (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.2-18, URL https://CRAN.R-project.org/package=Matrix.

Bezanson J, Karpinski S, Shah VB, Edelman A (2012). “Julia: A Fast Dynamic Language for
Technical Computing.” arXiv:1209.5145 [cs.PL], URL http://arxiv.org/abs/1209.5145.

Boyd N, Hastie T, Boyd S, Recht B, Jordan MI (2018). “Saturating Splines and Feature
Selection.” Journal of Machine Learning Reserach, 18(197), 1–32.

Boyd S, Busseti E, Diamond S, Kahn RN, Koh K, Nystrup P, Speth J (2017). “Multi-Period
Trading via Convex Optimization.” Foundations and Trends in Optimization, 3(1), 1–76.
doi:10.1561/2400000023.

Boyd S, Diaconis P, Xiao L (2004). “Fastest Mixing Markov Chain on a Graph.” SIAM
Review, 46(4), 667–689. doi:10.1137/s0036144503423264.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). “Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers.” Foundations and
Trends in Machine Learning, 3(1), 1–122. doi:10.1561/2200000016.

https://doi.org/10.7551/mitpress/8996.003.0005
https://doi.org/10.7551/mitpress/8996.003.0005
https://CRAN.R-project.org/package=Matrix
http://arxiv.org/abs/1209.5145
https://doi.org/10.1561/2400000023
https://doi.org/10.1137/s0036144503423264
https://doi.org/10.1561/2200000016

Journal of Statistical Software 25

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press.

Busseti E, Ryu EK, Boyd S (2016). “Risk-Constrained Kelly Gambling.” Journal of Investing,
25(3), 118–134. doi:10.3905/joi.2016.25.3.118.

Canty A, Ripley B (2020). boot: Bootstrap Functions (Originally by Angelo Canty for S). R
package version 1.3-25, URL https://CRAN.R-project.org/package=boot.

Cox DR (1958). “The Regression Analysis of Binary Sequences.” Journal of the Royal Sta-
tistical Society B, 20(2), 215–242. doi:10.1111/j.2517-6161.1958.tb00292.x.

Diamond S, Boyd S (2016). “CVXPY: A Python-Embedded Modeling Language for Convex
Optimization.” Journal of Machine Learning Research, 17(83), 1–5.

Domahidi A, Chu E, Boyd S (2013). “ECOS: An SOCP Solver for Embedded Systems.” In
Proceedings of the European Control Conference, pp. 3071–3076.

Dümbgen L, Rufibach K (2009). “Maximum Likelihood Estimation of a Log-Concave Density
and Its Distribution Function: Basic Properties and Uniform Consistency.” Bernoulli,
15(1), 40–68. doi:10.3150/08-bej141.

Dümbgen L, Rufibach K (2011). “logcondens: Computations Related to Univariate Log-
Concave Density Estimation.” Journal of Statistical Software, 39(6), 1–28. doi:10.18637/
jss.v039.i06.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Freedman DA (2009). Statistical Models: Theory and Practice. Cambridge University Press.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the
Graphical Lasso.” Biostatistics, 9(3), 432–441. doi:10.1093/biostatistics/kxm045.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

Fu A, Narasimhan B, Kang DW, Diamond S, Miller J (2020). CVXR: Disciplined Convex
Optimization. R package version 1.0-8, URL https://CRAN.R-project.org/package=
CVXR.

Gelfand IM, Fomin SV (1963). Calculus of Variations. Prentice-Hall.

Grant M, Boyd S (2014). “CVX: MATLAB Software for Disciplined Convex Programming,
Version 2.1.” URL https://cvxr.com/cvx.

Grant M, Boyd S, Ye Y (2006). “Disciplined Convex Programming.” In L Liberti, N Maculan
(eds.), Global Optimization: From Theory to Implementation, Nonconvex Optimization and
Its Applications, pp. 155–210. Springer-Verlag.

Griva IA, Vanderbei RJ (2005). “Case Studies in Optimization: Catenary Problem.” Opti-
mization and Engineering, 6(4), 463–482. doi:10.1007/s11081-005-2068-0.

https://doi.org/10.3905/joi.2016.25.3.118
https://CRAN.R-project.org/package=boot
https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://doi.org/10.3150/08-bej141
https://doi.org/10.18637/jss.v039.i06
https://doi.org/10.18637/jss.v039.i06
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=CVXR
https://CRAN.R-project.org/package=CVXR
https://cvxr.com/cvx
https://doi.org/10.1007/s11081-005-2068-0

26 CVXR: Disciplined Convex Optimization in R

Gurobi Optimization, Inc (2016). Gurobi Optimizer Reference Manual. URL http://www.
gurobi.com/.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning. Springer-
Verlag, New York.

Hastie T, Zou H (2005). “Regularization and Variable Selection via the Elastic-Net.” Jour-
nal of the Royal Statistical Society B, 67(2), 301–320. doi:10.1111/j.1467-9868.2005.
00503.x.

Huber PJ (1964). “Robust Estimation of a Location Parameter.” The Annals of Mathematical
Statistics, 35(1), 73–101.

Johnson SG (2008). The NLopt Nonlinear-Optimization Package. URL http://ab-initio.
mit.edu/nlopt/.

Kelly JL (1956). “A New Interpretation of Information Rate.” Bell System Technical Journal,
35(4), 917–926. doi:10.1109/TIT.1956.1056803.

Koenker R (2005). Quantile Regression. Cambridge University Press.

Koenker R, Mizera I (2014). “Convex Optimization in R.” Journal of Statistical Software,
60(5), 1–23. doi:10.18637/jss.v060.i05.

Lobo M, Boyd S (2000). “The Worst-Case Risk of a Portfolio.” URL http://stanford.edu/
~boyd/papers/pdf/risk_bnd.pdf.

Lobo MS, Fazel M, Boyd S (2007). “Portfolio Optimization with Linear and Fixed
Transaction Costs.” Annals of Operations Research, 152(1), 341–365. doi:10.1007/
s10479-006-0145-1.

Lofberg J (2004). “YALMIP: A Toolbox for Modeling and Optimization in MATLAB.” In
Proceedings of the IEEE International Symposium on Computed Aided Control Systems
Design, pp. 294–289. URL http://users.isy.liu.se/johanl/yalmip.

Lumley T (2004). “Analysis of Complex Survey Samples.” Journal of Statistical Software,
9(8), 1–19. doi:10.18637/jss.v009.i08.

Lumley T (2020). “survey: Analysis of Complex Survey Samples.” R package version 4.0,
URL https://CRAN.R-project.org/package=survey.

Lumley TS (2010). Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons.

Markowitz HM (1952). “Portfolio Selection.” Journal of Finance, 7(1), 77–91. doi:10.1111/
j.1540-6261.1952.tb01525.x.

Miller J, Quigley P, Zhu J (2015). “CVXcanon: Automatic Canonicalization of Dis-
ciplined Convex Programs.” URL https://stanford.edu/class/ee364b/projects/
2015projects/reports/miller_quigley_zhu_report.pdf.

Mullen KM, Van Stokkum IHM (2012). nnls: The Lawson-Hanson Algorithm for Non-
Negative Least Squares (NNLS). R package version 1.4, URL https://CRAN.R-project.
org/package=nnls.

http://www.gurobi.com/
http://www.gurobi.com/
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://ab-initio.mit.edu/nlopt/
http://ab-initio.mit.edu/nlopt/
https://doi.org/10.1109/TIT.1956.1056803
https://doi.org/10.18637/jss.v060.i05
http://stanford.edu/~boyd/papers/pdf/risk_bnd.pdf
http://stanford.edu/~boyd/papers/pdf/risk_bnd.pdf
https://doi.org/10.1007/s10479-006-0145-1
https://doi.org/10.1007/s10479-006-0145-1
http://users.isy.liu.se/johanl/yalmip
https://doi.org/10.18637/jss.v009.i08
https://CRAN.R-project.org/package=survey
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://stanford.edu/class/ee364b/projects/2015projects/reports/miller_quigley_zhu_report.pdf
https://stanford.edu/class/ee364b/projects/2015projects/reports/miller_quigley_zhu_report.pdf
https://CRAN.R-project.org/package=nnls
https://CRAN.R-project.org/package=nnls

Journal of Statistical Software 27

Nash JC, Varadhan R (2011). “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. doi:10.18637/jss.
v043.i09.

O’Donoghue B, Chu E, Parikh N, Boyd S (2016). “Conic Optimization via Operator Splitting
and Homogeneous Self-Dual Embedding.” Journal of Optimization Theory and Applica-
tions, 169(3), 1042–1068. doi:10.1007/s10957-016-0892-3.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Roy AD (1952). “Safety First and the Holding of Assets.” Econometrica, 20(3), 431–449.
doi:10.2307/1907413.

Shannon CE, Weaver W (1949). The Mathematical Theory of Communication. University of
Illinois Press.

Skajaa A, Ye Y (2015). “A Homogeneous Interior-Point Algorithm for Nonsymmet-
ric Convex Conic Optimization.” Mathematical Programming, 150(2), 391–422. doi:
10.1007/s10107-014-0773-1.

The MathWorks Inc (2018). “Using Credit Scorecards with Constrained Logistic Re-
gression Coefficients.” URL https://www.mathworks.com/help/finance/examples/
credit-scorecards-with-constrained-logistic-regression-coefficients.html.

The MathWorks Inc (2019). MATLAB – The Language of Technical Computing, Version
R2019a. Natick. URL http://www.mathworks.com/products/matlab/.

Theußl S, Schwendinger F, Borchers HW (2020a). “CRAN Task View: Optimization and
Mathematical Programming.” Version 2020-05-21, URL https://CRAN.R-project.org/
view=Optimization.

Theußl S, Schwendinger F, Hornik K (2020b). “ROI: The R Optimization Infrastructure
Package.” Journal of Statistical Software, 94(15), 1–64. doi:10.18637/jss.v094.i15.

Tibshirani RJ, Hoefling H, Tibshirani R (2011). “Nearly-Isotonic Regression.” Technometrics,
53(1), 54–61. doi:10.1198/tech.2010.10111.

Udell M, Mohan K, Zeng D, Hong J, Diamond S, Boyd S (2014). “Convex Optimization
in Julia.” In Proceedings of the Workshop for High Performance Technical Computing in
Dynamic Languages, pp. 18–28.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wright SJ (1997). Primal-Dual Interior-Point Methods. SIAM.

Yuan M, Lin Y (2007). “Model Selection and Estimation in the Gaussian Graphical Model.”
Biometrika, 94(1), 19–35. doi:10.1093/biomet/asm018.

https://doi.org/10.18637/jss.v043.i09
https://doi.org/10.18637/jss.v043.i09
https://doi.org/10.1007/s10957-016-0892-3
https://www.R-project.org/
https://doi.org/10.2307/1907413
https://doi.org/10.1007/s10107-014-0773-1
https://doi.org/10.1007/s10107-014-0773-1
https://www.mathworks.com/help/finance/examples/credit-scorecards-with-constrained-logistic-regression-coefficients.html
https://www.mathworks.com/help/finance/examples/credit-scorecards-with-constrained-logistic-regression-coefficients.html
http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/view=Optimization
https://doi.org/10.18637/jss.v094.i15
https://doi.org/10.1198/tech.2010.10111
https://www.python.org/
https://www.python.org/
https://doi.org/10.1093/biomet/asm018

28 CVXR: Disciplined Convex Optimization in R

A. Expressions and functions
CVXR uses the function information in this section and the DCP tools to assign expressions
a sign and curvature. In what follows, the domain Sn refers to the set of symmetric matrices,
with Sn+ and Sn− referring to the set of positive semidefinite and negative semidefinite matrices,
respectively.

A.1. Operators
The infix operators +, -, *, %*%, / are treated as functions. Both + and - are affine functions.
In CVXR, * and / are affine because expr1 * expr2 and expr1 %*% expr2 are allowed only
when one of the expressions is constant and expr1 / expr2 is allowed only when expr2 is a
scalar constant.
The transpose of any expression can be obtained using t(expr). Transpose is an affine
function. The construct exprˆp is equivalent to the function power(expr, p).

A.2. Indexing and slicing
All non-scalar expressions can be indexed using expr[i, j]. Indexing is an affine function.
The syntax expr[i] can be used as a shorthand for expr[i, 1] when expr is a column
vector. Similarly, expr[i] is shorthand for expr[1, i] when expr is a row vector.
Non-scalar expressions can also be sliced using the standard R slicing syntax. For example,
expr[i:j, r] selects rows i through j of column r and returns a vector.
CVXR supports advanced indexing using lists of indices or boolean arrays. The semantics
are the same as in R. Any time R might return a numeric vector, CVXR returns a column
vector.

A.3. Scalar functions
CVXR provides the scalar functions displayed in Tables 2 and 3, which take in one or more
scalars, vectors, or matrices as arguments and return a scalar.
For a vector expression x, cvxr_norm(x) and cvxr_norm(x, 2) give the Euclidean norm.
For a matrix expression X, however, cvxr_norm(X) and cvxr_norm(X, 2) give the spectral
norm. The function cvxr_norm(X, "fro") gives the Frobenius norm and cvxr_norm(X,
"nuc") the nuclear norm. The nuclear norm can also be defined as the sum of the singular
values of X.
The functions max_entries and min_entries give the largest and smallest entry, respectively,
in a single expression. These functions should not be confused with max_elemwise and
min_elemwise (see Section A.4). The functions max_elemwise and min_elemwise return the
maximum or minimum of a list of scalar expressions.
The function sum_entries sums all the entries in a single expression. The built-in R sum
should be used to add together a list of expressions. For example, the following code sums
three expressions.

R> sum(expr1, expr2, expr3)

Some functions such as sum_entries, cvxr_norm, max_entries, and min_entries can be
applied along an axis. Given an m by n expression expr, the line func(expr, axis = 1)

Journal of Statistical Software 29
Fu

nc
tio

n
M
ea
ni
ng

D
om

ai
n

Si
gn

C
ur
va
tu
re

M
on

ot
on

ic
ity

ge
o_
me
an
(x
)

ge
o_
me
an
(x
,
p)

p
∈

R
n +
,p
6=

0

x
1/

n
1
··
·x

1/
n

n

(x
p

1 1
··
·x

p
n

n
)

1
1

>
p

x
∈

R
n +

+
co
nc
av
e

↗

ha
rm
on
ic
_m
ea
n(
x)

n
1 x
1

+
···

+
1

x
n

x
∈

R
n +

+
co
nc
av
e

↗
la
mb
da
_m
ax
(X
)

λ
m

ax
(X

)
X
∈

Sn
±

co
nv

ex
no

ne
la
mb
da
_m
in
(X
)

λ
m

in
(X

)
X
∈

Sn
co
nc
av
e

no
ne

la
mb
da
_s
um
_l
ar
ge
st
(X
,
k)

k
=

1,
..
.,
n

su
m

of
k
la
rg
es
t
ei
ge
nv
al
-

ue
s
of
X

X
∈

Sn
±

co
nv

ex
no

ne

la
mb
da
_s
um
_s
ma
ll
es
t(
X,

k)
k

=
1,
..
.,
n

su
m

of
k
sm

al
le
st

ei
ge
nv

al
-

ue
s
of
X

X
∈

Sn
±

co
nc
av
e

no
ne

lo
g_
de
t(
X)

lo
g(

de
t(
X

))
X
∈

Sn +
±

co
nc
av
e

no
ne

lo
g_
su
m_
ex
p(
X)

lo
g(∑ ij

eX
i
j

)
X
∈

R
m
×

n
±

co
nv

ex
↗

ma
tr
ix
_f
ra
c(
x,

P)
x
>
P
−

1 x
x
∈

R
n
,

P
∈

Sn +
+

+
co
nv

ex
no

ne

ma
x_
en
tr
ie
s(
X)

m
ax

ij
{X

ij
}

X
∈

R
m
×

n
sa
m
e
as
X

co
nv

ex
↗

mi
n_
en
tr
ie
s(
X)

m
in

ij
{X

ij
}

X
∈

R
m
×

n
sa
m
e
as
X

co
nc
av
e

↗

mi
xe
d_
no
rm
(X
,
p,

q)
(∑ k

(∑ l|x
k

,l
|p

)q
/

p
) 1/q

X
∈

R
n
×

n
+

co
nv

ex
no

ne
cv
xr
_n
or
m(
x)

cv
xr
_n
or
m(
x,

2)

√ ∑
i
x

2 i
X
∈

R
n

+
co
nv

ex
↗

fo
r
x

i
≥

0,
↙

fo
r
x

i
≤

0
cv
xr
_n
or
m(
X,

"f
ro
")

√ ∑
ij
X

2 ij
X
∈

R
m
×

n
+

co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0
cv
xr
_n
or
m(
X,

1)
∑ ij
|X

ij
|

X
∈

R
m
×

n
+

co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0
cv
xr
_n
or
m(
X,

"i
nf
")

m
ax

ij
{|
X

ij
|}

X
∈

R
m
×

n
+

co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0
cv
xr
_n
or
m(
X,

"n
uc
")

tr
((X

>
X
) 1/2)

X
∈

R
m
×

n
+

co
nv

ex
no

ne
cv
xr
_n
or
m(
X)

cv
xr
_n
or
m(
X,

2)

√ λ m
ax

(X
>
X

)
X
∈

R
m
×

n
+

co
nv

ex
no

ne

Ta
bl
e
2:

Sc
al
ar

fu
nc

tio
ns
.

30 CVXR: Disciplined Convex Optimization in R
Fu

nc
tio

n
M
ea
ni
ng

D
om

ai
n

Si
gn

C
ur
va
tu
re

M
on

ot
on

ic
ity

p_
no
rm
(X
,
p)

p
≥

1
or
p

=
∞

‖X
‖ p

=
(∑ ij

|X
ij
|p
) 1/p

X
∈

R
m
×

n
+

co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0

p_
no
rm
(X
,
p)

p
<

1,
p
6=

0
‖X
‖ p

=
(∑ ij

X
p ij

) 1/p
X
∈

R
m
×

n
+

+
co
nc
av
e

↗

qu
ad
_f
or
m(
x,

P)
co
ns
ta
nt
P
∈

Sn +

x
>
P
x

x
∈

R
n

+
co
nv

ex
↗

fo
r
x

i
≥

0,
↙

fo
r
x

i
≤

0
qu
ad
_f
or
m(
x,

P)
co
ns
ta
nt
P
∈

Sn −

x
>
P
x

x
∈

R
n

−
co
nc
av
e

↗
fo
r
x

i
≥

0,
↙

fo
r
x

i
≤

0
qu
ad
_f
or
m(
c,

X)
co
ns
ta
nt
c
∈

R
n

c>
X
c

X
∈

R
n
×

n
de
pe

nd
s
on

c,
X

affi
ne

de
pe

nd
s
on

c

qu
ad
_o
ve
r_
li
n(
X,

y)
(∑ ij

X
2 ij

) /
y

x
∈

R
n
,y

>
0

+
co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0,
↙

in
y

su
m_
en
tr
ie
s(
X)

∑ ij
X

ij
X
∈

R
m
×

n
sa
m
e
as
X

affi
ne

↗
su
m_
la
rg
es
t(
X,

k)
k

=
1,

2,
..
.

su
m

of
k
la
rg
es
t
X

ij
X
∈

R
m
×

n
sa
m
e
as
X

co
nv

ex
↗

su
m_
sm
al
le
st
(X
,
k)

k
=

1,
2,
..
.

su
m

of
k
sm

al
le
st
X

ij
X
∈

R
m
×

n
sa
m
e
as
X

co
nc
av
e

↗

su
m_
sq
ua
re
s(
X)

∑ ij
X

2 ij
X
∈

R
m
×

n
+

co
nv

ex
↗

fo
r
X

ij
≥

0,
↙

fo
r
X

ij
≤

0
ma
tr
ix
_t
ra
ce
(X
)

tr
(X

)
X
∈

R
n
×

n
sa
m
e
as
X

affi
ne

↗
tv
(x
)

∑ i
|x

i+
1
−
x

i|
x
∈

R
n

+
co
nv

ex
no

ne

tv
(X
)

∑ ij

∥ ∥ ∥ ∥[X i+
1,

j
−
X

ij

X
i,

j
+

1
−
X

ij

]∥ ∥ ∥ ∥ 2
X
∈

R
m
×

n
+

co
nv

ex
no

ne

tv
(X
1,
..
.,
Xk
)

∑ ij

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥        X
(1

)
i+

1,
j
−
X

(1
)

ij

X
(1

)
i,

j
+

1
−
X

(1
)

ij
. . .

X
(k

)
i+

1,
j
−
X

(k
)

ij

X
(k

)
i,

j
+

1
−
X

(k
)

ij

        ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ 2

X
(i

)
∈

R
m
×

n
+

co
nv

ex
no

ne

Ta
bl
e
3:

M
or
e
sc
al
ar

fu
nc

tio
ns
.

Journal of Statistical Software 31
Fu

nc
tio

n
M
ea
ni
ng

D
om

ai
n

Si
gn

C
ur
va
tu
re

M
on

ot
on

ic
ity

ab
s(
x)

|x
|

x
∈

R
+

co
nv

ex
↗

fo
r
x
≥

0,
↙

fo
r
x
≤

0
en
tr
(x
)

−
x

lo
g(
x

)
x
>

0
±

co
nc
av
e

no
ne

ex
p(
x)

ex
x
∈

R
+

co
nv

ex
↗

hu
be
r(
x,

M
=
1)

M
≥

0

{ x
2

|x
|≤

M

2M
|x
|−

M
2
|x
|>

M
x
∈

R
+

co
nv

ex
↗

fo
r
x
≥

0,
↙

fo
r
x
≤

0
in
v_
po
s(
x)

1/
x

x
>

0
+

co
nv

ex
↙

kl
_d
iv
(x
,
y)

x
lo

g(
x
/y

)−
x

+
y

x
>

0,
y
>

0
+

co
nv

ex
no

ne
lo
g(
x)

lo
g(
x

)
x
>

0
±

co
nc
av
e

↗
lo
g1
p(
x)

lo
g(
x

+
1)

x
>
−

1
sa
m
e
as
x

co
nc
av
e

↗
lo
gi
st
ic
(x
)

lo
g(

1
+
ex

)
x
∈

R
+

co
nv

ex
↗

ma
x_
el
em
wi
se
(x
1,
..
.,

xk
)

m
ax
{x

1,
..
.,
x

k
}

x
i
∈

R
m

ax
(s

ig
n(
x

1)
)

co
nv

ex
↗

mi
n_
el
em
wi
se
(x
1,
..
.,

xk
)

m
in
{x

1,
..
.,
x

k
}

x
i
∈

R
m

in
(s

ig
n(
x

1)
)

co
nc
av
e

↗
mu
lt
ip
ly
(c
,
x)

c
∈

R
c
×
x

x
∈

R
sig

n(
cx

)
affi

ne
de
pe

nd
s
on

c

ne
g(
x)

m
ax
{−
x
,0
}

x
∈

R
+

co
nv

ex
↙

po
s(
x)

m
ax
{x
,0
}

x
∈

R
+

co
nv

ex
↗

po
we
r(
x,

0)
1

x
∈

R
+

co
ns
ta
nt

po
we
r(
x,

1)
x

x
∈

R
sa
m
e
as
x

affi
ne

↗
po
we
r(
x,

p)
p

=
2,

4,
8,
..
.

x
p

x
∈

R
+

co
nv

ex
↗

fo
r
x
≥

0,
↙

fo
r
x
≤

0
po
we
r(
x,

p)
p
<

0
x

p
x
>

0
+

co
nv

ex
↙

po
we
r(
x,

p)
0
<
p
<

1
x

p
x
≥

0
+

co
nc
av
e

↗

po
we
r(
x,

p)
p
>

1,
p
6=

2,
4,

8,
..
.

x
p

x
≥

0
+

co
nv

ex
↗

sc
al
en
e(
x,

al
ph
a,

be
ta
)

al
ph

a
≥

0,
be

ta
≥

0
α

po
s(
x

)+
β

ne
g(
x

)
x
∈

R
+

co
nv

ex
↗

fo
r
x
≥

0,
↙

fo
r
x
≤

0
sq
rt
(x
)

√
x

x
≥

0
+

co
nc
av
e

↗
sq
ua
re
(x
)

x
2

x
∈

R
+

co
nv

ex
↗

fo
r
x
≥

0,
↙

fo
r
x
≤

0

Ta
bl
e
4:

El
em

en
tw

ise
fu
nc

tio
ns
.

32 CVXR: Disciplined Convex Optimization in R
Fu

nc
tio

n
M
ea
ni
ng

D
om

ai
n

Si
gn

C
ur
va
tu
re

M
on

ot
on

ic
ity

bm
at
([
[X
11
,.
..
,
X1
q]
,

..
.,

[X
p1
,.
..
,
Xp
q]
])

  X
(1

,1
)
··
·

X
(1

,q
)

. . .
. . .

X
(p

,1
)
··
·

X
(p

,q
)  

X
(i

,j
)

∈
R

m
i
×

n
j

sig
n
(∑ ij

X
(i

,j
)

11

) affi
ne

↗

co
nv
(c
,
x)

c
∈

R
m

c
∗
x

x
∈

R
n

sig
n

(c
1x

1)
affi

ne
de
pe

nd
s
on

c

cu
ms
um
_a
xi
s(
X,

ax
is

=
1)

cu
m
ul
at
iv
e

su
m

al
on

g
gi
ve
n
ax

is
X
∈

R
m
×

n
sa
m
e
as

X
affi

ne
↗

di
ag
(x

)

  x
1

. .
.

x
n

  
x
∈

R
n

sa
m
e
as

x
affi

ne
↗

di
ag
(X
)

  X
11 . . .

X
n

n

  
X
∈

R
n
×

n
sa
m
e
as

X
affi

ne
↗

di
ff
(X
,
k
=
1,

ax
is

=
1)

k
=

0,
1,

2,
..
.

k
th

or
de
r

di
ffe

re
nc
es

(a
rg
um

en
t
k

is
ac
tu
al
ly

na
m
ed

di
ffe

re
nc
es

an
d
la
g

ca
n

al
so

be
us
ed
)

al
on

g
gi
ve
n
ax

is

X
∈

R
m
×

n
sa
m
e
as

X
affi

ne
↗

hs
ta
ck
(X
1,
..
.,

Xk
)

[X(1
)
··
·X

(k
)]

X
(i

)
∈

R
m
×

n
i

sig
n
(∑ i

X
(i

)
11

) affi
ne

↗

kr
on
ec
ke
r(
C,

X)
C
∈

R
p
×

q

  C
11
X
··
·

C
1q
X

. . .
. . .

C
p

1X
··
·

C
p

q
X

  
X
∈

R
m
×

n
sig

n
(C

11
X

11
)

affi
ne

de
pe

nd
s
on

C

re
sh
ap
e_
ex
pr
(X
,
c(
m’
,

n’
))

X
′
∈

R
m

′ ×
n

′
X
∈

R
m
×

n

m
′ n
′

=
m
n

sa
m
e
as

X
affi

ne
↗

ve
c(
X)

x
′
∈

R
m

n
X
∈

R
m
×

n
sa
m
e
as

X
affi

ne
↗

vs
ta
ck
(X
1,
..
.,

Xk
)

  X
(1

)

. . .
X

(k
)  

X
(i

)
∈

R
m

i
×

n
sig

n
(∑ i

X
(i

)
11

) affi
ne

↗

Ta
bl
e
5:

Ve
ct
or

an
d
m
at
rix

fu
nc

tio
ns
.

Journal of Statistical Software 33

applies func to each row, returning an m by 1 expression. The line func(expr, axis = 2)
applies func to each column, returning a 1 by n expression. For example, the following code
sums along the columns and rows of a matrix variable:

R> X <- Variable(5, 4)
R> row_sums <- sum_entries(X, axis = 1) # Has size (5, 1)
R> col_sums <- sum_entries(X, axis = 2) # Has size (1, 4)

CVXR ensures the implementation aligns with the base::apply function. The default in
most cases is axis = NA, which treats an input matrix as one long vector, basically the same
as base::apply with MARGIN = c(1, 2). The exception is cumsum_axis (see Table 4), which
cannot take axis = NA and will throw an error.

A.4. Elementwise functions

These functions operate on each element of their arguments and are displayed in Table 4. For
example, if X is a 5 by 4 matrix variable, then abs(X) is a 5 by 4 matrix expression. Also,
abs(X)[1, 2] is equivalent to abs(X[1, 2]).
Elementwise functions that take multiple arguments, e.g., max_elemwise and multiply, op-
erate on the corresponding elements of each argument. For instance, if X and Y are both
3 by 3 matrix variables, then max_elemwise(X, Y) is a 3 by 3 matrix expression, where
max_elemwise(X, Y)[2, 1] is equivalent to max_elemwise(X[2, 1], Y[2, 1]). Thus all
arguments must have the same dimensions or be scalars, which are promoted appropriately.

A.5. Vector and matrix functions

These functions, shown in Table 5, take one or more scalars, vectors, or matrices as arguments
and return a vector or matrix.
The input to bmat is a list of lists of CVXR expressions. It constructs a block matrix. The
elements of each inner list are stacked horizontally, and then the resulting block matrices are
stacked vertically.
The output of vec(X) is the matrix X flattened in column-major order into a vector.
The output of reshape_expr(X, c(m1, n1)) is the matrix X cast into an m1 by n1 matrix.
The entries are taken from X in column-major order and stored in the output in column-major
order.

Affiliation:
Anqi Fu, Stephen Boyd
Department of Electrical Engineering
David Packard Building
350 Jane Stanford Way
Stanford, CA 94305, United States of America
E-mail: anqif@stanford.edu, boyd@stanford.edu
URL: https://web.stanford.edu/~anqif/, https://web.stanford.edu/~boyd/

mailto:anqif@stanford.edu
mailto:boyd@stanford.edu
https://web.stanford.edu/~anqif/
https://web.stanford.edu/~boyd/

34 CVXR: Disciplined Convex Optimization in R

Balasubramanian Narasimhan
Department of Biomedical Data Sciences
and
Department of Statistics
Stanford University
390 Jane Stanford Way
Stanford, CA 94305, United States of America
E-mail: naras@stanford.edu
URL: https://web.stanford.edu/~naras/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

August 2020, Volume 94, Issue 14 Submitted: 2017-12-01
doi:10.18637/jss.v094.i14 Accepted: 2019-04-02

mailto:naras@stanford.edu
https://web.stanford.edu/~naras/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v094.i14

	Introduction
	Disciplined convex optimization
	Examples
	Regression
	Robust (Huber) regression
	Quantile regression
	Elastic net regularization
	Logistic regression
	Sparse inverse covariance estimation
	Saturating hinges

	Nonparametric estimation
	Log-concave distribution estimation
	Survey calibration
	Nearly-isotonic and nearly-convex fits

	Miscellaneous applications
	Worst case covariance
	Catenary problem
	Portfolio optimization
	Kelly gambling
	Channel capacity
	Fastest mixing Markov chain

	Implementation
	Speed considerations

	Conclusion
	Expressions and functions
	Operators
	Indexing and slicing
	Scalar functions
	Elementwise functions
	Vector and matrix functions

