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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized, tailored method

e this tutorial focuses on step 1 (a.k.a. GP modeling)

e step 2 is technology
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Why?

e we can solve even large GPs very effectively, using recently developed
methods

e so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

e GP is especially good at handling a large number of concurrent
constraints

e GP formulation is useful even when it is approximate
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Trade-offs in optimization

e general trade-off between generality and effectiveness

e generality

— number of problems that can be handled
— accuracy of formulation
— ease of formulation

e cffectiveness

— speed of solution, scale of problems that can be handled
— global vs. local solutions
— reliability, baby-sitting, starting point
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Example: least-squares vs. simulated annealing

least-squares
e large problems reliably (globally) solved quickly
e no initial point, no algorithm parameter tuning

e solves very restricted problem form

e with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, .. .)

simulated annealing

e can be applied to any problem (more or less)
e slow, needs tuning, babysitting; not global in practice

e method of choice for some problems you can’t handle any other way
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Where GP fits in

somewhere in between, closer to least-squares . . .

e like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . ..

e solves a class of problems broader than least-squares, less general than
simulated annealing

e formulation takes effort, but is fun and has high payoff
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Geometric Programming &
Generalized Geometric Programming



Monomial & posynomial functions

r = (x1,...,Ty,): vector of positive optimization variables

e function g of form

g(x) = caytwy® - - ay,

with ¢ > 0, o; € R, is called monomial

e sum of monomials, i.e., function f of form
t
_ 1k . O2k «
f(x) = E :Ckxl Lo~ o2,

k=1

with ¢ > 0, ;1 € R, is called posynomial
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Examples

with x, y, z variables,

e 0.23, 2z+/x/y, 3x*y 1?2z are monomials (hence also posynomials)
e 0.23+x/y, 2(1+xy)3, 2x+ 3y + 2z are posynomials

o 2x + 3y — 2z, x°+tanx are neither
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

° max{1+x1,2:1:1—|—:1:2 :13339}
o (01x1x305—|—x17 g7) i

° (max{1+:1:1,2:1:1+x8‘2x§3‘9})1' +:I:11 3.7
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Composition rules

e monomials closed under product, division, positive scaling, power,
Inverse

e posynomials closed under sum, product, positive scaling, division by
monomial, positive integer power

e generalized posynomials closed under sum, product, max, positive
scaling, division by monomial, positive power
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Generalized geometric program (GGP)

minimize  fo(x)
subject to  fi(x) <

fi are generalized posynomials, g; are monomials

e called geometric program (GP) when f; are posynomials

e a highly nonlinear constrained optimization problem
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GP example

e maximize volume of box with width w, height h, depth d

e subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to  2(hw + hd) < Ayan, wd < Ag,
a<h/w<pB, ~v<d/w<o

in standard GP form:

minimize h lw td~!

subject to (Q/Awan)hw + (Q/Awan)hd <1, (I/Aﬂr)’UJd <1
ah™lw <1, (1/8)hw <1
ywd~t <1, (1/5)w td<1
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GGP example: Floor planning

w
e choose cell widths, heights | ——— [ 1
o fixed cell areas hflwl ho
o (1 left of 2) above (3 left of 4) wa
e aspect ratio constraints 3
e minimize bounding box area g hy

| W3 Wy

minimize  hw

SUbjECt to hzwz — Aia 1/amax < hz/wz < Omax;
max{hl, hg} + max{hg, h4} S h,
max{wi + we, w3 + wa} < w

...a GGP
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Trade-off analysis

(no equality constraints, for simplicity)

e form perturbed version of original GP, with changed righthand sides:

minimize  fo(x)
subject to  fi(z) <w;, i=1,...,m

e u; >1 (u; < 1) means ith constraint is relaxed (tightened)
e let p(u) be optimal value of perturbed problem

e plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example

105 ' %Awau = 10000
4| §
10 A = 1000
=~ 10%
: | Awan = 100
10°F :
10 T e
10 102 10°

Aﬂoor
e maximum volume V vs. Ag;, for Ay.n = 100, 1000, 10000

e h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

e optimal sensitivity of ith constraint is

Op/p

- 8uz/uz u—1

Si

e S, predicts fractional change in optimal objective value if ith constraint
is (slightly) relaxed or tightened

e very useful in practice; give quantitative measure of how tight a binding
constraint is

e when we solve a GP we get all optimal sensitivities at no extra cost

Boyd, Kim, & Mohan, DATE Tutorial 2005 16



Example

e minimize circuit delay, subject to power, area constraints (details later)

minimize  D(x)
subject to  P(z) < Pmax,  A(x) < Amax

e both constraints tight at optimal x*: P(z*) = P™**, A(x*) = A™
e suppose optimal sensitivities are SPV" = —2.1, §2"°* = —0.3

e we predict:

— for 1% increase in allowed power, optimal delay decreases 2.1%
— for 1% increase in allowed area, optimal delay decreases 0.3%
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GP and GGP attributes

e after log transform of variables/constraints, they become convex
problems

e can convert GGP to GP, e.g., f(z) + max{g(x),h(z)} <1 becomes

where t is new (dummy) variable

e conversion tricks can be automated

— parser scans problem description, forms GP
— efficient GP solver solves GP
— solution transformed back (dummy variables eliminated)
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How GPs are solved

the practical answer: none of your business

more politely: you don’t need to know

it's technology:

e good algorithms are known

e good software implementations are available
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How GPs are solved

e work with log of variables: y; = logz;
e take log of monomials/posynomials to get
minimize  log fo(eY)

subject to log f;(e¥) <0, i=1,...,m
log gi(e¥) =0, ¢

e log f;(eY) are (smooth) convex functions
e log g;(e¥) are affine functions, i.e., linear plus a constant

e solve (nonlinear) convex optimization problem above using
interior-point method
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Current state of the art

e basic interior-point method that exploits sparsity, generic GP structure

e approaching efficiency of linear programming solver

— sparse 1000 vbles, 10000 monomial terms: few seconds
— sparse 10000 vbles, 100000 monomial terms: minute
— sparse 109 vbles, 10" monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)
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History

e GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

e engineering applications from the very beginning

— early applications in chemical, mechanical, power engineering

— digital circuit transistor and wire sizing with Elmore delay since 1984
(Fishburn & Dunlap's TILOS)

— analog circuit design since 1997 (Hershenson, Boyd, Lee)

— other applications in finance, wireless power control, statistics, . . .

o extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Mixed-integer geometric program

minimize  fo(z)
subject to  f;(x)

I, +=1,....m
gz(x) L,

<
ceD;,, 1=1,...,k
e f; are generalized posynomials, g; are monomials

e D, are discrete sets, e.g., {1,2,3,4,...} or {1,2,4,8...}

e very hard to solve exactly; all methods make some compromise
(compared to methods for GP)

e heuristic methods attempt to find good approximate solutions quickly,
but cannot guarantee optimality

e global methods always find the global solution, but can be extremely
slow
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Digital Circuit Design Applications



Gate scaling

input flip flops  combinational logic block output flip flops
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clock

e combinational logic; circuit topology & gate types given

e gate sizes (scale factors x; > 1) to be determined

e scale factors affect total circuit area, power and delay
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RC gate delay model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i Vaa
—cim
. w .
R o

e input & intrinsic capacitances, driving resistance, load capacitance

in ~in int ~int D in
Cz' = Cz Li, Cz = Cz Ly, Rz = RZ/CL‘Z, E O
JEFO(7)
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RC gate model

e RC gate delay:

D; = 0.69R;(C; + C{™) = 0.69 | R,.C;" +

1

e D, are posynomials (of scale factors)
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Path and circuit delay

A A 4
ot
\]

e delay of a path: sum of delays of gates on path
. . . posynomial

e circuit delay: maximum delay over all paths
.. . generalized posynomial
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Area & power

e total circuit area: A = x1A; + -+ 1, A,

e total power is P = Pyyy + Patat

— dynamic power Py, = Z fz-(C'fL-L + ant)Vde
i=1
fi is gate switching frequency

n

— static power Pyiax = Z xiigeakvdd
i=1

I'°ak is leakage current (average over input states) of unit scaled gate

e A and P are linear functions of x, with positive coefficients, hence
posynomials
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Basic gate scaling problem

minimize D
subject to P < pPma* A < Amax
1<z, 21=1,....n

...a GGP

extensions/variations:

e minimize area, power, or some combination
e maximize clock frequency subject to area, power limits

e add other constraints

e optimal trade-off of area, power, delay
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Clock frequency maximization

e f.x Is variable

e timing requirement: D < 0.8/ fox
(20% margin for flip-flop delay, setup time, clock skew . . . )

e P is posynomial of scalings and f.i, assuming f; scale with f.i

maximize  fek
subject to P < pPmax A <A™ (1/0.8)D fax < 1,
1<z, 21=1,....n

...a GGP
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Example: 32-bit Ladner-Fisher adder

e 451 gates (scale factors), 5 gate types, 64 inputs, 32 outputs

e logical effort gate delay model parameters:

gatetype | C'n Ot R A Jleak
INV 3 3 048 3 0.006
NAND2 4 §) 048 8 0.007
NOR2 5 6 0.48 10 0.009
AOI21 6 7 048 17 0.003
OAl21 §) 7 048 16 0.003

e time unit is 7, delay of min-size inverter (0.69 - 0.48 -3 = 1)

e area (total width) unit is width of NMQOS in min-size inverter

Boyd, Kim, & Mohan, DATE Tutorial 2005 31



Example: 32-bit Ladner-Fisher adder

e typical optimization time: few seconds on PC

16000

Amax

3000
45 70
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32-bit Ladner-Fisher adder with discrete scale factors

e add constraints x; € {1,2,4,8,16,...}

e simple rounding of optimal continuous scalings

_ 16000
optimal continuous

simple rounding

Amax

3000
45 70
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Sparse GP gate scaling problem

minimize D

subject to 1; < D for j an output gate
P S Pmax7 A é Amax
1§£CZ', ?::1,...,’]7,

e I are upper bounds on signal arrival times

e extremely sparse GP; can be solved very efficiently

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility
(hence efficient global solution)

e area, delay, power can be any generalized posynomials of scale factors,
e.q.,

D; = a; +b;(Cy) Pz "0, Pi=c+di(CP)' 2 + ey

1

e these can be found by more refined analysis, or fitting generalized
posynomials to simulation/characterization data
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Distinguishing gate transitions

e can distinguish rising and falling transitions, with different delay, energy,
C'™, for each gate input/transition

e (bounds on) signal arrival times can be propagated through recursions,
e.g.,

T — T + D o7t pir T — T + pt ot pit
i jgﬁé){3+ jiv L+ J%}’ i jg%ﬁ){1+ jir L+ Jz}

e gate scaling problem more complex, but still a GGP
(hence can be efficiently solved)
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Modeling signal slopes

associate (worst-case) output signal transition time 7 with each gate

model delay, energy, input capacitance as (generalized posynomial)
functions of scale factor, load capacitance, input transition time

propagate output transition time using (generalized posynomial)
function of scale factor, load capacitance, input transition time

common model:

Di = CLZCZL/.Z'Z + liiTiin, Ez m— bz(CZL —I—CZQZ‘Z) + )\Z'CCiTZ-in, T, — ViDi

gate scaling problem still a GGP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Design with a standard library

e circuit topology is fixed; choose size for each gate from discrete library

e a combinatorial optimization problem, difficult to solve exactly

e GP approach

— for each gate type in library, fit given library data to find
GP-compatible models of delay, power, . ..

— size with continuous fitted models, using GP

— snap continuous scale factors back to standard library
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Robust design over corners

e have K corners or scenarios, e.g., combinations of

— process parameters (channel length, oxide thickness, . .. )
— environmental parameters (supply voltage, temperature, . . . )

e for each corner have (slightly) different models for delay, power, . . .

e robust design finds gate scalings that work well for all corners

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Robust design over corners

e basic (worst-case) robust design over corners:

minimize D% = max{DW, ..., D)}
subject to P (g) < pmax  PE)(z) < pmax
A S Amax

1<z, 2=1,...,n

e many variations, e.g., minimize average delay over corners,

D& = (1/K) (D(l) 4. +D(K))

e results in (very large, but sparse) GGP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Multiple-scenario design

e have K scenarios or operating modes, with K models for P, D, . ..

e scenarios are combinations of

— supply & threshold voltages
— clock frequency
— specifications & constraints

e like corner-based robust design, but scenarios are intentional

e find one set of gate scalings that work well in all scenarios

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Example

e find single set of gate scalings to support both high performance mode

and low power mode

— in high performance mode: Pfast < pfast  pfast < pfast
— in low power mode: Pslow < pslow - pslow < pyslow

minimize A

subject to  Pslow < pslow Dslow < pslow
—_— 9 -~
Pfast < Pfadst7 Dfast < Dfast
1<z, 1=1,...,n

...a GGP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Statistical parameter variation

e circuit peformance depends on random device and process parameters
e hence, performance measures like P, D are random variables P, D
e delay D is max of many random variables; often skewed to right

e distributions of P, D depend on gate scalings z;

frequency

el ol [ } HHHHHHHHHHHHHHHWW

45 circuit delay o3

e related to (parametric) yield, DFM, DFY . ..
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Statistical design

e measure random performance measures by 95% quantile (say)

minimize  Q?°(D)
subject to Q%°(P) < Pmax, A < Amax
1<z, 2=1,....n

o extremely difficult stochastic optimization problem; almost no
analytic/exact results

e but, (GP-compatible) heuristic method works well

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Statistical model

e for simplicity consider V4, variation only

e Pelgrom’s model: oy, = c_fvtha:_l/Q

e alpha-power law model: D o Vyq/(Vaq — Vin)®, with av ~ 1.3

e for small variation in Vi,

oD

—1- —0.5
amh O'Vth — a(Vdd — V:ch) O'Vthilf D

O'D%|

e op Is posynomial

e get similar (posynomial) models for op with more complex gate delay
statistical models

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Heuristic for statistical design

e assume generalized posynomial models for gate delay mean D;(x) and
variance o;(x)*

e optimize using surrogate gate delays
k;0i(x) are margins on gate delays (k; is typically 2 or 3)

e verify statistical performance via Monte Carlo analysis
(can update k;'s and repeat)
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Heuristic for statistical design

heuristic statistical design

e often far superior to design obtained ignoring statistical variation

e not very sensitive to details of process variation statistics (distribution
shape, correlations, . . .)

e below: 32-bit Ladner-Fisher adder, Pelgrom variance model

statistical design

nominal optimal design

m“ HHHHHHHHHWWW

45 o 53
circuit delay

frequency
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Path delay mean/std. dev. scatter plots

nominal optimal design
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Joint size and supply/threshold voltage optimization

e goal: jointly optimize gate size, supply and threshold voltages via GGP

e need to: model delay, power as generalized posynomial functions of
gate size, supply and threshold voltages

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Generalized posynomial delay model

e alpha-power law model predicts variation in gate delay with Vg4, Vin:

Vaa,i ~
: Dz X
(Vaa,i — Vin,i)® (@)

D; =

~

D; is generalized posynomial gate delay model, function of scalings x

e generalized posynomial approximation
Di = Vi (L + Vin/Vaas + -+ + (Vini/Vaa.i)*)* Di()

error under 1% for Vg, > 2Vin4, 1.3 < a <2
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Generalized posynomial power model

mn
e gate dynamic power: Pyy, = Z fi(CF + C;nt)Vd2d7i
i=1
e simple static power model:
mn
Pyot = Z xilgeakvdd,z‘, ]r}eak x e~ Ven,i=7Vad,i)/ Vo
i=1

v, Vi are (process) constants

e P, (by itself) cannot be approximated well by a generalized
posynomial over large range of Vg4, Vin

e but, total power P = P4y, + Pstar €an be approximated well by a
generalized posynomial

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Generalized posynomial power model example

total power P

Vde + 30Vqe (Vin—0.06Vqq)/0.039 (up to scaling)

12

12

e generalized posynomial approximation

V2 +0.06V4(1 + 0.0031V4q)°%°(V;1,/0.039) ~6-16

P =

e error under 3% (well under accuracy of modell!)

52
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Joint optimization of gate sizes, V4,

basic problem, with variables: z;, Vin i, Vad.

minimize
subject to

(...a GGP)

D

P S Pmax’ A S Amax

Vi < Vi S VRS, i=1,.
i=1,...

legin < Vdd,i < drgaxj
other constraints . . .

discrete allowed Vg4, Vin values yields MIGP

Boyd, Kim, & Mohan, DATE Tutorial 2005

& Vi

S

53



Extensions/variations
clustering, with single V44, Vin per cluster:
Vada,i = Vaa,j,  Vini = Vin,; for ¢, 7 in same cluster
. monomial (equality) constraints
clustered voltage scaling (CVS): low Vyq cells cannot drive high V44 cells
Vaa,; < Vaa,; for j € FO(7)
.. monomial (inequality) constraints

multimode design: choose single set of gate scalings, different Vd(!f),

Vtglk) for each scenario k=1,... . K

related to dynamic voltage scaling, adaptive bulk biasing, . . .
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Joint optimization examples

e Ladner-Fisher adder

e variables: gate scalings x;, supply voltages Vq4q i, threshold voltages Viy, ;

e four delay-power trade-off curves:

— fixed Vdd,z' = 1.0, fixed ‘[ch,i = 0.3
— fixed Vg, = 1.0, variable Vi, ; € {0.2,0.3,0.4}
— CVS with Vyq,; € {0.6,1.0}, Vi, € {0.2,0.3,0.4}

— variable continuous Vyq, Vin, 0.6 < Vgq,; < 1.0, 0.2 < Vi ; <04
(not practical, but serves as lower bound)
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30
CVS

lower bound

Trade-off curve analysis

fixed Vdd, ‘/th

fixed Vyq, variable Vi
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Design with multiple threshold voltages

100%
Vihn =04

Q
I
oY)
G
(@)
IS

Vinh = 0.3

0% *Vin = 0.2

70
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Clustered voltage scaling

]_OO% \—‘//T = = = = qud f— 0.6

0
0

% of gates

0% \ OVdd = 1.0
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Wire and device sizing

RC tree:
Ro R3
— AT
R, Coy_—_— Cs ——
— A — R
R
| 4
= ——ANN\— R Cys——
Cr— —\A~ ==
—— Cy—— Ce ——

e R;s and (s are generalized posynomials of some underlying variables x

Boyd, Kim, & Mohan, DATE Tutorial 2005 59



Elmore delay

e Elmore delay at node 1:

D, / ui(t) di
0

area under voltage curve, when voltages are initialized as v;(0) = 1

e Elmore delay of RC tree is D = max{D1,...,Dyn}
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Elmore delay expression

e analytic expression for ElImore delay D;

D;= ) RC/"

JEP (1)

e P(i) is path from root to node i
e (!°'is the total capacitance downstream from node i (including C})
e [, is posynomial of x

e D is generalized posynomial of x

Boyd, Kim, & Mohan, DATE Tutorial 2005
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RC tree optimization

e minimize RC tree delay subject to (generalized posynomial) constraints

minimize D
subject to  fi(x) <0, i=1,...,m
...a GGP
e sparse formulation:
minimize s
subjectto s>D,, 1=1,....n
tot tot .
Ci% 2 2 iccnia) Ci” +Ci i=1,...,n

D; > DPar(k) +RiC@tOt7 r=1,...,n
fz(£13>§0, izl,...,m
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Wire

e choose wire segment widths w,, ...

e optimize delay, area

sizing

,WnN In an interconnect network

Boyd, Kim, & Mohan, DATE Tutorial 2005
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7 model for wire segment

R;
i VYT
[
Jwi C,—— —— C,
e wire resistance and capacitances
[; —
R; = a;—, Ci = Bilsw; + il;,
wy

e with m model, interconnect network becomes RC tree, with R;s and C}s
posynomial functions of wire segment widths w;
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Wire sizing via GP

minimize D
subject to w;"" <w; <w"**, =1,...,N
LLwy + -+ vy < Amax

...a GGP

e can easily optimize interconnect network with 10000 wires, using sparse
GP formulation

e can use more accurate generalized posynomial models of R;, C;
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Device sizing

e devices (and wire segments) are sized individually
e replace each device with switch-level RC model
e cach transition is associated with RC tree

e use Elmore delay to measure delay of transition

e ... problem is GGP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Switch-level RC device model

D
G% %B Ced D Cyp
S e
NMOS Cep {
G B
D de
G 5 —
#% Cgs S C(sb
S
PMOS

e crude linear approximation of device, for delay and power optimization
e R, all s are generalized posynomials of device width

o we'll ignore Cgq (but can be incorporated via Miller effect . . . )
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Example: 2-input NAND

—s '

|
B A
{Cdm — Cab2——
Cy —— Rsa1 Rsa2

X

] A\ ——Caps—— C*
# M (@ M — =
} X de3
A Ms — b Vad
C. B\ ——Cs3+ Caps
| 3 L
. ‘ B de4 -
B ‘ M4 C4 —

C1 = Cgha+Cgs2, O = Cghz+Css3, O3 = Cgh1+Cgs1, C4= CgpatCges
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Example transition

e transition: B falls from V34 to zero; A remains at Vyq

e associated RC tree:

de?,%Cl — ——ct
T

C1 = Cap1 + Cavz + Cap3, C2 = Cgpz + Cana
e Elmore delay: D = del(CL + C1 + Cy)
e energy lost: E = (CY + Cy + Co)V2E,/2

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Analog and RF Circuit Design Applications



Large signal MOS model

D S
] -
G I G I
ATEE
S D
NMOS PMOS

e gate overdrive voltage Vyoy = Vs — Vin

e saturation condition: Vg > Visat = Vagov (Visat is minimum
drain-source voltage for device to operate in saturation)

e square-law model I = 0.5uCo (W/L)V,
e GP model variables: I, L, W
o Vioy = (1C0ox/2) Y212 L1/2WW =1/2 is monomial

® Vo = Vioov + Vin Is posynomial

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Small signal dynamic MOS model

Claa
G i D
Cgb f— Cgs f— gmvgs GD %90 f— Cdb
B S

e transconductance gy, = (2uCox)/21/2L=1/2W1/2 is monomial
e output conductance g, = Al is monomial
e all capacitances are (approximately) posynomial in I, L, W

e better (GP-compatible) models can be obtained by fitting data from
accurate models or measurements

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Example: monomial g, model

e monomial model of g, for /O NMQOS device in a 0.13um technology

e 11000 data points (from BSIM3) over ranges

— 03um < L <3um, 2um < W < 20pum
— 0.7V < Vg < 1.7V, Vigar < Vs < 1.5V

e V4 appears in data set, but not in g,, model
e monomial fit (using simple log-regression, Sl units):

G = 0.027810'4798L_0'511WO'5632

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Example: monomial g, model

e fitting (relative) error cumulative distribution plot:

100%

fraction of data points

=
X
X

5% 10%

fitting error

e for 90% of points, fit is better than 4%

Boyd, Kim, & Mohan, DATE Tutorial 2005

73



Single transistor common source amplifier

e variables: I, L, W, R
e saturation: Vyeut + IR < Vyq
e gain G=gn/(1/R+ go)

® power P = Vddf

e (unity gain) bandwidth B = g,,/C"

e design problem:
minimize P

subject to B > B™n,
saturation

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Common source amplifier design via GP

® rewrite as

minimize P
subject to B! < 1/Bmin, Gl < 1/Gmin
Vasat + IR < Vg

e ...a GP, since P and B are monomials, and
G—l _ 1/R+go
9dm

is posynomial

e this is a simple problem; don't need GP sledgehammer . . .

Boyd, Kim, & Mohan, DATE Tutorial 2005
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¢

Current mirror opamp

gdg
My j—if Mz My 5j—EM6
DIref out
m—%[ M1 M2 ]%IH—F
MlO]T‘ My N
H [ M

o My, My and Ms, My matched pairs

e four current mirrors: Mg, Ms; Mg, M7;

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Design problem

minimize P
subject to B > B™", G > G™™",
other constraints . . .

e objective & specifications:
— P is power dissipation
— B is unity gain bandwidth
— (G is DC gain
— Ais (active) area
e design variables: Lq,..., Lo, W1,...,Wig

o given: Vyq, C1,, .o, common-mode voltage V.,

e we'll formulate as GP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Power, bandwidth, gain, & area

o power: P = Vaq(Ig + I5 + I7 + I1p)
e bandwidth: B = gm,29m,6/(gm,4CL)

e area: A = W1L1 + -+ W10L10

gm,2,gm,6
gm,4(go,6 T 90,7>

e gain: G =

. . . posynomial
. monomial

. . . posynomial

. G~ is posynomial, so G > G™ can be written as G~ < 1/G™®

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Dimension, matching, and current constraints
e limits on device sizes: Lyin < L; < Liyax, Wain < W,, 1 =1,...,10
e differential symmetry constraints (M7, My and M3, My matched):

Wy =W,  Li=Ly L =1
W3 = Wy, L3 = Ly, I3 = Iy,

e length & gate overdrive voltage matched for current mirror pairs:

Ls = Lsg, Lo = L7, L3 = Ly, Ly = Lg
Vgov,5 — Vgov,S: Vgov,lO — VgOV,77 Vgov,S — Vgov,97 Vgov,4 — Vgov,6

e current relations:

I =135=1;/2, Ig = Iet, Ig = Iy, Iy = I
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Saturation constraints

e diode connected devices (M3, My, Mg, M1o) automatically in saturation

e others must have Vs > Vygat:

— Mz Visat,7 < Vem

— Me¢: Vasat,6 + Vem < Vada

— Mo: Visat,9 + Vas,10 < Vaa

— Ms: Vass + Ves1 < Vem

— My & Msy: Vo + Vs 3 < Vaa + Vin

e ... all are posynomial inequalities
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Node capacitances and non-dominant poles

e capacitances at nodes are posynomials, e.g.,

C°" = Cya6 + Cab,6 + Cear + Cap.7 + CL

e non-dominant time constants are posynomials:

_Car

)
9m,3

Ca2 Ca9

T ,
9m. 4 9m,10

T2

(Ca1, Cya2, Cqg are node capacitances at drains of My, My, M)

e to limit effect of non-dominant poles, make sum smaller than dominant
time constant:
71+ T2 + 79 < Tdom = CL/9gm
... a posynomial constraint
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Power versus bandwidth trade-off

107

B™™" (MHz)

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Joint electrical /physical design

e each device has a (physical) cell width w and height h for floor planning
e devices are folded into multiple fingers

e (approximate) posynomial or monomial relations link electrical variables
(I, L, W) and physical variables (w, h), e.g.,

— cell area is at least 4x active area: wh > 4W L
— cell aspect ratio limited to 5:1: 1/5 < w/h <5

< »
< »
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Slicing tree layout scheme

e vertical and horizontal slices fix relative placement of device cells

e |eaves are device cells; root is bounding box

hbbox

- - - - - - e e — - - = =

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Slicing tree constraints
e introduce width, height for each node in slicing tree
e for each vertical slice with parent a and children b, ¢ add constraints

W, = Wy + We, he = max{hy, he}

e for each horizontal slice with parent a and children b, ¢ add constraints

we = max{wp, We}, h, = hy + h.

e shows width and height of bounding box and each node is generalized
posynomial of device cell widths, heights

e resulting GP formulation is very sparse

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Joint electrical /physical design via GP

e form one GP that includes

— electrical variables, constraints (1;, L;, W;, gm.i - - -)
— physical variables, constraints (w;, h;, wPPo%, hPPox )
— coupling constraints (w;h; > 4W;L;, . . . )

e solve it all together

e extensions: can add

— parasitic estimates
— more accurate expressions for device cell dimensions
— channels for routing

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Optimal filter implementation

simple Gm-C two-pole lowpass filter

— output

input

transfer function is

1
N 1 + t18 + t1t282’

H{s)

t1 =C1/g1, to=Cy/g9

g; is amplifier transconductance

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Noise analysis

e N, is input referred (white) amplifier input-referred voltage density

e spectral density of output noise is

N2 4 2 N2

N(w)? =
(@) (1 — t1tow?)? + t3w?

e root-mean-square output noise voltage is

o0 1/2
M = (/ N(w)? dw) = (aNT + BN3) bz
0

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Amplifier and capacitor implementation models

e cach amplifier has private variables u (e.g., device lengths & widths)
and constraints

e transconductance g is monomial in u; area A*™P, power P,
input-referred noise density IV are posynomial in u

e each capacitor has private variables v (e.g., physical dimensions) and
constraints

e capacitance C' is monomial in v; area A°®P is posynomial

e design variables are uq, uo, v1, v
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Optimal filter implementation problem

o filter is Butterworth with frequency w.:

t = V2/we, to = (1/V2) /w,

e minimize total power of implementation, subject to area, output noise
limits:

minimize  P(u1) + P(us)

subject to  t; = v/2/w,, ty = (1/v/2)/w.
Aamp(ul)_l_Aamp(uQ)_I_Acap(,Ul)_|_Acap(,U2) S Amax
M = (wo/4V2)(N? +2N3)1/% < M

e a GGP in the variables uq, us, vy, vo

Boyd, Kim, & Mohan, DATE Tutorial 2005



Example

e Butterworth filter with w. = 10%rad/s
e private variables in amplifiers: (equivalent) L, W

e amplifier model:

AP — WL, P =25-10"4W/L,

g=4-10""W/L, N =./7.5-10~16L/W
(based on simple model with Vygq = 2.5, Voo = 0.2)

e private variable in capacitors is area A°P; C' = 10~ % AP

o AmaxX —4.107

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Power versus noise trade-off

10 |
=
£
a, 1]
o)
=
®)
(@}
0.1:'

10 100
max noise M™** (uV RMS)
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Spiral inductor/differential resonator optimization

planar loop

—v/2
/ inductor

+v/2

e loop inductor connected to (given) Ry, and CY,

e differential (floating) mode operation

e inductor designed to resonate at operating frequency f

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Design problem: differential resonator

maximize Ry
subject to QT > QF", A <A™
other constraints . . .

e objective & specifications:

— Rt is tank impedance (which is real at operating frequency f)
— @7 is tank quality factor
— A is area of loop inductor

e design variables: dimensions of loop inductor
e load resistance Ry, load capacitance Cf,, frequency f given

e we'll formulate as GP

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Loop inductor

e (centerline) diameter D

e width W
e outer diameter is D + W; area is A = (D + W)?

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Lumped model for loop inductor

—v/2 —

Q——

e lumped model for operation in differential mode

e impact of substrate capacitance, loss included in R and C

Boyd, Kim, & Mohan, DATE Tutorial 200
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Example

e frequency range 2GHz < f < 6GHz

e metal layer thickness 2um, resistivity 5-107%Qm

e metal-substrate capacitance

e width, diameter constraints:

150pum < D < 600um,

Boyd, Kim, & Mohan, DATE Tutorial 2005
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GP models for L, R and C

e can get exact values via EM simulation

e inductance (monomial)

L =921 10—6D1.28W—0.25f—0.01

e resistance (posynomial)

R=01DW 143107 DW 084054 51079 DW ~0-76 £0-T5L 0.02DW f

e capacitance (posynomial):

C=510"DW +1.-107''D
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Resonance constraint

_______________

—v/2 i

+v/2

e resonance condition: 47%f2LCt =1 (Ct = C + CL)

e to handle in GP:

— impose posynomial constraint C' + Cf, < C't

— add extra capacitance (after design) Cextra = C7 — C — C1, if needed

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Tank conductance and quality factor

I L R I
T !
/2 /2
. C i
CL
VA
Ry,
tank conduct G ! d + ! osynomial
e tank conductance: = = - nomi
"TRe 4Pf2L2 T Ry PoY
. 1 R 2 f L _
e inverse of tank quality factor: m/f . . . posynomial

Or 27fL " Ri
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LC oscillator

Vaa
Ve
B loop
v/2 inductor +u/2 e loop inductor
CLI c. v. C. T CL e varactors for fine tuning
- L - L -

””” oB-1c. | e binary weighted switching
~ " capacitors for coarse tuning
e

Oy e cross coupled NMOS

? : transistors

e tail current source
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LC oscillator design problem

minimize P
subject to N < N™max A < Amax | > [min
other constraints . . .

e objective & specifications:

— P is power consumption
— N is phase noise

— A is area of loop inductor
— [ is loop gain

e given: load capacitance Cf,, center frequency f, normalized tuning
range T’

e we'll formulate as GP
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Design variables

Vaa
/d

loo : : :
—v/2 inducl?cor +v/2 e loop inductor dimensions D, W

TICL

e size of varactor V.

o B-1,~ | . . . .
3 &2 HCSW% 3 e size of SW|tch|ng capacitors Claw
N H L . .
| o | e width, length of transistors
777777777777777777777 an081 anos
;% N .

| e bias current Iy
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Current source, switched capacitor, and varactor models

e [ii.s Is bias current, with minimum operating voltage Vy;as

e binary weighted capacitors

— B is number of bits for switching capacitors
— (. is LSB switching capacitance; 28-1C,,, is MSB switching
capacitance

® Vvaractor

— (', Is minimum varactor capacitance; K,C, is maximum
(K is process constant)
— varactor range covers 2 LSB: 2C,, < 0.5(K, — 1)C,
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Tank capacitance

e tank capacitance is sum of Chy and Chyne

e fixed capacitance is sum of loop, load and transistor capacitances:

Cee =C +0.5 (CL + Cgs + 4ng + Cdb)

e tunable capacitance is sum of switching and varactor capacitances:

— Chune for maximum frequency: Ciyne = 0.5C
— Ciune for minimum frequency: Ciyne = 2°2Cyyw + 0.5K,C,
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Resonance frequency & tuning

e capacitance constraint at maximum frequency: Cgx + 0.5C, < Cf max
e maximum frequency: (27 f(1 4+ T))° LCt max = 1
e capacitance at center frequency: (2rf)° LCf. =1

e tuning range constraint:

AT
(1-172)

QCf,c < Csvv (QB + 2)
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Power & area

e power: P = Vyalpias

e area: A = (D + W)2 + 2I/I/vnmosanos
(can add area of switched capacitors, varactor)
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Tank conductance & voltage swing

e tank conductance is posynomial: G = + 0.99,

Am2 f2]2

e differential voltage amplitude: Vg + 2Vhias < 2Vad, VoscGT < Thias
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Phase noise

h | . density of loon: 12 - — AETR
e thermal current noise power density of loop: 7 | = I 2L
e thermal current noise power density of transistor: 2 . = 4kTvygm

e phase noise in the 1/f? region:

]_ -
N = (zg n 0.5zgmos)
1672 f2,C2V2, \ ™E

OSC

e . .. can add other noise terms
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Loop gain and start-up

e inverse of loop gain is posynomial: 1/l = (g, 4+ 2G)/gm

e minimum loop gain to ensure start-up: [ > [™®

e bias condition for quiescent operating point: Vias + Vs + bizs < Vi

e NMOS device models:

gm — 4.5- 10_3W8£05L;rgfslgi§s
go = 2.6-107 Wi Lomoslbios
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LC oscillator example

Vad
/d
e center frequency: f = 5GHz )2 _ LIOOP +v/2
e tuning range: T = £10% nductor
e varactor tuning ratio: K, =3 CL II c. V. C. Il CL
= I T [ =
e B = 3bits switching capacitor ”23_10”
e minimum loop gain: {™® = 2 "
O
e load capacitance: Cy, = 200fF 1 C
e supply voltage: Vgq = 1.2V
. P% IN
e offset frequency for phase noise: |
fot = 600kHz % I

Boyd, Kim, & Mohan, DATE Tutorial 2005 112



Power versus phase noise trade-off

20

P (mW)

—122 —116 —110
PN (dBc/Hz)
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Monomial and Posynomial Fitting



A basic property of posynomials

e if f is a monomial, then log f(eY) is affine (linear plus constant)
e if f is a posynomial, then log f(e¥) is convex
e roughly speaking, a posynomial is convex when plotted on log-log plot

e midpoint rule for posynomial f:

— let z be elementwise geometric mean of x, vy, i.e., z; = /2, Y;

— then f(2) < /f(x)f(y)

e a converse: if log ¢(eY) is convex, then ¢ can be approximated as well
as you like by a posynomial
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Convexity in circuit design context

e consider circuit with design variables W7y, ..., W, (say) & performance
measure ¢p(W1,...,W,) (e.g., power, delay, area)

e two designs: Wi(a) & Wi(b), with performance gb(a) & qb(b)

e form geometric mean compromise design with WZ.(C) = \/Wi(a)Wi(b),
performance ¢(¢)

e if ¢ is generalized posynomial, then we have ¢(¢) < 1/ ¢(@) @)

e this is not obvious
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Monomial /posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

e form function F'(y) = log f(eY)

e f can be approximated by a monomial if and only if F' is nearly affine
(linear plus constant)

e f can be approximated by a generalized posynomial if and only if F'is
nearly convex
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Examples

1 ‘ ————————0.5/(1.5 — 2)
tanh(x)
-
%fwoo e U dt
101 | T

e tanh(z) can be reasonably well fit by a monomial

e 0.5/(1.5 — x) can be fit by a generalized posynomial

o (2/\/m) fxoo e~t" dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize  fy(x)
subject to  fi(z) <

e transformed objective and inequality constraint functions
F;(y) = log fi(eY) must be nearly convex

e transformed equality constraint functions G;(y) = log G;(e¥) must be
nearly affine
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Monomial fitting via log-regression

find coefficient ¢ > 0 and exponents aq, ..., a, of monomial f so that
f@)~ D i=1,...,N

® rewrite as

log f(zD) = loge+arlogaz!” + -+ a, logzl?

~ logf(i), 1=1,...,N

e use least-squares (regression) to find logc, aq,...,a, that minimize
S ' . N\ 2
Z (logc + a; log xgz) + .+ aplogalt) — 1ng(z)>
i=1

Boyd, Kim, & Mohan, DATE Tutorial 2005 119



Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that
f@~ D i=1,...N

e minimize sum of squared fractional errors

N : N
FO — fa)
> (——)

1=1

can be (locally) solved by Gauss-Newton method

e needs starting guess for coefficients, exponents

Boyd, Kim, & Mohan, DATE Tutorial 2005
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Posynomial fitting example

e 1000 data points from f(x) = ellog)*+(log22)” gyer 0.1 < z; < 1

e cumulative error distribution for 3-, 5-, and 7-term posynomial fits

100

fraction of data points in %
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A simple max-monomial fitting method

fit max-monomial

f(r) = max fi(x)

k=1,...,K
(f1,-.., fr monomials) to data @ 0 =1 ... N

simple algorithm:
repeat
fork=1,... K

1. find all data points /) for which fi(z(9)) = f(21))
(¢.e., data points at which fj is the largest of the monomials)

2. update fr by carrying out monomial fit to these data
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Max-monomial fitting example

e same 1000 data points as previous example

e cumulative error distribution for 3-, 5-, and 7-term max-monomial fits

100

fraction of data points in %

0 0.1 0.2 0.3 0.4 0.5
relative error in %
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Conclusions



Conclusions

(generalized) geometric programming

e comes up in a variety of circuit sizing contexts

e can be used to formulate a variety of problems

e admits fast, reliable solution of large-scale problems

e is good at concurrently balancing lots of coupled constraints and
objectives

e is useful even when problem has discrete constraints
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Approach

e most problems don’t come naturally in GP form; be prepared to
reformulate and/or approximate

e GP modeling is not a “try my software” method; it requires thinking

e our approach:

— start with simple analytical models (RC, square-law, Pelgrom, . . .)
to verify GP might apply

— then fit GP-compatible models to simulation or measured data

— for highest accuracy, revert to local method for final polishing
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e looking for keys under street light
(not where keys were lost, but lighting is good)

e forcing problems into GP-compatible form
(problems aren’t GPs, but solving is good)
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References

e A tutorial on geometric programming
e Digital circuit sizing via geometric programming
e Analog circuit design via geometric programming

e (Convex optimization, Cambridge Univ. Press 2004

(these include hundreds of references)

available at www.stanford.edu/"boyd/research.html
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Software

e MOSEK: www.mosek.com

e COPL-GP: (Yinyu Ye, in process of being re-worked):
www.stanford.edu/"yyye/Col.html

e GPGLP: ftp://ftp.pitt.edu/dept/ie/GP/
e YALMIP: control.ee.ethz.ch/"joloef/yalmip.msql

e a simple matlab GP solver gp.m at Boyd's EE364 site
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