
Disciplined Convex-Concave Programming

Xinyue Shen1 Steven Diamond2 Yuantao Gu1 Stephen Boyd2

Abstract— In this paper we introduce disciplined convex-
concave programming (DCCP), which combines the ideas of
disciplined convex programming (DCP) with convex-concave
programming (CCP). Convex-concave programming is an or-
ganized heuristic for solving nonconvex problems that involve
objective and constraint functions that are a sum of a convex
and a concave term. DCP is a structured way to define
convex optimization problems, based on a family of basic
convex and concave functions and a few rules for combining
them. Problems expressed using DCP can be automatically
converted to standard form and solved by a generic solver;
widely used implementations include YALMIP, CVX, CVXPY,
and Convex.jl. In this paper we propose a framework that
combines the two ideas, and includes two improvements over
previously published work on convex-concave programming,
specifically the handling of domains of the functions, and the
issue of subdifferentiability on the boundary of the domains. We
describe a Python implementation called DCCP, which extends
CVXPY, and give examples.

I. DISCIPLINED CONVEX-CONCAVE PROGRAMMING

A. Difference of convex programming

Difference of convex (DC) problems have the form

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,

(1)

where x ∈ Rn is the optimization variable, and the functions
fi : Rn → R and gi : Rn → R for i = 0, . . . ,m are convex.
The DC problem (1) can also include equality constraints
of the form pi(x) = qi(x), where pi and qi are convex; we
simply express these as the pair of inequality constraints

pi(x)− qi(x) ≤ 0, qi(x)− pi(x) ≤ 0,

which have the difference of convex form in (1). When
the functions gi are all affine, the problem (1) is a convex
optimization problem, and easily solved [1].

The broad class of DC functions includes all C2 functions
[2], so the DC problem (1) is very general. A special case
is Boolean linear programs, which can represent many prob-
lems, such as the traveling salesman problem, that are widely
believed to be hard to solve [3]. DC programs arise in many
applications in fields such as image processing [4], machine
learning [5], [6], [7], [8], computer vision [9], control [10],
[11], discrete tomography [12], subgraph matching [13], and
statistics [14]. As a more specific example, optimizing over
the efficient set of a multiple objective problem can be
formulated as a DC program [15].

1Department of Electronic Engineering, Tsinghua University, Beijing
100084, China

2Department of Electrical Engineering, Stanford University, CA 94305,
USA

DC problems can be solved globally by methods such as
branch and bound [16], [17], [18], which can be slow in prac-
tice. Good overviews of solving DC programs globally can
be found in [19], [20] and the references therein. A locally
optimal (approximate) solution can be found instead through
the many techniques of general nonlinear optimization [21].

The convex-concave procedure (CCP) [22], [23] is another
heuristic algorithm for finding a local optimum of (1), which
leverages our ability to efficiently solve convex optimiza-
tion problems. In its basic form, it replaces concave terms
with a convex upper bound, and then solves the resulting
convex problem, which is a restriction of the original DC
problem. Basic CCP can thus be viewed as an instance of
majorization minimization (MM) algorithms [24], in which a
minimization problem is approximated by an easier to solve
upper bound created around the current point (a step called
majorization) and then minimized. Many MM extensions
have been developed over the years and more can be found
in [25], [26], [27]. CCP can also be viewed as a version of
DCA [28] which instead of explicitly linearizing the concave
terms, solves a (convex) dual problem; see, e.g., [29] and the
references therein.

A recent overview of CCP, with some extensions, can be
found in [30], where the issue of infeasibility is handled
(heuristically) by an increasing penalty on constraint viola-
tions. The method we present in this paper is an extension
of the penalty CCP method introduced in [30], given as
algorithm I.1 below.

Algorithm I.1 Penalty CCP.
given an initial point x0, τ0 > 0, τmax > 0, and µ > 1.
k := 0.
repeat

1. Convexify. For i = 0, . . . ,m, form
ĝi(x;xk) = gi(xk) +∇gi(xk)T (x− xk).

2. Solve. Set the value of xk+1 to a solution of
minimize f0(x)− ĝ0(x;xk) + τk

∑m
i=1 si

subject to fi(x)− ĝi(x;xk) ≤ si, i = 1, . . . ,m
si ≥ 0, i = 1, . . . ,m.

3. Update τ . τk+1 := min(µτk, τmax).
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

See [30] for discussion of a few variations on the penalty
CCP algorithm, such as not using slack variables for con-
straints that are convex, i.e., the case when gi is affine.
Here it is assumed that gi are differentiable, and have full
domain (i.e., Rn). The first condition is not critical; we can
replace ∇gi(xk) with a subgradient of gi at xk, if it is not
differentiable. The linearization with a subgradient instead
of the gradient is still a lower bound on gi.

In some practical applications, the second assumption, that
gi have full domain, does not hold, in which case the penalty
CCP algorithm can fail, by arriving at a point xk not in the
domain of gi, so the convexification step fails. This is one
of the issues we will address in this paper.

B. Disciplined convex programming

Disciplined convex programming (DCP) is a methodology
introduced by Grant et al. [31] that imposes a set of conven-
tions that must be followed when constructing (or specifying
or defining) convex programs. Conforming problems are
called disciplined convex programs.

The conventions of DCP restrict the set of functions that
can appear in a problem and the way functions can be
composed. Every function in a disciplined convex program
must come from a set of atomic functions with known
curvature and graph implementation, or representation as
partial optimization over a cone program [32], [33]. Every
composition of functions f(g1(x), . . . , gp(x)), where f :
Rp → R is convex and g1, . . . , gp : Rn → R, must satisfy the
following composition rule, which ensures the composition is
convex. Let f̃ : Rp → R→ R ∪ {∞} be the extended-value
extension of f [1, Chap. 3]. One of the following conditions
must hold for each i = 1, . . . , p:
• gi is convex and f̃ is nondecreasing in argument i.
• gi is concave and f̃ is nonincreasing in argument i.
• gi is affine.

The composition rule for concave functions is analogous.
A disciplined convex program has the specific form

minimize/maximize o(x)
subject to li(x) ∼ ri(x), i = 1, . . . ,m,

(2)
where o (the objective), li (lefthand sides), and ri (righthand
sides) are expressions (functions of the variable x) with
curvature known from the DCP rules, and ∼ denotes one
of the relational operators =, ≤, or ≥. In DCP this problem
must be convex, which imposes conditions on the curvature
of the expressions, listed below.
• For a minimization problem, o must be convex; for a

maximization problem, o must be concave.
• When the relational operator is =, li and ri must both

be affine.
• When the relational operator is ≤, li must be convex,

and ri must be concave.
• When the relational operator is ≥, li must be concave,

and ri must be convex.
Functions that are affine (i.e., are both convex and concave)
can match either curvature requirement; for example, we can
minimize or maximize an affine expression.

A disciplined convex program can be transformed into
an equivalent cone program by replacing each function
with its graph implementation. The convex optimization
modeling systems YALMIP [34], CVX [35], CVXPY [36], and
Convex.jl [37] use DCP to verify problem convexity and
automatically convert convex programs into cone programs,
which can then be solved using generic solvers.

C. Disciplined convex-concave programming

We refer to a problem as a disciplined convex-concave
program (DCCP) if it has the form (2), with o, li, and
ri all having known DCP-verified curvature, but the DCP
curvature conditions for the objective and constraints need
not hold. Such problems include DCP as a special case, but it
includes many other nonconvex problems as well. In DCCP
we can, for example, maximize a convex function, subject
to nonaffine equality constraints, and nonconvex inequality
constraints between convex and concave expressions.

The general DC program (1) and the DCCP standard
form (2) are equivalent. To express (1) as (2), we express
it as

minimize f0(x)− t
subject to t = g0(x)

fi(x) ≤ gi(x), i = 1, . . . ,m,

where x is the original optimization variable, and t is a
new optimization variable. The objective here is convex. We
have one (nonconvex) equality constraint, and the inequality
constraints are all nonconvex (except for some special cases
when gi is affine). It is straighforward to express the DCCP
form (2) in the form (1), by identifying the functions oi, li,
and ri as ±fi or ±gi depending on their curvatures.

DCCP is a convenient and simple standard form for DC
programming, because the linearized problem in algorithm
I.1 is DCP whenever the original problem is DCCP. The
linearized problem can thus be automatically converted into
a cone program and solved using generic solvers.

II. DOMAIN AND SUBDIFFERENTIABILITY

In this section we delve deeper into an issue that is
‘assumed away’ in the standard treatments and discussions of
DC programming, specifically, how to handle the case when
the functions gi do not have full domain. (The functions fi
can have non-full domains, but this is handled automatically
by the conversion into a cone program.)

a) An example: Suppose the domain of gi is Di, for
i = 0, . . . ,m. If Di 6= Rn, simply defining the linearization
ĝi(x; z) as the first order Taylor expansion of gi at the point
z can lead to failure. The following simple problem gives an
example:

minimize
√
x

subject to x ≥ −1,

where x ∈ R is the optimization variable. The objective
has domain R+, and the solution is evidently x? = 0. The
linearized problem in the first iteration of CCP is

minimize x0 +
1

2
√
x0
(x− x0)

subject to x ≥ −1,

which has solution x1 = −1. The CCP algorithm will fail in
the first step of the next iteration, since the original objective
function is not defined at x1 = −1.

If we add the domain constraint directly into the linearized
problem, we obtain x1 = 0, but the first step of the next
iteration also fails here, in a different way. While x1 is in the

domain of the objective function, the objective is not subdif-
ferentiable (or superdifferentiable) at x1, so the linearization
does not exist. This phenomenon of non-subdifferentiability
or non-superdifferentiability can only occur at a point on the
boundary of the domain.

A. Linearization with domain

Suppose that the intersection of domains of all gi in
problem (1) is D = ∩mi=0Di. The correct way to handle
the domain is to define the linearization of gi at point z to
be

ĝi(x; z) = gi(z) +∇gi(z)T (x− z)− Ii(x), (3)

where the indicator function is

Ii(x) =
{

0 x ∈ Di

∞ x /∈ Di,

so any feasible point for the linearized problem is in the
domain D.

Since gi is convex, Di is a convex set and Ii is a convex
function. Therefore the ‘linearization’ (3) is a concave func-
tion; it follows that if we replace the standard linearization
in algorithm I.1 with the domain-restricted linearization (3),
the linearized problem is still convex.

B. Domain in DCCP

Recall that we defined DCCP to ensure that the linearized
problem in algorithm I.1 is a DCP problem. It is not obvious
that if we replace the standard linearization with the domain
modified version (3), the linearized problem is still DCP. In
this section we prove that the linearized problem still satisfies
the rules of DCP, or equivalently that each Ii(x) has a known
graph implementation or satisfies the DCP composition rule.

If gi is an atomic function, then we assume that

Di = ∩pj=1{x | Ajx+ bj ∈ Kj},

for some cone constraints K1, . . . ,Kp. The assumption is
reasonable since gi itself can be represented as partial
optimization over a cone program. The graph implementation
of Ii(x) is simply

minimize 0
subject to Ajx+ bj ∈ Kj , j = 1, . . . , p.

The other possibility is that gi is a composition of atomic
functions. Since the original problem is DCCP, we may
assume that gi(x) = f(h1(x), . . . , hp(x)) for some convex
atomic function f : Rp → R and DCP compliant h1, . . . , hp :
Rn → R such that f(h1(x), . . . , hp(x)) satisfies the DCP
composition rule. Then we have

Ii(x) = If (h1(x), . . . , hp(x)) +
p∑

j=1

Ihj
(x),

where If is the indicator function for the domain of f and
Ih1

, . . . , Ihp
are defined similarly.

Since f is convex, If is convex. Moreover,
If (h1(x), . . . , hp(x)) satisfies the DCP composition
rule. To see why, observe that for j = 1, . . . , p, if hj is

convex then by assumption the extended-value extension
f̃ is nondecreasing in argument j. It follows that If is
nondecreasing in argument j. Similarly, if hj is concave
then If is nonincreasing in argument j.

An inductive argument shows that Ih1
, . . . , Ihp

are convex
and satisfy the DCP rules. We conclude that Ii satisfies the
DCP composition rule.

C. Chain rule for a subgradient

When linearizing a nondifferentiable convex function, we
need to calculate a subgradient at a certain point. (We
say ‘a’ subgradient since it is not in general unique.) The
gradient of a differentiable expression is readily computed
recursively by the chain rule. The chain rule for compositions
of functions does not generally apply for the calculation
of the subdifferential, but it does apply when we seek a
subgradient when the function conforms to the DCP rules.

Suppose that h(x) = f(g1(x), . . . , gp(x)), where f is
convex, and the DCP rules hold, i.e., for each i, gi is
affine, or gi is convex and f is nondecreasing in argument
i, or gi is concave and f is nonincreasing in argument
i. We can compute a subgradient of h at x as follows.
Choose any q ∈ ∂f(g1(x), . . . , gp(x)). By the monotonicity
assumption qi ≥ 0 when fi is nondecreasing in argument
i and qi ≤ 0 when fi is nonincreasing in argument i.
Choose any si ∈ ∂gi(x), i = 1, . . . , p. Then we have
r = q1s1 + · · ·+ qpsp ∈ ∂h(x).

This can be directly proved as follows. For any x, y ∈ Rn,

h(x) = f(g1(x), . . . , gp(x))
≥ f(g1(y), . . . , gp(y)) +

∑p
i=1 qi(gi(x)− gi(y))

≥ f(g1(y), . . . , gp(y)) +
∑p

i=1 qis
T
i (x− y)

= h(y) + rT (x− y).

D. Sub-differentiability on boundary

When D 6= Rn, a solution to the linearized problem x̂k
at iteration k can be on the boundary of the closure of
D. It is possible (as our simple example above shows) that
the convex function gi is not subdifferentiable at x̂k, which
means the linearization does not exist and the algorithm fails.
This pathology can and does occur in practical problems.

In order to handle this, at each iteration, when the subgra-
dient ∇gi(x̂k) for any function gi does not exist, we simply
take a damped step,

xk = αx̂k + (1− α)xk−1,

where 0 < α < 1. If x0 is in the interior of the domain, then
xk will be in the interior for all k ≥ 0, and ∇gi(xk) will
be guaranteed to exist. The algorithm can (and does, for our
simple example) converge to a point on the boundary of the
the domain, but each iterate is in the interior of the domain,
which is enough to guarantee that the linearization exists.

III. IMPLEMENTATION

The proposed methods described above have been imple-
mented as the Python package DCCP, which extends the
package CVXPY. New methods were added to CVXPY to

return the domain of a DCP expression (as a list of con-
straints), and gradients (or sub/supergradients) were added to
the atoms. The linearization, damping, and initialization are
handled by the package DCCP. Users can form any problem
of the form (2) conforming to the DCCP rules, with each
expression composed of functions in the CVXPY library.

When the solve(method = ’dccp’) method is
called on a problem object, DCCP first verifies that the
problem satisfies the DCCP rules. Then it splits each non-
affine equality constraint li = ri into li ≤ ri and li ≥ ri.
The curvature of the objective and the left and righthand sides
of each constraint is checked, and if needed, linearized. In
the linearization the function value and gradient are CVXPY
parameters, which are constants whose value can change
without reconstructing the problem. For each constraint in
which the left or righthand side is linearized, a slack variable
is introduced, and added to the objective. For any expression
that is linearized, the domain of the original expression is
added as a constraint.

If a valid initial value for the variable x is given by
the user, it is used. Otherwise several random points are
generated from the standard normal distribution (or the
uniform distribution on [0, 1] if the variable is declared
as nonnegative) and projected onto the domain D (which,
according to the discussion in §II-B, is a DCP problem). The
projected points are then averaged to give an initial value for
x. This random initialization is a generic heuristic for finding
a starting point in the interior of D, and seems to work well
in practice.

Algorithm I.1 is then applied to the convexified prob-
lem. In each iteration the parameters in the linearizations
(which are function and gradient values) are updated based
on the current value of the variables. If a gradient (su-
per/subgradient) with respect to any variable does not exist,
damping is applied to all variables. The convexified problem
at each iteration is solved using CVXPY.

Some useful functions and attributes in the DCCP package
are listed below.
• Function is_dccp(problem) returns a boolean in-

dicating if an optimization problem is DCCP.
• Attribute expression.gradient returns a dictio-

nary of the gradients (or sub/supergradient) of a DCP
expression with respect to its variables at the points
specified by variable.value. (This attribute is also
in the core CVXPY package.)

• Function linearize(expression) returns the lin-
earization (3) of a DCP expression.

• Attribute expression.domain returns a list of con-
straints describing the domain of a DCP expression.
(This attribute is also in the core CVXPY package.)

• Function convexify(constraint) returns the
transformed constraint (without slack variables) satis-
fying DCP of a DCCP constraint.

• Method problem.solve(method = ’dccp’)
carries out the proposed algorithm, and returns the
value of the transformed cost function, the value of the
weight µk, and the maximum value of slack variables

0 2 4 6 8 10
0

2

4

6

8

10

Fig. 1: Path planning.

at each iteration k. An optional parameter ccp_times
is used to set the number of times to run the CCP
based algorithm, using the randomized initialization.

IV. EXAMPLES

In this section we describe some simple examples, show
how they can be expressed using DCCP, and give the results.
In each case we run the default solve method, with no tuning
or adjustment of algorithm parameters.

A. Path planning

The goal is to find the shortest path connecting points
a and b in Rd that avoids m circles, centered at pj with
radius rj , j = 1, . . . ,m [38]. After discretizing the arc
length parametrized path into points x0, . . . , xn, the problem
is posed as

minimize L
subject to x0 = a, xn = b

‖xi − xi−1‖2 ≤ L/n, i = 1, . . . , n
‖xi − pj‖2 ≥ rj , i = 1, . . . , n, j = 1, . . . ,m,

where L and xi are variables, and a, b, pj , and rj are given.
The code is given below.
x = Variable(d,n+1)
L = Variable()
constr = [x[:,0] == a, x[:,n] == b]
for i in range(1,n+1):

constr += [norm(x[:,i]-x[:,i-1])
<= L/n]
for j in range(m):

constr += [norm(x[:,i]
- center[:,j]) >= r[j]]

prob = Problem(Minimize(L), constr)
prob.solve(method = ’dccp’)

An example with d = 2 and n = 50 is shown in figure 1.

B. Control with collision avoidance

We have n linear dynamic systems, given by

xit+1 = Aixit +Biuit, yit = Cixit, i = 1, . . . , n,

where t = 0, 1, . . . , T denotes (discrete) time, xit are the
states, and yit are the outputs. At each time t for t = 0, . . . , T
the n outputs yit are required to keep a distance of at least

dmin from each other [39]. The initial states xi0 and ending
states xin are given by xiinit and xiend, and the inputs are
limited by ‖uit‖∞ ≤ fmax. We will minimize a sum of the
`1 norms of the inputs, an approximation of fuel use. (Of
course we can have any convex state and input constraints,
and any convex objective.) This gives the problem

minimize
∑n

i=1

∑T−1
t=0 ‖uit‖1

subject to xi0 = xiinit, xiT = xiend, i = 1, . . . , n
xit+1 = Aixit +Biuit,
t = 0, . . . , T − 1, i = 1, . . . , n

‖yit − y
j
t ‖2 ≥ dmin,

t = 0, . . . , T, 1 ≤ i < j ≤ n
yit = Cixit, ‖uit‖∞ ≤ fmax,
t = 0, . . . , T − 1, i = 1, . . . , n,

where xit, y
i
t, and uit are variables.

The code can be written as follows.
constr = []
cost = 0
for i in range(n):

for t in range(T):
u[i] += [Variable(d)]
constr += [norm(u[i][-1],
’inf’) <= f_max]
cost += norm(u[i][-1],1)
y[i] += [Variable(d)]
x[i] += [Variable(2*d)]
constr += [y[i][-1] ==
C[i]*x[i][-1]]

for i in range(n):
constr += [x[i][0] == x_ini[i]]
constr += [x[i][-1] == x_end[i]]
for t in range(T-1):

constr += [x[i][t+1] ==
A[i]*x[i][t] + B[i]*u[i][t]]

for t in range(T):
for i in range(n-1):

for j in range(i+1,n):
constr += [norm(y[i][t] -
y[j][t],2) >= d_min]

prob = Problem(Minimize(cost), constr)
prob.solve(method = ’dccp’)

We consider an instance with n = 2, with outputs
(positions) yit ∈ R2, dmin = 0.6, fmax = 0.5, T = 100.
The linear dynamic system matrices are

Ai =


1 0 0.1 0
0 1 0 0.1
0 0 0.95 0
0 0 0 0.95

 ,

Bi =


0 0
0 0
0.1 0
0 0.1

 , Ci =

[
1 0 0 0
0 1 0 0

]
.

The results are in figure 2, where the black arrows in the
first two figures show initial and final states (position and

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

2.0

2.5

||y
0 t
−
y

1 t
|| 2

with avoidance
without avoidance

Fig. 2: Optimal control with collision avoidance.

30 34 38 42 46 50
cardinality

50

56

62

68

74

80

n
u
m

b
e
r

o
f

m
e
a
su

re
m

e
n
ts

probability of recovery

0.00

0.15

0.30

0.45

0.60

0.75

0.90

30 34 38 42 46 50
cardinality

50

56

62

68

74

80

n
u
m

b
e
r

o
f

m
e
a
su

re
m

e
n
ts

probability of recovery

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Fig. 3: Sparse recovery. Left: l1 norm. Right: Sqrt of `1/2 ‘norm’.

velocity), and the black dashed line in the third figure shows
dmin. The left plot shows the output trajectory without colli-
sion avoidance, the middle shows it with collision avoidance,
and the right plot shows the distance between outputs versus
time.

C. Sparse recovery using `1/2 ‘norm’

The aim is to recover a sparse nonnegative signal x0 ∈ Rn

from a measurement vector y = Ax0, where A ∈ Rm×n

(with m < n) is a known sensing matrix [40]. A common
heuristic based on convex optimization is to minimize the `1
norm of x (which reduces here to the sum of entries of x)
subject to y = Ax0 (and here, x ≥ 0). It has been proposed
to minimize the sum of the squareroots of the entries of x,
which since x ≥ 0 is the same as minimizing the squareroot
of the `1/2 ‘norm’ (which is not convex, and therefore not a
norm), to obtain better recovery. The optimization problem
is

minimize
∑n

i=1

√
xi

subject to y = Ax,

where x is the variable. (The constraint x ≥ 0 is implicit,
since this is the objective domain.) This is a nonconvex
problem, directly in DCCP form.

The corresponding code is as follows.
x = Variable(n,1)
x.value = np.ones((n,1))
obj = Minimize(sum_entries(sqrt(x)))
prob = Problem(obj, [A*x == y])
prob.solve(method = ’dccp’)

In a numerical simulation, we take n = 100, Aij ∼
N (0, 1), the positions of the nonzero entries in x0 are
from uniform distribution, and the nonzero values are the
absolute values of N (0, 100) random variables. To count
the probability of recovery, 100 independent instances are
tested, and a recovery is successful if the relative error
‖x̂ − x0‖2/‖x0‖2 is less than 0.01. In each instance, the

cardinality takes 6 values from 30 to 50, according to which
x0 is generated, and A is generated for each m taking one of
the 6 values from 50 to 80. The results in figure 3 verify that
nonconvex recovery is more effective than convex recovery.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship
under Grant No. DGE-114747, by the DARPA X-DATA
and SIMPLEX programs, and by the CSC State Scholarship
Fund.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[2] P. Hartman, “On functions representable as a difference of convex
functions,” Pacific Journal of Math, vol. 9, no. 3, pp. 707–713, 1959.

[3] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computation, R. E. Miller and J. W. Thatcher,
Eds. Plenum, 1972, pp. 85–104.

[4] Y. Lou, S. Osher, and J. Xin, Computational aspects of constrained L1-
L2 minimization for compressive sensing, ser. Advances in Intelligent
Systems and Computing, 2015, vol. 359, pp. 169–180.

[5] L. T. H. An, H. M. Le, V. V. Nguyen, and P. D. Tao, “A DC pro-
gramming approach for feature selection in support vector machines
learning,” Advances in Data Analysis and Classification, vol. 2, no. 3,
pp. 259–278, 2008.

[6] C. J. Yu and T. Joachims, “Learning structural svms with latent
variables,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. ACM, 2009, pp. 1169–1176.

[7] L. T. Hoai An, H. M. Le, and P. D. Tao, “Feature selection in machine
learning: An exact penalty approach using a difference of convex
function algorithm,” Machine Learning, vol. 101, no. 1-3, pp. 163–
186, 2015.

[8] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity
for scalability,” in Proceedings of the 23rd International Conference
on Machine Learning, ser. ICML ’06. ACM, 2006, pp. 201–208.

[9] Y. Lou, T. Zeng, S. Osher, and J. Xin, “A weighted difference of
anisotropic and isotropic total variation model for image processing,”
SIAM Journal on Imaging Sciences, vol. 8, no. 3, pp. 1798–1823,
2015.

[10] T. Lipp and S. Boyd, “Antagonistic control,” http://web.stanford.edu/
∼boyd/papers/antag control.html, March 2015.

[11] S. Boyd, M. Hast, and K. J. Åström, “Mimo pid tuning via iterated lmi
restriction,” International Journal of Robust and Nonlinear Control,
2015.

[12] T. Schüle, C. Schnörr, S. Weber, and J. Hornegger, “Discrete to-
mography by convex-concave regularization and D.C. programming,”
Discrete Applied Mathematics, vol. 151, no. 1-3, pp. 229–243, 2005.

[13] Z. Liu and H. Qiao, “A convex-concave relaxation procedure based
subgraph matching algorithm,” in ACML, 2012, pp. 237–252.

[14] J. Thai, T. Hunter, A. K. Akametalu, C. J. Tomlin, and A. M. Bayen,
“Inverse covariance estimation from data with missing values using
the concave-convex procedure,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 5736–5742.

[15] L. D. Muu, “A convex-concave programming method for optimizing
over the efficient set,” Acta Mathematica Vietnamica, vol. 25, no. 1,
pp. 67–85, 2000.

[16] N. Agin, “Optimum seeking with branch and bound,” Management
Science, vol. 13, pp. 176–185, 1966.

[17] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: a survey,”
Operations Research, vol. 14, pp. 699–719, 1966.

[18] L. D. Muu, “An algorithm for solving convex programs with an
additional convex-concave constraint,” Mathematical Programming,
vol. 61, no. 1, pp. 75–87, 1993.

[19] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global
Optimization. Dordrecht, Netherlands: Kluwer Academic Publishers,
1995.

[20] R. Horst and N. V. Thoai, “DC programming: overview,” Journal of
Optimization Theory and Applications, vol. 103, no. 1, pp. 1–43, 1999.

[21] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.

[22] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,”
Neural Computation, vol. 15, no. 4, pp. 915–936, 2003.

[23] G. R. Lanckriet and B. K. Sriperumbudur, “On the convergence of
the concave-convex procedure,” in Advances in neural information
processing systems, 2009, pp. 1759–1767.

[24] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using sur-
rogate objective functions,” Journal of Computational and Graphical
Statistics, vol. 9, no. 1, pp. 1–20, 2000.

[25] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data.
New York, New York: John Wiley & Sons, 1987.

[26] K. Lange, Optimization, ser. Springer Texts in Statistics. New York,
New York: Springer, 2004.

[27] G. McLachlan and T. Krishnan, The EM algorithm and extensions.
John Wiley & Sons, 2007.

[28] P. D. Tao and E. B. Souad, “Algorithms for solving a class of
nonconvex optimization problems. Methods of subgradients,” in FER-
MAT Days 85: Mathematics for Optimization, J.-B. Hiriart-Urruty, Ed.
Elsevier Scince Publishers B. V., 1986, pp. 249–271.

[29] L. T. H. An, “DC programming and DCA: local and global approaches
- theory, algorithms and applications,” http://lita.sciences.univ-metz.fr/
∼lethi/DCA.html, 2015.

[30] T. Lipp and S. Boyd, “Variations and extension of the convex–concave
procedure,” Optimization and Engineering, pp. 1–25, 2015.

[31] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in
Global Optimization: From Theory to Implementation, ser. Nonconvex
Optimization and its Applications, L. Liberti and N. Maculan, Eds.
Springer, 2006, pp. 155–210.

[32] M. Grant and S. Boyd, “Graph implementation for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer-Verlag, 2008.

[33] Y. Nesterov and A. Nemirovsky, “Conic formulation of a convex pro-
gramming problem and duality,” Optimization Methods and Software,
vol. 1, no. 2, pp. 95–115, 1992.

[34] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the IEEE International Symposium on
Computed Aided Control Systems Design, Sep. 2004, pp. 294–289.

[35] CVX Research, Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0,” http://cvxr.com.cvx, Aug. 2012.

[36] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” To appear, Journal of Machine
Learning Research, 2016.

[37] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd,
“Convex optimization in Julia,” in Proceedings of the Workshop for
High Performance Technical Computing in Dynamic Languages, 2014,
pp. 18–28.

[38] J. C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[39] A. Miele, T. Wang, C. S. Chao, and J. B. Dabney, “Optimal control
of a ship for collision avoidance maneuvers,” Journal of Optimization
Theory and Applications, vol. 103, no. 3, pp. 495–519, 1999.

[40] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–
30, 2008.

