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Outline

• convex optimization

• checking convexity via convex calculus

• convex optimization solvers

• efficient solution via problem transformations

• disciplined convex programming

• examples

– bounding portfolio risk
– computing probability bounds
– antenna array beamforming
– ℓ1-regularized logistic regression
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Optimization

opitmization problem with variable x ∈ Rn:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• our ability to solve varies widely; depends on properties of fi, hi

• for fi, hi affine (linear plus constant) get linear program (LP); can solve
very efficiently

• even simple looking, relatively small problems with nonlinear fi, hi can
be intractable
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Convex optimization

convex optimization problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

• objective and inequality constraint functions fi are convex:
for all x, y, θ ∈ [0, 1],

fi(θx + (1 − θ)y) ≤ θfi(x) + (1 − θ)fi(y)

roughly speaking, graphs of fi curve upward

• equality constraint functions are affine, so can be written as Ax = b
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Convex optimization

• a subclass of optimization problems that includes LP as special case

• convex problems can look very difficult (nonlinear, even
nondifferentiable), but like LP can be solved very efficiently

• convex problems come up more often than was once thought

• many applications recently discovered in control, combinatorial
optimization, signal processing, communications, circuit design,
machine learning, statistics, finance, . . .
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General approaches to using convex optimization

• pretend/assume/hope fi are convex and proceed

– easy on user (problem specifier)
– but lose many benefits of convex optimization

• verify problem is convex before attempting solution

– but verification for general problem description is hard, often fails

• construct problem as convex from the outset

– user needs to follow a restricted set of rules and methods
– convexity verification is automatic

each has its advantages, but we focus on 3rd approach
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How can you tell if a problem is convex?

need to check convexity of a function

approaches:

• use basic definition, first or second order conditions, e.g., ∇2f(x) � 0

• via convex calculus: construct f using

– library of basic examples or atoms that are convex
– calculus rules or transformations that preserve convexity
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Convex functions: Basic examples

• xp for p ≥ 1 or p ≤ 0; −xp for 0 ≤ p ≤ 1

• ex, − log x, x log x

• aTx + b

• xTx; xTx/y (for y > 0); (xTx)1/2

• ‖x‖ (any norm)

• max(x1, . . . , xn), log(ex1 + · · · + exn)

• log Φ(x) (Φ is Gaussian CDF)

• log det X−1 (for X ≻ 0)
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Calculus rules

• nonnegative scaling : if f is convex, α ≥ 0, then αf is convex

• sum: if f and g are convex, so is f + g

• affine composition: if f is convex, so is f(Ax + b)

• pointwise maximum: if f1, . . . , fm are convex, so is f(x) = maxi fi(x)

• partial minimization: if f(x, y) is convex, and C is convex, then
g(x) = infy∈C f(x, y) is convex

• composition: if h is convex and increasing, and f is convex, then
g(x) = h(f(x)) is convex (there are several other composition rules)

. . . and many others (but rules above will get you quite far)
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Examples

• piecewise-linear function: f(x) = maxi=1....,k(a
T
i x + bi)

• ℓ1-regularized least-squares cost: ‖Ax − b‖2
2 + λ‖x‖1, with λ ≥ 0

• sum of largest k elements of x: f(x) = x[1] + · · · + x[k]

• log-barrier: −∑m
i=1 log(−fi(x)) (on {x | fi(x) < 0}, fi convex)

• distance to convex set C: f(x) = dist(x,C) = infy∈C ‖x − y‖2

note: except for log-barrier, these functions are nondifferentiable . . .
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How do you solve a convex problem?

• use someone else’s (‘standard’) solver (LP, QP, SDP, . . . )

– easy, but your problem must be in a standard form
– cost of solver development amortized across many users

• write your own (custom) solver

– lots of work, but can take advantage of special structure

• transform your problem into a standard form, and use a standard solver

– extends reach of problems that can be solved using standard solvers
– transformation can be hard to find, cumbersome to carry out

this talk: methods to formalize and automate the last approach
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General convex optimization solvers

subgradient, bundle, proximal, ellipsoid methods

• mostly developed in Soviet Union, 1960s–1970s

• are ‘universal’ convex optimization solvers, that work even for
nondifferentiable fi

• ellipsoid method is ‘efficient’ in theory (i.e., polynomial time)

• all can be slow in practice
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Interior-point convex optimization solvers

• rapid development since 1990s, but some ideas can be traced to 1960s

• can handle smooth fi (e.g., LP, QP, GP), and problems in conic form
(SOCP, SDP)

• are extremely efficient, typically requiring a few tens of iterations,
almost independent of problem type and size

• each iteration involves solving a set of linear equations (least-squares
problem) with same size and structure as problem

• method of choice when applicable
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What if interior-point methods can’t handle my problem?

• example: ℓ1-regularized least-squares (used in machine learning):

minimize ‖Ax − b‖2
2 + λ‖x‖1

• a convex problem, but objective is nondifferentiable, so cannot directly
use interior-point method (IPM)

• basic idea: transform problem, possibly adding new variables and
constraints, so that IPM can be used

• even though transformed problem has more variables and constraints,
we can solve it very efficiently via IPM
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Example: ℓ1-regularized least-squares

• original problem, with n variables, no constraints:

minimize ‖Ax − b‖2
2 + λ‖x‖1

• introduce new variable t ∈ Rn, and new constraints |xi| ≤ ti:

minimize xT (ATA)x − (AT b)Tx + λ1
T t

subject to x ≤ t, −t ≤ x

• a problem with 2n variables, 2n constraints, but objective and
constraint functions are smooth so IPM can be used

• key point: problems are equivalent (if we solve one, we can easily get
solution of other)
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Efficient solution via problem transformations

• start with convex optimization problem P0, possibly with
nondifferentiable objective or constraint functions

• carry out a sequence of equivalence transformations to yield a problem
PK that can be handled by an IP solver

P0 → P1 → · · · → PK

• solve PK efficiently

• transform solution of PK back to solution of original problem P0

• PK often has more variables and constraints than P0, but its special
structure, and efficiency of IPMs, more than compensates
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Convex calculus rules and problem transformations

• for most of the convex calculus rules, there is an associated problem
transformation that ‘undoes’ the rule

• example: when we encounter max{f1(x), f2(x)} we

– replace it with a new variable t
– add new (convex) constraints f1(x) ≤ t, f2(x) ≤ t

• example: when we encounter h(f(x)) we

– replace it with h(t)
– add new (convex) constraint f(x) ≤ t

• these transformations look trivial, but are not
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From proof of convexity to IPM-compatible problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

• when you construct fi from atoms and convex calculus rules, you have a
mathematical proof that the problem is convex

• the same construction gives a sequence of problem transformations that
yields a problem containing only atoms and equality constraints

• if the atoms are IPM-compatible, our constructive proof automatically
gives us an equivalent problem that is IPM-compatible
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Disciplined convex programming

• specify convex problem in natural form

– declare optimization variables
– form convex objective and constraints using a specific set of atoms

and calculus rules

• problem is convex-by-construction

• easy to parse, automatically transform to IPM-compatible form, solve,
and transform back

• implemented using object-oriented methods and/or compiler-compilers
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Example (cvx)

convex problem, with variable x ∈ Rn:

minimize ‖Ax − b‖2 + λ‖x‖1

subject to Fx ≤ g

cvx specification:

cvx begin
variable x(n) % declare vector variable
minimize ( norm(A*x-b,2) + lambda*norm(x,1) )
subject to F*x <= g

cvx end
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when cvx processes this specification, it

• verifies convexity of problem

• generates equivalent IPM-compatible problem

• solves it using SDPT3 or SeDuMi

• transforms solution back to original problem

the cvx code is easy to read, understand, modify
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The same example, transformed by ‘hand’

transform problem to SOCP, call SeDuMi, reconstruct solution:

% set up big matrices

[m,n] = size(A); [p,n] = size(F);

AA = [ speye(n), - speye(n), speye(n), sparse(n,p+m+1) ; ...
F, sparse(p,2*n), speye(p), sparse(p,m+1) ; ...
A, sparse(m,2*n+p), speye(m), sparse(m,1) ];

bb = [ zeros(n,1) ; g ; b ];
cc = [ zeros(n,1) ; gamma * ones(2*n,1) ; zeros(m+p,1) ; 1 ];

K.f = m; K.l = 2*n+p; K.q = m + 1; % specify cone

xx = sedumi( AA, bb, cc, K ); % solve SOCP

x = x(1:n); % extract solution
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History

• general purpose optimization modeling systems AMPL, GAMS (1970s)

• systems for SDPs/LMIs (1990s): sdpsol (Wu, Boyd),
lmilab (Gahinet, Nemirovsky), lmitool (El Ghaoui)

• yalmip (Löfberg 2000–)

• automated convexity checking (Crusius PhD thesis 2002)

• disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)

• cvx (Grant, Boyd, Ye 2005)

• cvxopt (Dahl, Vandenberghe 2005)

• ggplab (Mutapcic, Koh, et al 2006)
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Summary

the bad news:

• you can’t just call a convex optimization solver, hoping for the best;
convex optimization is not a ‘plug & play’ or ‘try my code’ method

• you can’t just type in a problem description, hoping it’s convex
(and that a sophisticated analysis tool will recognize it)

the good news:

• by learning and following a modest set of atoms and rules, you can
specify a problem in a form very close to its natural mathematical form

• you can simultaneously verify convexity of problem, automatically
generate IPM-compatible equivalent problem
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Examples

• bounding portfolio risk

• computing probability bounds

• antenna array beamforming

• ℓ1-regularized logistic regression
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Portfolio risk bounding

• portfolio of n assets invested for single period

• wi is amount of investment in asset i

• returns of assets is random vector r with mean r, covariance Σ

• portfolio return is random variable rTw

• mean portfolio return is rTw; variance is V = wTΣw

value at risk & probability of loss are related to portfolio variance V
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Risk bound with uncertain covariance

now suppose:

• w is known (and fixed)

• have only partial information about Σ, i.e.,

Lij ≤ Σij ≤ Uij, i, j = 1, . . . , n

problem: how large can portfolio variance V = wTΣw be?
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Risk bound via semidefinite programming

can get (tight) bound on V via semidefinite programming (SDP):

maximize wTΣw

subject to Σ � 0

Lij ≤ Σij ≤ Uij

variable is matrix Σ = ΣT ; Σ � 0 means Σ is positive semidefinite

many extensions possible, e.g., optimize portfolio w with worst-case
variance limit
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cvx specification

cvx begin
variable Sigma(n,n) symmetric
maximize ( w’*Sigma*w )
subject to
Sigma == semidefinite(n); % Sigma is positive semidefinite
Sigma >= L;

Sigma <= U;

cvx end
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Example

portfolio with n = 4 assets

variance bounding with sign constraints on Σ:

w =









1
2

−.5
.5









, Σ =









1 + + ?
+ 1 − −
+ − 1 +
? − + 1









(i.e., Σ12 ≥ 0, Σ23 ≤ 0, . . . )

University of Pennsylvania, 3/30/07 29



Result

(global) maximum value of V is 10.1, with

Σ =









1.00 0.79 0.00 0.53
0.79 1.00 −.59 0.00
0.00 −.59 1.00 0.51
0.53 0.00 0.51 1.00









(which has rank 3, so constraint Σ � 0 is active)

• Σ = I yields V = 5.5

• Σ = [(L + U)/2]+ yields V = 6.75 ([·]+ is positive semidefinite part)
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Computing probability bounds

random variable (X,Y ) ∈ R2 with

• N (0, 1) marginal distributions

• X, Y uncorrelated

question: how large (small) can Prob(X ≤ 0, Y ≤ 0) be?

if (X,Y ) ∼ N (0, I), Prob(X ≤ 0, Y ≤ 0) = 0.25
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Probability bounds via LP

• discretize distribution as pij, i, j = 1, . . . , n, over region [−3, 3]2

• xi = yi = 6(i − 1)/(n − 1) − 3, i = 1, . . . , n

maximize (minimize)
∑n/2

i,j=1 pij

subject to pij ≥ 0, i, j = 1, . . . , n
∑n

i=1 pij = ae−y2
i /2, j = 1, . . . , n

∑n
j=1 pij = ae−x2

i /2, i = 1, . . . , n
∑n

i,j=1 pijxiyj = 0

with variable p ∈ Rn×n, a = 2.39/(n − 1)
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cvx specification

cvx begin
variable p(n,n)

maximize ( sum(sum(p(1:n/2,1:n/2))) )

subject to
p >= 0;

sum( p,1 ) == a*exp(-y.^2/2)’;

sum( p,2 ) == a*exp(-x.^2/2)’;

sum( sum( p.*(x*y’) ) ) == 0;

cvx end
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Gaussian

(X,Y ) ∼ N (0.I); Prob(X ≤ 0, Y ≤ 0) = 0.25
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Distribution that minimizes Prob(X ≤ 0, Y ≤ 0)

Prob(X ≤ 0, Y ≤ 0) = 0.03

0

0

3

3
−3
−3
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Distribution that maximizes Prob(X ≤ 0, Y ≤ 0)

Prob(X ≤ 0, Y ≤ 0) = 0.47

0

0

3

3
−3
−3
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Antenna array beamforming

θ

• n omnidirectional antenna elements in plane, at positions (xi, yi)

• unit plane wave (λ = 1) incident from angle θ

• ith element has (demodulated) signal ej(xi cos θ+yi sin θ) (j =
√
−1)
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• combine antenna element signals using complex weights wi to get
antenna array output

y(θ) =

n
∑

i=1

wie
j(xi cos θ+yi sin θ)

typical design problem:

choose w ∈ Cn so that

• y(θtar) = 1 (unit gain in target or look direction)

• |y(θ)| is small for |θ − θtar| ≥ ∆ (2∆ is beamwidth)
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Example

n = 30 antenna elements, θtar = 60◦, ∆ = 15◦ (30◦ beamwidth)

0 50

5
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Uniform weights

wi = 1/n; no particular directivity pattern

1

0.1
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Least-squares (ℓ2-norm) beamforming

discretize angles outside beam (i.e., |θ − θtar| ≥ ∆) as θ1, . . . , θN ;

solve least-squares problem

minimize
(

∑N
i=1 |y(θi)|2

)1/2

subject to y(θtar) = 1

cvx begin
variable w(n) complex
minimize ( norm( A_outside_beam*w ) )

subject to
a_tar’*w == 1;

cvx end
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Least-squares beamforming

1

0.1
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Chebyshev beamforming

solve minimax problem

minimize maxi=1,...,N |y(θi)|
subject to y(θtar) = 1

(objective is called sidelobe level)

cvx begin
variable w(n) complex
minimize ( max( abs( A_outside_beam*w ) ) )

subject to
a_tar’*w == 1;

cvx end
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Chebyshev beamforming

(globally optimal) sidelobe level 0.11

1

0.1
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ℓ1-regularized logistic regression

logistic model:

Prob(y = 1) =
exp(aTx + b)

1 + exp(aTx + b)

• y ∈ {−1, 1} is Boolean random variable (outcome)

• x ∈ Rn is vector of explanatory variables or features

• a ∈ Rn, b are model parameters

• aTx + b = 0 is neutral hyperplane

• linear classifier: given x, ŷ = sgn(aTx + b)
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Maximum likelihood estimation

a.k.a. logistic regression

given observed (training) examples (x1, y1) . . . , (xm, ym), estimate a, b

maximum likelihood model parameters found by solving (convex) problem

minimize
∑n

i=1 lse
(

0,−yi(x
T
i a + b)

)

with variables a ∈ Rn, b ∈ R, where

lse(u) = log (expu1 + · · · + expuk)

(which is convex)
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ℓ1-regularized logistic regression

find a ∈ Rn, b ∈ R by solving (convex) problem

minimize
∑n

i=1 lse
(

0,−yi(x
T
i a + b)

)

+ λ‖a‖1

λ > 0 is regularization parameter

• protects against over-fitting

• heuristic to get sparse a (i.e., simple explanation) for m > n

• heuristic to select relevant features when m < n
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cvx code

cvx begin
variables a(n) b

tmp = [zeros(m,1) -y.*(X’*a+b)];

minimize ( sum(logsumexp(tmp’)) + lambda*norm(a,1) )

cvx end
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Leukemia example

• taken from Golub et al, Science 1999

• n = 7129 features (gene expression data)

• m = 72 examples (acute leukemia patients), divided into training set
(38) and validation set (34)

• outcome: type of cancer (ALL or AML)

• ℓ1-regularized logistic regression model found using training set;
classification performance checked on validation set

University of Pennsylvania, 3/30/07 49



Results
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Final comments

• DCP formalizes the way we think convex optimization modeling should
be done

• CVX makes convex optimization model development & exploration
quite straightforward
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References

• www.stanford.edu/~boyd

• www.stanford.edu/~boyd/cvx

• www.stanford.edu/class/ee364

or just google convex optimization, convex programming, cvx, . . .
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