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Outline

e convex optimization

e checking convexity via convex calculus

e convex optimization solvers

e efficient solution via problem transformations
e disciplined convex programming

e examples

— bounding portfolio risk

— computing probability bounds
— antenna array beamforming

— {1-regularized logistic regression
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Optimization

opitmization problem with variable z € R":

minimize  fo(z)
subject to  fi(x) <

e our ability to solve varies widely; depends on properties of f;, h;

e for f;, h; affine (linear plus constant) get linear program (LP); can solve
very efficiently

e even simple looking, relatively small problems with nonlinear f;, h; can
be intractable
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Convex optimization

convex optimization problem:

minimize  fo(x)
subject to fz( ) <0, 2=1,...,m
Ax =0

e objective and inequality constraint functions f; are convex:
for all x, y, 6 € [0, 1],

fil0r + (1 —0)y) < 0fi(x)+ (1 —0)fi(y)
roughly speaking, graphs of f; curve upward

e equality constraint functions are affine, so can be written as Ax = b
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Convex optimization

a subclass of optimization problems that includes LP as special case

convex problems can look very difficult (nonlinear, even
nondifferentiable), but like LP can be solved very efficiently

convex problems come up more often than was once thought

many applications recently discovered in control, combinatorial
optimization, signal processing, communications, circuit design,
machine learning, statistics, finance, . . .
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General approaches to using convex optimization

e pretend/assume/hope f; are convex and proceed

— easy on user (problem specifier)
— but lose many benefits of convex optimization

e verify problem is convex before attempting solution

— but verification for general problem description is hard, often fails

e construct problem as convex from the outset

— user needs to follow a restricted set of rules and methods
— convexity verification is automatic

each has its advantages, but we focus on 3rd approach
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How can you tell if a problem is convex?

need to check convexity of a function

approaches:

e use basic definition, first or second order conditions, e.g., VZf(x) = 0

e via convex calculus: construct f using

— library of basic examples or atoms that are convex
— calculus rules or transformations that preserve convexity
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Convex functions: Basic examples

e P forp>1lorp<0; —zPfor0<p<1
e ¢’ —logx, xlogx

e alz+b

o zTx; xTx/y (for y > 0); (z7x)!/?

e ||z|l (any norm)

e max(xy,...,Ty), log(e® + -+ ")

e log ®(z) (P is Gaussian CDF)

e logdet X! (for X > 0)
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Calculus rules

e nonnegative scaling: if f is convex, a > 0, then af is convex

e sum: if f and g are convex, sois f + ¢

e affine composition: if f is convex, so is f(Ax -+ b)

e pointwise maximum: if f1,..., f,, are convex, so is f(x) = max; f;(x)

e partial minimization: if f(x,y) is convex, and C is convex, then
g(x) = inf,ec f(z,y) is convex
e composition: if h is convex and increasing, and f is convex, then

g(x) = h(f(x)) is convex (there are several other composition rules)

.. and many others (but rules above will get you quite far)
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Examples

e piecewise-linear function: f(z) = maxizl,,.,,k(afx + b;)
o /i-regularized least-squares cost: ||Ax — b||5 + A||z|[1, with A >0

e sum of largest k elements of z: f(z) = T[]+ T T[E]

o log-barrier: — > log(—fi(x)) (on {x | fi(x) < 0}, f; convex)

e distance to convex set C: f(x) = dist(x,C) = inf, cc ||z — y||2

note: except for log-barrier, these functions are nondifferentiable . . .
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How do you solve a convex problem?

e use someone else’s (‘standard’) solver (LP, QP, SDP, . . .)

— easy, but your problem must be in a standard form
— cost of solver development amortized across many users

e write your own (custom) solver

— lots of work, but can take advantage of special structure

e transform your problem into a standard form, and use a standard solver

— extends reach of problems that can be solved using standard solvers
— transformation can be hard to find, cumbersome to carry out

this talk: methods to formalize and automate the last approach
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General convex optimization solvers

subgradient, bundle, proximal, ellipsoid methods

mostly developed in Soviet Union, 1960s—1970s

are ‘universal’ convex optimization solvers, that work even for
nondifferentiable f;

ellipsoid method is ‘efficient’ in theory (i.e., polynomial time)

all can be slow in practice
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Interior-point convex optimization solvers

e rapid development since 1990s, but some ideas can be traced to 1960s

e can handle smooth f; (e.g., LP, QP, GP), and problems in conic form
(SOCP, SDP)

e are extremely efficient, typically requiring a few tens of iterations,
almost independent of problem type and size

e each iteration involves solving a set of linear equations (least-squares
problem) with same size and structure as problem

e method of choice when applicable
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What if interior-point methods can’t handle my problem?

example: /i-regularized least-squares (used in machine learning):

minimize || Az — b5 + A||z|x

a convex problem, but objective is nondifferentiable, so cannot directly
use interior-point method (IPM)

basic idea: transform problem, possibly adding new variables and
constraints, so that IPM can be used

even though transformed problem has more variables and constraints,
we can solve it very efficiently via IPM
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Example: /;-regularized least-squares

e original problem, with n variables, no constraints:

minimize ||Az — b5 + A||z|x

e introduce new variable ¢t € R", and new constraints |x;| < t;:

minimize 2! (AT A)x — (AT0)Tx + A11t
subjectto =z <t, —t<x

e a problem with 2n variables, 2n constraints, but objective and
constraint functions are smooth so IPM can be used

e key point: problems are equivalent (if we solve one, we can easily get
solution of other)
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Efficient solution via problem transformations

e start with convex optimization problem Py, possibly with
nondifferentiable objective or constraint functions

e carry out a sequence of equivalence transformations to yield a problem
Pr that can be handled by an IP solver

Po—P1— - — Pk

e solve P efficiently
e transform solution of Pg back to solution of original problem Pq

e Py often has more variables and constraints than Py, but its special
structure, and efficiency of IPMs, more than compensates
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Convex calculus rules and problem transformations

e for most of the convex calculus rules, there is an associated problem
transformation that ‘undoes’ the rule

e example: when we encounter max{ f1(x), fa(x)} we

— replace it with a new variable ¢
— add new (convex) constraints fi(x) <t, fo(x) <t

e example: when we encounter A(f(x)) we

— replace it with h(?)
— add new (convex) constraint f(x) <t

e these transformations look trivial, but are not
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From proof of convexity to IPM-compatible problem

minimize  fo(x)
subject to fz( ) <0, i=1,....,m
Ax =10

e when you construct f; from atoms and convex calculus rules, you have a
mathematical proof that the problem is convex

e the same construction gives a sequence of problem transformations that
yields a problem containing only atoms and equality constraints

e if the atoms are IPM-compatible, our constructive proof automatically
gives us an equivalent problem that is IPM-compatible
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Disciplined convex programming

e specify convex problem in natural form

— declare optimization variables

— form convex objective and constraints using a specific set of atoms
and calculus rules

e problem is convex-by-construction

e easy to parse, automatically transform to IPM-compatible form, solve,
and transform back

e implemented using object-oriented methods and/or compiler-compilers
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Example (cvx)

convex problem, with variable x € R™:

minimize  ||Az — bl|2 + A||x||1

subject to Fx <g

cvx specification:

cvx_begin
variable x(n) % declare vector variable
minimize ( norm(A*x-b,2) + lambda*norm(x,1) )
subject to F*xx <= g

cvx_end
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when cvx processes this specification, it

e verifies convexity of problem

e generates equivalent IPM-compatible problem
e solves it using SDPT3 or SeDuMi

e transforms solution back to original problem

the cvx code is easy to read, understand, modify
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The same example, transformed by ‘hand’

transform problem to SOCP, call SeDuMi, reconstruct solution:

%» set up big matrices

[m,n] = size(A); [p,n] = size(F);

AA = [ speye(n), - speye(n), speye(n), sparse(n,p+m+1) ; ...
F, sparse(p,2*n), speye(p), sparse(p,m+1) ; ...
A, sparse(m,2*n+p), speye(m), sparse(m,1) |[;

bb = [ zeros(n,1) ; g ; b |;

cc = [ zeros(n,1) ; gamma * ones(2*n,1) ; zeros(m+p,1) ; 1 ];

Kf=m; Kl=2%n+p;, Kg=m + 1; % specify cone
xx = sedumi( AA, bb, cc, K ), % solve SOCP
x = x(1:n); % extract solution
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History

e general purpose optimization modeling systems AMPL, GAMS (1970s)

e systems for SDPs/LMIs (1990s): sdpsol (Wu, Boyd),
1milab (Gahinet, Nemirovsky), Imitool (ElI Ghaoui)

e yalmip (Lofberg 2000-)

e automated convexity checking (Crusius PhD thesis 2002)

e disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)
e cvx (Grant, Boyd, Ye 2005)

e cvxopt (Dahl, Vandenberghe 2005)

e ggplab (Mutapcic, Koh, et al 2006)
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Summary

the bad news:

e you can't just call a convex optimization solver, hoping for the best;
convex optimization is not a ‘plug & play’ or ‘try my code’ method

e you can't just type in a problem description, hoping it's convex
(and that a sophisticated analysis tool will recognize it)

the good news:

e by learning and following a modest set of atoms and rules, you can

specify a problem in a form very close to its natural mathematical form

e you can simultaneously verify convexity of problem, automatically
generate IPM-compatible equivalent problem
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Examples

e bounding portfolio risk
e computing probability bounds
e antenna array beamforming

e /q-regularized logistic regression
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Portfolio risk bounding

e portfolio of n assets invested for single period

e w,; IS amount of investment in asset ¢

e returns of assets is random vector r with mean 7, covariance X
e portfolio return is random variable r'w

T

e mean portfolio return is 71 w; variance is V = w! Zw

value at risk & probability of loss are related to portfolio variance V
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Risk bound with uncertain covariance

now suppose:
e w is known (and fixed)

e have only partial information about X, i.e.,

Lij<2ij<Uij7 7:7j:1,...,n

problem: how large can portfolio variance V = w!Xw be?
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Risk bound via semidefinite programming

can get (tight) bound on V' via semidefinite programming (SDP):

maximize wiYw
subjectto X >0
Lij < X5 < Uiy

variable is matrix ¥ = X7; ¥ > 0 means X is positive semidefinite

many extensions possible, e.g., optimize portfolio w with worst-case
variance limit
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cvx specification

cvx_begin

variable Sigma(n,n) symmetric
maximize ( w’*Sigma*w )

subject to
Sigma == semidefinite(n);
Sigma >= L;
Sigma <= U;
cvx_end
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Example

portfolio with n = 4 assets

variance bounding with sign constraints on >::

1
2 +
_|_
?

(i.e., 212 Z O, 223 S O, .. )
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Result

(global) maximum value of V' is 10.1, with

[ 1.00 0.79 0.00 0.53 |
0.79 1.00 —.59 0.00
0.00 —.59 1.00 0.51

| 053 0.00 0.51 1.00 |

(which has rank 3, so constraint > > 0 is active)

e > =1 yields V =5.5
o X =|(L+U)/2|; yields V =6.75 ([-] - is positive semidefinite part)
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Computing probability bounds

random variable (X,Y) € R* with
e N(0,1) marginal distributions

e X Y uncorrelated

question: how large (small) can Prob(X < 0,Y < 0) be?

if (X,Y) ~ N(0,I), Prob(X <0,Y <0) =0.25
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Probability bounds via LP

e discretize distribution as p;j, i, = 1,...,n, over region [—3, 3|

v, =y, =6(i—1)/(n—1)—3,t1=1,...,n

maximize (minimize) Z” | Dij

subject to pij >0, 4,7=1,...,n
2 .

St o piy=ae Vil j=1...n

ijlpij:ae i<, i=1,...,n

D i je1 PijTiy; =0
with variable p € R"*", ¢ =2.39/(n — 1)
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cvx specification

cvx_begin
variable p(n,n)
maximize ( sum(sum(p(1:n/2,1:n/2))) )
subject to
p >= 0;
sum( p,1 ) == a*exp(-y."2/2)’;
sum( p,2 ) == axexp(-x.72/2)’;
sum( sum( p.*x(xxy’) ) ) == 0;
cvx_end
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Gaussian

(X,Y) ~N(0.I); Prob(X <0,Y < 0) = 0.25
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Antenna array beamforming

e n omnidirectional antenna elements in plane, at positions (x;, ;)

e unit plane wave (A = 1) incident from angle 6

e ith element has (demodulated) signal e/ (®icos6+yising) (; — \/_7)
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e combine antenna element signals using complex weights w; to get
antenna array output

y(0) = Z w; el (@i cos O-+y; sin 0)
i=1
typical design problem:

choose w € C" so that

® y(0iar) = 1 (unit gain in target or look direction)
e |y(0)| is small for |0 — Oar] > A (2A is beamwidth)
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n = 30 antenna elements, 6;,,

Example

= 60°, A = 15° (30° beamwidth)

5
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Uniform weights

w; = 1/n; no particular directivity pattern
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Least-squares (/>-norm) beamforming

discretize angles outside beam (i.e., |0 — Oiar| > A) as 04, ...,0n;

solve least-squares problem

1/2
minimize (Zf;l |y(9@)|2>
subject to  y(Oiar) = 1

cvx_begin
variable w(n) complex
minimize ( norm( A_outside_beam*w ) )
subject to
a_tar’xw == 1;
cvx_end
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Least-squares beamforming
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Chebyshev beamforming

solve minimax problem

minimize maX@-=1,...,N|ZJ(9z‘)|
subject to  y(biar) = 1

(objective is called sidelobe level)

cvx_begin
variable w(n) complex
minimize ( max( abs( A_outside_beam*w ) ) )
subject to
a_tar’*w == 1;
cvx_end
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Chebyshev beamforming

(globally optimal) sidelobe level 0.11
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¢1-regularized logistic regression

logistic model:

exp(alz + b)
Prob(y =1) =
rob(y = 1) 1 +exp(a’x +b)

e yc {—1,1} is Boolean random variable (outcome)
e x € R" is vector of explanatory variables or features
e a € R", b are model parameters

e a’z 4+ b =0 is neutral hyperplane

e linear classifier: given x, 9 = sgn(a’z + b)
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Maximum likelihood estimation

a.k.a. logistic regression
given observed (training) examples (x1,y1) ..., (Tm, Ym), estimate a, b

maximum likelihood model parameters found by solving (convex) problem
minimize > ., Ise (0, —y;(z] a + b))
with variables ¢ € R"”, b € R, where
Ise(u) = log (exp ui + - - - + exp ug)

(which is convex)
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¢1-regularized logistic regression

find a € R", b € R by solving (convex) problem

minimize Y lse (0, —y;(zfa + b)) + Allal1

A > 0 is regularization parameter

e protects against over-fitting
e heuristic to get sparse a (i.e., simple explanation) for m > n

e heuristic to select relevant features when m < n
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cvx code

cvx_begin

variables a(n) b

tmp = [zeros(m,1) -y.*x(X’*a+b)];

minimize ( sum(logsumexp(tmp’)) + lambda*norm(a,1) )
cvx_end
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Leukemia example

e taken from Golub et al, Science 1999
e n = 7129 features (gene expression data)

e m = T2 examples (acute leukemia patients), divided into training set
(38) and validation set (34)

e outcome: type of cancer (ALL or AML)

e /;-regularized logistic regression model found using training set;
classification performance checked on validation set
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Final comments

e DCP formalizes the way we think convex optimization modeling should
be done

e CVX makes convex optimization model development & exploration
quite straightforward
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