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Abstract
We introduce log-log convex programs, which are optimization problemswith positive
variables that become convex when the variables, objective functions, and constraint
functions are replaced with their logs, which we refer to as a log-log transformation.
This class of problems generalizes traditional geometric programming and generalized
geometric programming, and it includes interesting problems involving nonnegative
matrices. We give examples of log-log convex functions, some well-known and some
less so, and we develop an analog of disciplined convex programming, which we
call disciplined geometric programming. Disciplined geometric programming is a
subclass of log-log convex programming generated by a composition rule and a set of
functions with known curvature under the log-log transformation. Finally, we describe
an implementation of disciplined geometric programming as a reduction in CVXPY
1.0.

Keywords Geometric programming · Convex optimization · Domain-specific
languages

1 Introduction

1.1 Geometric and generalized geometric programs

A geometric program (GP) is a nonlinearmathematical optimization problem inwhich
all the variables are positive and the objective and constraint functions are either
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monomial functions or posynomial functions. A monomial is any real-valued function
given by x �→ cxa11 xa22 . . . xann , where x = (x1, x2, . . . , xn) is a vector of positive real
variables, the coefficient c is positive, and the exponents ai are real; a posynomial
function is any sum of monomial functions. A GP is an optimization problem of the
form

minimize f0(x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

gi (x) = 1, i = 1, . . . , p,
(1)

where the functions fi are posynomials, the functions gi are monomials, and x ∈ Rn++
is the decision variable. (R++ denotes the set of positive reals.)

The problem (1) is not convex, but it can be transformed to a convex optimization
problem by a well-known transformation. We can make the change of variables u =
log x (meant elementwise) and take the logarithm of the objective and constraint
functions to obtain the equivalent problem

minimize log f0(eu)
subject to log fi (eu) ≤ 0, i = 1, . . . ,m

log gi (eu) = 0, i = 1, . . . , p,
(2)

which can be verified to be convex [7, §4.5.3]. (The exponential eu is meant element-
wise.) Because GPs are reducible to convex programs, they can be solved efficiently
and reliably using any algorithm for convex optimization, such as interior-point meth-
ods [36] or first-ordermethods [6].When all fi aremonomials, the problem (2) reduces
to a general linear program (LP), so GP is a generalization of LP.

Since its introduction four decades ago [16], geometric programming has found
application in chemical engineering [13], environment quality control [22], digital
circuit design [4], analog and RF circuit design [23,30,46], transformer design [26],
communication systems [11,12,28], biotechnology [32,45], epidemiology [41], opti-
mal gas flow [33], tree-water-network control [40], and aircraft design [8,24,42]. This
list is far from exhaustive; for many other examples, see §10.3 of [5].

Evidently monomials and posynomials are closed under various operations. For
example, monomials are closed under multiplication, division, and taking powers,
while posynomials are closed under addition, multiplication, and division by mono-
mials. A generalized posynomial is defined as a function formed from monomials
using the operations addition, multiplication, positive power, and maximum. Gener-
alized posynomials, which include posynomials, are also convex under a logarithmic
change of variable, after taking the log of the function. It follows that a generalized
geometric program (GGP), i.e., a problem of the form (1), with fi generalized posyn-
omials and gi monomials, transforms to a convex problem in (2) [5, §5], and therefore
is tractable.

1.2 Log-log convex programs

For a function f : D → R++, with D ⊆ Rn++, we refer to the function F(u) =
log f (eu), with domain {u | eu ∈ D}, as its log-log transformation. We refer to a
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Fig. 1 Hierarchy of optimization
problems

function f as log-log convex if F is convex, log-log concave if F is concave, and
log-log affine if F is affine. As in convex analysis, we can consider the analog of
extended-value extensions [7, §3.1.2]: we allow a log-log convex function to take the
value +∞, and a log-log concave function to take the value zero, which corresponds
to F taking the value −∞. A function is log-log affine if and only if it is a monomial;
posynomials and generalized posynomials are log-log convex, but there are log-log
convex functions that are not generalized posynomials (examples are given in §2.3
and §2.4).

An optimization problem of the form (1), with fi log-log convex and gi log-log
affine, is called a log-log convex program (LLCP). The set of LLCPs is a strict superset
of GGPs. The hierarchy of LPs, GPs, GGPs, and LLCPs is shown in Fig. 1.

Log-log convexity is also known as geometric convexity or multiplicative convex-
ity, since it is equivalent to convexity with respect to the geometric mean (see §2.1).
Montel [34] studied the class of log-log convex functions many decades ago, in the
context of subharmonic functions.More recently, Niculescu [37] developed a theory of
inequalities derived from log-log convexity, parallel to the theory of convex functions,
Förster and Nagy [17] studied the log-log convexity of certain operator polynomi-
als, and Baricz [3] examined the log-log concavity of various univariate probability
distributions. See also [15,27,39] for related work.

Many functions can be well-approximated by log-log convex functions [5,10,25],
but the lack of a coherent modeling framework for LLCPs has hindered their use in
practical applications. The point of this paper is to close that gap.

1.3 Domain-specific languages for convex optimization

Disciplined convex programming (DCP) describes a subset of convex programs gen-
erated by a single rule and a set of atoms, functions with known curvature (convex,
concave, or affine) and monotonicity [21]. DCP is a natural starting point for build-
ing a domain-specific language (DSL) for convex optimization, i.e., a programming
language that parses convex optimization problems expressed in a human-readable
form, rewrites them into canonical forms, and supplies the lowered representations to
numerical solvers. By abstracting away solvers, DSLs make optimization accessible
to researchers and engineers who are not experts in the details of optimization algo-
rithms. Most DSLs for convex optimization have DCP as their foundation; examples
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Fig. 2 Two log-log convex functions and one log-log concave function

include CVX [20], CVXPY [1,14], Convex.jl [44], and CVXR [18]. For a survey of
DSLs for convex optimization, see [1, §1]. Some DSLs, like CVX and Yalmip [31],
can also parse GPs and GGPs. There also exist DSLs specifically for GPs, including
GPKit [9] and GGPLAB [35]. These software packages parse and rewrite GPs and
GGPs.

In this paper, we introduce the analog ofDCP for log-log convex problems.We refer
to our analog of DCP as disciplined geometric programming (DGP). Like DCP, every
disciplined geometric program is generated by a single rule and a library of atoms. The
class of disciplined geometric problems is a subclass of log-log convex problems (and
of course depends on the library of atoms), and, with a sensible atom library, a strict
superset of both geometric programming and generalized geometric programming.
In §2, we characterize log-log convexity and give many examples of log-log convex
functions, some obvious and some less so; when appropriate, we also supply graph
implementations [19]. In §3, we present DGP, along with a verification procedure that
we articulate in terms ofmathematical expression trees.We close in §4 by describing an
implementation of DGP as a reduction to disciplined convex programs in CVXPY 1.0.

2 Log-log convexity

2.1 Properties

Convexity with respect to the geometric mean Log-log convex functions obey a variant
of Jensen’s inequality: a function f is log-log convex if and only if for all x, y in the
domain of f , and for each θ ∈ [0, 1],

f (xθ ◦ y1−θ ) ≤ f (x)θ f (y)1−θ ,

where◦ is theHadamard (elementwise) product and the powers aremeant elementwise.

Scalar log-log convex functions A scalar function f : D → R++, D ⊆ R++, is
log-log convex if its graph has positive curvature on a log-log plot, as shown in Fig. 2.
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If f is additionally twice-differentiable, then it is log-log convex if and only if for all
x ∈ D,

f ′′(x) + f ′(x)
x

≥ f ′(x)2

f (x)
. (3)

Epigraph If the set {u | eu ∈ D} is convex, D ⊆ Rn++, we say that D is a log-convex
set. The domain of a log-log convex function f is of course a log-convex set. Its
epigraph

epi f = { (x, t) | f (x) ≤ t }

is also a log-convex set. The converse is true as well: if the epigraph of a function
is a log-convex set, then the function is log-log convex. These facts follow from the
similar rules for convex functions and epigraphs [7, §3.1.7].

Relationship to log-convexityLog-log convex functions are related to log-convex func-
tions, which are real-valued functions f for which log f is convex [7, §3.5]. If f is
log-convex and nondecreasing in each of its arguments, then its log-log transformation
F(u) = log f (eu) is log-log convex, as can be seen via the vector composition rule
for convex functions [7, §3.2.4]. Similarly, if f is log-concave and nonincreasing in
its arguments, then its log-log transformation is log-log concave. Since every positive
concave function is log-concave, it follows that every positive concave function that
is nonincreasing in its arguments is also log-log concave.

In some cases, log-log convexity implies log-convexity. A function f is log-convex
if and only if for all x and y in its domain and for each θ ∈ [0, 1],

f (θx + (1 − θ)y) ≤ f (x)θ f (y)1−θ .

In light of this fact and the AM-GM inequality, every nonincreasing log-log convex
function is also log-convex, and every nondecreasing log-log concave function is also
log-concave.

Partial minimization If f is log-log convex in the variables x and y, and if D is a
log-convex set, then the function

g(x) = inf
y∈D f (x, y)

is also log-log convex. A similar result holds for log-log concave functions: if f (x, y)
is log-log concave and D is a log-convex set, then g(x) = supy∈D f (x, y) is log-log
concave. These results are translations of identical results for convex functions [7,
§3.2.5].

Integration If f : [0, a) → [0,∞) is continuous and log-log convex (log-log concave)
on (0, a), then

x �→
∫ x

0
f (t)dt
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is also log-log convex (log-log concave) on (0, a) [34,37]. As an example, if X is a
real-valued random variable with a continuous log-log concave density f defined on
[0, a), then the probability that X lies between 0 and some x ∈ (0, a) is a log-log
concave function of x . Several common distributions, including the Gaussian, Gibrat,
and the Student’s t , have log-log concave densities [3, §5].

2.2 Composition rule

A basic result of convex analysis is that a nondecreasing convex function of a convex
function is convex. (Similarly, a nonincreasing convex function of a concave function
is convex.) These results, along with similar ones for concave functions, are special
cases of just one result on the curvature of function compositions, and it is on this
single result that DCP is based [21, §6.4]. An analogous composition rule holds for
log-log convex functions, which we provide in full generality below. Its proof is an
elementary exercise in convex analysis.

Suppose h : D → R++ ∪ {∞}, D ⊆ Rk++, is log-log convex, nondecreasing in
its i th argument for each i in an index set I ⊆ {1, 2, . . . , k}, and nonincreasing in
the arguments indexed by I c. For i = 1, 2, . . . , k, let gi : Di ⊆ Rn++ → R++. Let
f : ⋂

Di → R++ ∪ {∞} be given by

f (x) = h(g1(x), g2(x), . . . , gk(x)).

If gi is log-log convex for i ∈ I and log-log concave for i ∈ I c, then the function f
is log-log convex.

A symmetric result holds when h : D → R+, D ⊆ Rk+, is log-log concave:
If gi is log-log concave for i ∈ I and log-log convex for i ∈ I c, then f (x) =
h(g1(x), . . . , gk(x)) is log-log concave.

2.3 Some simple examples

We have already seen that monomials are log-log affine and that posynomials and
generalized posynomials are log-log convex. In this section we provide several other
examples of log-log convex and log-log concave functions.

Product The product f (x1, x2) = x1x2 is log-log affine, since F(u) = log(eu1eu2) =
u1+u2 is affine. (This is also clear since f is amonomial.) It follows that the product of
log-log affine functions is log-log affine, and (since the product ismonotone increasing)
the product of log-log convex functions is log-log convex, and the product of log-log
concave functions is log-log concave.

Ratio The ratio f (x1, x2) = x1/x2 is log-log affine (since it is a monomial), increasing
in its first argument and decreasing in its second argument. It follows that the ratio of
a log-log convex and a log-log concave function is log-log convex, and that the ratio
of log-log concave and a log-log convex function is log-log concave.

Power For a ∈ R, the function given by xa is log-log affine in x , since log(eax ) = ax . It
follows that a power of a log-log affine function is log-log affine. For a ≥ 0, the power
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of a log-log convex function is log-log convex, and the power of a log-log concave
function is log-log concave. For a < 0, the power of a log-log convex function is
log-log concave, and the power of a log-log concave function is log-log convex.

SumThe function f (x1, x2) = x1+x2 is log-log convex since F(u) = log(eu1+eu2) is
convex. It follows that the sum of log-log convex functions is log-log convex. Log-log
concavity is not in general preserved under addition.

Max andminThe function f (x) = maxi xi is log-log convex, and the function f (x) =
mini xi is log-log concave. Since both are nondecreasing, it follows that the max of
log-log convex functions is log-log convex, and the min of log-log concave functions
is log-log concave.

Sum largest For x ∈ Rn++, the sum of the r largest elements in x is log-log convex,
since it can be represented as max{ xi1 + xi2 + · · ·+ xir | i1 < i2 < · · · < ir }, which
is the max of a finite number of log-log convex functions.

One-minus The function f (x) = 1 − x with domain (0, 1) is log-log concave, as can
be seen by noting that f is concave and decreasing in x , or by the fact that the second
derivative of its log-log transformation is negative. It is also decreasing in x , so we
conclude that if g is log-log convex, f (g(x)) = 1 − g(x) is log-log concave (with
domain { x | g(x) < 1 }).
Difference The function f (x) = x1 − x2, with domain {x > 0 | x1 − x2 > 0}, is
log-log concave, increasing in its first argument and decreasing in its second. It follows
that the difference of a log-log concave function and a log-log convex function (with
obvious domain) is log-log concave.

Geometric mean The geometric mean f (x) = (∏n
i=1 xi

)1/n is log-log affine, i.e., a
monomial. The geometric mean of log-log convex functions is log-log convex, and
likewise for log-log concave functions.

Harmonic meanThe harmonicmean f (x) = n(1/x1+1/x2+· · ·+1/xn)−1 is log-log
concave, since it is the reciprocal of a log-log convex function.

�p -norm The �p-norm ‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, p ≥ 1, is log-log
convex for x ∈ Rn++, since ‖x‖p with the absolute values removed is a posynomial
raised to 1/p.

Exponential and logarithm The function f given by f (x) = ex for x > 0 is log-log
convex, since F(u) = log f (eu) = eu , which is convex. Similarly, the logarithm
function restricted to (1,∞) is log-log concave.

Entropy The function f (x) = −x log x with domain (0, 1) is log-log concave, as can
be seen via the composition rule.

Functions with positive Taylor expansions Suppose f : R → R is given by a power
series f (x) = a0 + a1x + a2x2 + · · · , with ai ≥ 0 and radius of convergence R. We
restrict f to the domain (0, R). Then f is log-log convex. This is readily shown by
noting that the partial sums are posynomials, so f is the pointwise limit of log-log
convex functions. As examples, the functions sinh and cosh restricted to (0,∞), tan,
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sec, and csc restricted to (0, π/2), arcsin restricted to (0, 1], and log((1+ x)/(1− x))
restricted to (0, 1) are all log-log convex.

Complementary CDF of a log-concave density The complementary cumulative dis-
tribution function (CCDF) of a log-concave density is log-log concave. This follows
from the fact that the CCDF of a log-concave density is log-concave [7, §3.5.2] and
nonincreasing. As an example, the CCDF of a Gaussian

x �→ 1√
2π

∫ ∞

x
e−t2/2dt

is log-log concave on (0,∞). The densities of many common distributions, including
the uniform, exponential, chi-squared, and beta distributions, are log-concave. For
several other examples, see [2, Table 1].

Gamma function The Gamma function

Γ (x) =
∫ ∞

0
t x−1e−t dt

is log-convex and nondecreasing for x ≥ 1 [7, §3.5]. Hence, the restriction Γ |[1,∞) is
log-log convex.

2.4 Functions of positive matrices

In the following exposition, all inequalities should be interpreted elementwise. For any
two vectors x, y in Rn , x ≤ y if and only if the entries of y − x are all nonnegative,
and for any two matrices A, B ∈ Rm×n , we write A ≤ B to mean that the entries of
B − A are nonnegative. Similarly, x < y means that the entries of y − x are positive,
and likewise for A < B. If A > 0, we will say that A is a positive matrix.

LetRm×n++ denote the set of positivem-by-n matrices. The log-log transformation of
a function f : D ⊆ Rm×n++ → Rp×q

++ is F(U ) = log f (eU ), definedon {U | eU ∈ D },
where the logarithm and exponential are meant elementwise. We say that f is log-log
convex if F is convex with respect to ≤, i.e., if for any U , V in the domain of F ,
θ ∈ [0, 1]

F(θU + (1 − θ)V ) ≤ θF(U ) + (1 − θ)F(V ).

Equivalently, f is log-log convex if for any X ,Y ∈ D, θ ∈ [0, 1],

f (X θ ◦ Y 1−θ ) ≤ f (X)θ f (Y )1−θ ,

where ◦ denotes the Hadamard product and the powers are meant elementwise. Infor-
mally, we say that f is log-log convex if f (X) has log-log convex entries for each
X ∈ D.

Of course, the trace of a positivematrix and the product of positivematrices are both
log-log convex functions. More interesting is the link between log-log convexity and
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the Perron-Frobenius theorem, which states, among other things, that every positive
square matrix has a positive eigenvalue equal to its spectral radius. We provide a few
examples below.

Spectral radius Let X ∈ Rn×n have positive entries. The Perron-Frobenius theorem
states that X has a positive real eigenvalue λpf equal to its spectral radius, i.e., the
magnitude of its largest eigenvalue. It turns out that λpf is a log-log convex function
of X . This can be seen by the fact that

λpf = min{ λ | Xv ≤ λv for some v > 0 },

where the inequalities are elementwise, which implies that λpf ≤ λ if and only if

n∑
j=1

Xi jv j/λvi ≤ 1, i = 1, . . . , n.

The lefthand side of the above inequality is a posynomial in Xi j , vi , and λ, hence the
epigraph of λpf is log convex. This result is described in more detail in [7, §4.5.4]. For
related material, see [17,29,38,43].

Eye-minus-inverse Let D be the set of positive matrices in Rn×n with spectral radius
ρ(X) less than 1. The function f : D → Rn×n given by

f (X) = (I − X)−1

is log-log convex in X , i.e., f (X) has log-log convex entries. The function f is well-
defined: for any square matrix X ∈ D , the power series I + X + X2 + · · · converges
to (I − X)−1. One intuitive way to see that f is log-log convex is to note that every
partial sum sn(X) = ∑n

i=0 X
i with n ≥ 1 has posynomial entries, and therefore is

log-log convex. Because sn → f , we obtain that f is log-log convex.
We can also prove that the function f is log-log convex by studying its epigraph.

Let X > 0 and T be matrices. Then

(I − X)−1 ≤ T (4)

if and only if there exists a matrix Y ≥ 0 such that

I ≤ Y − Y X , Y ≤ T . (5)

The equivalence between (4) and (5) shows that the epigraph of f is log convex: the
set of matrices X , Y , and T satisfying (5) is log convex, and the epigraph of f is the
projection of this set onto its first and third (matrix) coordinates. It is clear that (4)
implies (5), for if X and T satisfy (4), then X , Y = (I − X)−1, and T satisfy (5).
For the other direction, assume that the matrices X > 0, Y ≥ 0, and T satisfy (5).
Let λpf = ρ(X) > 0 be the Perron-Frobenius eigenvalue of X and let v > 0 be a
corresponding right eigenvector. Multiplying both sides of (5) by v, we obtain that
v ≤ (1−λpf)T v. This necessitates that λpf = ρ(X) < 1, which together with the fact
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that X > 0 implies that (I − X)−1 exists and is positive. Multiplying both sides of
(5) by (I − X)−1 yields (4).

Resolvent For any squarematrix X and any scalar s > 0 such that s is not an eigenvalue
of X , the matrix (s I − X)−1 is called the resolvent of X . The function (X , s) �→
(s I − X)−1 is log-log convex in both s and X whenever X has positive entries and
ρ(X) < s. This can be seen by writing (s I − X)−1 as s−1(I − X/s)−1.

3 Disciplined geometric programming

While it is intractable to determine whether an arbitrary mathematical program is
log-log convex, it is easy to check if a composition of atoms (functionswith known log-
log curvature and monotonicity) satisfies the composition rule given in §2.2. This fact
motivates disciplined geometric programming (DGP), a methodology for constructing
log-log convex programs from a set of atoms. A problem constructed via disciplined
geometric programming is called a disciplined geometric program. If a problem is a
disciplined geometric program, we colloquially say that the problem is DGP.

Like DCP [21], DGP has two key components: an atom library and a grammar
for composing atoms. Every function appearing in a disciplined geometric program
must be either an atom or a grammatical composition of atoms; a composition is
grammatical if it satisfies the rule from §2.2. Concretely, a disciplined geometric
program is an optimization problem of the form

minimize f0(x)
subject to fi (x) ≤ f̃i (x), i = 1, . . . ,m

gi (x) = g̃i (x), i = 1, . . . , p,
(6)

where the functions fi are log-log convex, the functions f̃i are log-log concave, the
functions gi and g̃i are log-log affine, x ∈ Rn++ is the decision variable, and all the
functions are grammatical compositions of atoms. (A problem where the objective
is to maximize a log-log concave function and the constraints are as in (6) is also a
disciplined geometric program.) Clearly, every disciplined geometric program is an
LLCP, but the converse is not true. This is not a limitation in practice because atom
libraries are extensible (i.e., the class of DGP is parameterized by the atom library),
and because invalid compositions of atoms can often be appropriately re-expressed.

DGP offers an easy-to-understand prescription for constructing a large class of
log-log convex problems. If the product, power, sum, and max functions are taken
as atoms, then DGP is equivalent to generalized geometric programming. If other
functions from §2.3 and §2.4 are also included, then the set of disciplined geometric
programs becomes a strict superset of the set of GGPs. As we shall see in §4, DGP
is easily supported in a DCP-based DSL for optimization. For these reasons, it seems
sensible to suggest that DGPmight replace GPs in the optimization modeling toolbelt.

Verifying whether an optimization problem is DGP involves representing the prob-
lem as a collection of mathematical expression trees (one for the objective and one
for each constraint), and recursively verifying each expression tree. For example, the
problem
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Fig. 3 Expression trees representing the optimization problem (7)

minimize xy
subject to ey/x ≤ log y

(7)

can be represented by the expression trees shown in Fig. 3; assuming that the vari-
ables x and y are positive, this problem is an LLCP, but it is neither a GP nor a
GGP.

An expression tree for an objective is valid if its root is the minimize (maximize)
operator and the subtree rooted at its child is a valid log-log convex (log-log concave)
composition of atoms. A tree rooted at an atom is valid if the subtrees rooted at its
children are valid compositions of atoms, and if the composition of the root with the
subtrees of its children is grammatical. Likewise, a tree for an inequality constraint
is valid if the left subtree is a valid log-log convex composition of atoms, and the
right subtree is a valid log-log concave composition of atoms. A tree for an equality
constraint is valid if both subtrees are log-log affine compositions of atoms. The
recursion bottoms out at the leaves of each tree, which are variables or constants.
Leaves are log-log affine provided that they are positive.

4 Implementation

We have implemented DGP in CVXPY 1.0, a Python-embedded, object-oriented DSL
for convex optimization [1]. Our implementation, which is available at

https://www.cvxpy.org,

makes CVXPY 1.0 the first DSL for log-log convex programming.
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Our atom library includes a number of the functions presented in §2.3 and §2.4, and
our implementation of DGP is a strict superset of generalized geometric programming.
CVXPY 1.0 can canonicalize any DGP problem and furnish a solution to it, along with
the optimal dual values; it does this by reducing everyDGPproblem to aDCPproblem,
canonicalizing and solving the DCP problem, and retrieving a solution to the original
problem.

4.1 Canonicalization

In CVXPY 1.0, canonicalization is facilitated by Reduction objects, which rewrite
problems of one form into equivalent problems of another form and record how to
retrieve a solution to the source problem from a solution to the reduced-to problem.
Canonicalizing DGP problems in CVXPY 1.0 is simple: we first reduce each DGP
problem to a DCP problem, after which we apply the DCP canonicalization proce-
dure.

We have added a class Dgp2Dcp that subclasses Reduction. Dgp2Dcp accepts
exactly those problems that areDGP.When applied to a problem, theDgp2Dcp reduc-
tion recursively replaces subexpressions with DCP log-log transformations or graph
implementations. For example, constants are replaced with their logarithms, positive
variables are replaced with unconstrained variables, products of two expressions are
replaced with sums of the log-log transformations of those expressions, and sums of
expressions are replaced with the log_sum_exp of their canonicalized expressions.
This procedure makes sense because the log-log transformation of f = h ◦ g is equal
to the composition of the log-log transformations of h and g.

Atoms like eye_minus_inv whose log-log transformations are not DCP are
replaced by their graph implementations (a graph implementation of eye_minus_
inv is given in §2.4). For example, the expression trace(eye_minus_inv(X))
would be canonicalized to trace(Y), together with the log-log transformation of
the constraint Y U + I <= Y, where U is a variable representing log X.

4.2 Solution retrieval

When a DGP problem P1 is reduced to a DCP problem P2, for each variable in
P1, a variable representing its logarithm is instantiated in P2. Given a solution to
P2, i.e., an assignment of numeric values to variables, we recover a solution to P1
by exponentiating the values of the variables in P2 and assigning the results to the
corresponding variables in P1. When P2 is unbounded, P1 is unbounded as well, in
which case the optimal value of the optimization problem is 0 (ifP1 is a minimization
problem) or +∞ (if P1 is a maximization problem). Similarly, P1 is infeasible when
P2 is infeasible.

The optimal dual values of P1 are the same as those of P2. Under certain assump-
tions, the optimal dual values of P2 represent fractional changes in the optimal
objective given fractional changes in the constraints [5, §3.3].
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4.3 Examples

Hello, World. Below is a example of how to use CVXPY 1.0 to specify and solve the
DGP problem (7), meant to highlight the syntax of our modeling language. A more
interesting example is subsequently presented.

1 import cvxpy as cp
2
3 x = cp.Variable(pos=True)
4 y = cp.Variable(pos=True)
5 objective_fn = x * y
6 objective = cp.Minimize(objective_fn)
7 constraints = [cp.exp(y/x) <= cp.log(y)]
8 problem = cp.Problem(objective, constraints)
9 problem.solve(gp=True)
10 print("Optimal value: ", problem.value)
11 print("x: ", x.value)
12 print("y: ", y.value)
13 print("Dual value: ", constraints[0].dual_value)

The optimization problem problem has two scalar variables, x and y. For a problem
to be DGP, every optimization variable must be declared as positive, as done here
with pos=True. The objective is to minimize the product of x and y, which is
neither convex nor concave but is log-log affine, since the product atom is log-log
affine. Every atom is an Expression object, which may in turn have references to
other Expressions; i.e., each Expression represents a mathematical expression
tree. In line 7, the Expressions are represented using three atoms: ratio (/), exp,
and log. Also in line 7, exp(y/x) is constrained to be no larger than log(y)
via the relational operator <=, which constructs a Constraint object linking two
Expressions. Line 8 constructs but does not solve problem, which encapsulates
the expression trees for the objective and constraints. The problem is DGP (which
can be verified by asserting problem.is_dgp()), but it is not DCP (which can be
verified by asserting not problem.is_dcp()). Line 9 canonicalizes and solves
problem. The optimal value of the problem, the values of the variables, and the
optimal dual value are printed in lines 10-13, yielding the following output.

Optimal value: 48.81026898447343
x: 11.780089932635645
y: 4.143454698868564
Dual value: 2.843059917747706

As this code example makes clear, users do not need to know how canonicalization
works. All they need to know is how to construct DGP problems. Calling the solve
method on a Problem instance with the keyword argument gp=True canonicalizes
the problem and retrieves a solution. If the user forgets to type gp=True when her
problem is DGP (and not DCP), a helpful error message is raised to alert her of the
omission.
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Perron-Frobenius matrix completionWe have implemented several functions of posi-
tivematrices as atoms, including the trace, product, sum, Perron-Frobenius eigenvalue,
and eye-minus-inverse. As an example, we can use CVXPY 1.0 to formulate and solve
a Perron-Frobenius matrix completion problem. In this problem, we are given some
entries of an elementwise positive matrix A, and the goal is to choose the missing
entries so as to minimize the Perron-Frobenius eigenvalue or spectral radius. Letting
Ω denote the set of indices (i, j) for which Ai j is known, the optimization problem
is

minimize λpf(X)

subject to
∏

(i, j)/∈Ω Xi j = 1
Xi j = Ai j , (i, j) ∈ Ω,

(8)

which is an LLCP. Below is an implementation of the problem (8), with specific
problem data

A =
⎡
⎣1.0 ? 1.9

? 0.8 ?
3.2 5.9 ?

⎤
⎦ , (9)

where the question marks denote the missing entries.
1 import cvxpy as cp
2
3 n = 3
4 known_value_indices = tuple(
5 zip(*[[0, 0], [0, 2], [1, 1], [2, 0], [2, 1]]))
6 known_values = [1.0, 1.9, 0.8, 3.2, 5.9]
7 X = cp.Variable((n, n), pos=True)
8 objective_fn = cp.pf_eigenvalue(X)
9 constraints = [

10 X[known_value_indices] == known_values,
11 X[0, 1] * X[1, 0] * X[1, 2] * X[2, 2] == 1.0,
12 ]
13 problem = cp.Problem(cp.Minimize(objective_fn), constraints)
14 problem.solve(gp=True)
15 print("Optimal value: ", problem.value)
16 print("X:\n", X.value)

Executing the above code prints the below output.

Optimal value: 4.702374203221535
X:
[[1. 4.63616907 1.9 ]
[0.49991744 0.8 0.37774148]
[3.2 5.9 1.14221476]]
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