
Disciplined Convex Programming

Michael Grant1, Stephen Boyd1, and Yinyu Ye12

Department of Electrical Engineering, Stanford University
{mcgrant ,boyd, yyye)Qstanf ord. edu
Department of Management Science and Engineering, Stanford University

Summary. A new methodology for constructing convex optimization models called
disciplined convex programming is introduced. The methodology enforces a set of
conventions upon the models constructed, in turn allowing much of the work required
to analyze and solve the models to be automated.

Key words: Convex programming, automatic verification, symbolic compu-
tation, modelling language.

1 Introduction

Convex programming is a subclass of nonlinear programming (NLP) that uni-
fies and generalizes least squares (LS), linear programming (LP), and convex
quadratic programming (QP). This generalization is achieved while maintain-
ing many of the important, attractive theoretical properties of these predeces-
sors. Numerical algorithms for solving convex programs are maturing rapidly,
providing reliability, accuracy, and efficiency. A large number of applications
have been discovered for convex programming in a wide variety of scientific
and non-scientific fields, and it seems clear that even more remain to be dis-
covered. For these reasons, convex programming arguably has the potential
to become a ubiquitous modeling technology alongside LS, LP, and QP. In-
deed, efforts are underway to develop and teach it as a distinct discipline
[29, 21, 1151.

Nevertheless, there remains a significant impediment to the more wide-
spread adoption of convex programming: the high level of expertise required
to use it. With mature technologies such as LS, LP, and QP, problems can
be specified and solved with relatively little effort, and with a t most a very
basic understanding of the computations involved. This is not the case with
general convex programming. That a user must understand the basics of con-
vex analysis is both reasonable and unavoidable; but in fact, a much deeper
understanding is required. Furthermore, a user must find a way to transform

156 Michael Grant, Stephen Boyd, and Yinyu Ye

his problem into one of the many limited standard forms; or, failing that, de-
velop a custom solver. For potential users whose focus is the application, these
requirements can form a formidable "expertise barriern-especially if it is not
yet certain that the outcome will be any better than with other methods. The
purpose of the work presented here is to lower this barrier.

In this article, we introduce a new modeling methodology called disciplined
convex programming. As the term "disciplined" suggests, the methodology im-
poses a set of conventions that one must follow when constructing convex pro-
grams. The conventions are simple and teachable, taken from basic principles
of convex analysis, and inspired by the practices of those who regularly study
and apply convex optimization today. Conforming problems are called, appro-
priately, disciplined convex programs. The conventions do not limit generality;
but they do allow much of the manipulation and transformation required to
analyze and solve convex programs to be automated. For example, the task
of determining if an arbitrary NLP is convex is both theoretically and practi-
cally intractable; the task of determining if it is a disciplined convex program
is straightforward. In addition, the transformations necessary to convert dis-
ciplined convex programs into solvable form can be fully automated.

A novel aspect of this work is a new way to define a function in a modeling
framework: as the solution of a disciplined convex program. We call such a
definition a graph implementation, so named because it exploits the properties
of epigraphs and hypographs of convex and concave functions, respectively.
The benefits of graph implementations to are significant, because they provide
a means to support nondifferentiable functions without the loss of reliability
or performance typically associated with them.

We have created a modeling framework called cvx that implements the
principles of the disciplined convex programming methodology. The system is
built around a specification language that allows disciplined convex programs
to be specified in a natural mathematical form, and addresses key tasks such
as verification, conversion to solvable form, and numerical solution. The de-
velopment of cvx is ongoing, and an initial version is near release. We will
be disseminating cvx freely to encourage its use in coursework, research, and
applications.

The remainder of this article begins with some motivation for this work, by
examining how current numerical methods can be used to solve a simple norm
minimization problem. In $3, we provide a brief overview of convex program-
ming technology; and in $4, we discuss the benefits of modeling frameworks
in general, and cvx in particular. Finally, we introduce disciplined convex
programming in detail in $5-510.

2 Motivation

To illustrate the complexities of practical convex optimization, let us consider
how one might solve a basic and yet common problem: the unconstrained

Chapter 7: Disciplined Convex Programming 157

norm minimization

minimize f (x) A IIAx - bll A E W m x n b c W m (1)

The norm I I . I I has not yet been specified; we will be examining several choices
of that norm. For simplicity, we will assume that n 5 m and that A has full
rank; and for convenience, we shall partition A and b into rows,

2.1 The norms

The Euclidean norm

The most common choice of the norm in (1) is certainly the l2 or Euclidean
norm,

f (x) A I ~ A X - bl12 = Jw (3)

In this case, (1) is easily recognized as a least squares problem, which as its
name implies is often presented in an equivalent quadratic form,

minimize f (x) ~ = IIAx - -11: = CZl (aTx - bi)2 (4)

This problem has an analytical solution x = (ATA)-'ATb, which can be
computed using a Cholesky factorization of ATA, or more accurately using a
QR or SVD factorization of A [76]. A number of software packages to solve
least squares problems are readily available; e.g., [I, 1061.

The Chebyshev norm

For the l, or Chebyshev norm,

f(x) A llAx - bll, = , max laTx - bil, z=1,2, ..., m (5)

there is no analytical solution. But a solution can be obtained by solving the
linear program

minimize q
subject to -q 5 aTx - bi I: q, i = 1,2 , . . . , m (6)

Despite the absence of an analytical solution, numerical solutions for this
problem are not difficult to obtain. A number of efficient and reliable LP
solvers are readily available; in fact, a basic LP solver is included with virtually
every piece of spreadsheet software sold [63].

158 Michael Grant, Stephen Boyd, and Yinyu Ye

The Manhattan norm

Similarly, for the l1 or Manhattan norm

a solution can also be determined by solving an appropriate LP:

minimize C z l vi
subject to -vi 5 aTx - bi < vi, i = 1,2, . . . , m (8)

So again, this problem can be easily solved with readily available software,
even though an analytical solution does not exist.

The Hijlder norm, part 1

Now consider the Holder or ep norm

for p 2 2. We may consider solving (1) for this norm using Newton's method.
For simplicity we will in fact apply the method to the related function

which yields the same solution x but is twice differentiable everywhere. The
iterates produced by Newton's method are

- - p-l-cul, arg min w:" (AZE - b) 11 X k + -
P-1 p - 1 IE I I 2

where xo = 0, k = 1,2 ,3 , . . . , and we have defined

and err, E [O, 1) is either fixed or determined a t each iteration using a line
search technique. Notice how the Newton computation involves a (weighted)
least squares problem; In fact, if p = 2, then Wk - I, and a single Newton
iteration produces the correct least squares solution. So the more "complex"
ep case simply involves solving a series of similar least squares problems. This
resemblance to least squares turns up quite often in numerical methods for
convex programming.

Chapter 7: Disciplined Convex Programming 159

An important technical detail must be mentioned here. When the residual
vector Axk - b has any zero entries, the matrix Wk (12) will be singular. If
m >> n, this will not necessarily render the Hessian V2g(x) itself singular,
but care must be taken nonetheless to guard for this possibility. A variety of
methods can be considered, including the introduction of a slight dampening
factor to Wk; i.e., Wk + € I .

Newton's method is itself a relatively straightforward algorithm, and a
number of implementations have been developed; e.g., [113]. These methods
do require that code be created to compute the computation of the gradient
and Hessian of the function involved. This task is eased somewhat by using an
automatic differentiation package such ADIC [81] or ADIFOR [lo], which can
generate derivative code from code that simply computes a function's value.

The Holder norm, part 2

For 1 < p < 2, Newton's method cannot reliably be employed, because neither
f (x) nor g(x) 2 f(x)p is twice differentiable whenever the residual vector
Ax - b has any zero entries. An alternative that works for all p E [I, + m)
is to apply a barrier method to the problem. A full introduction to barrier
methods is beyond the scope of this text, so we will highlight only key details.
The reader is invited to consult [I181 for a truly exhaustive development of
barrier methods, or [29] for a gentler introduction.

To begin, we note that the solution to (1) can be obtained by solving

minimize 1 Tv
subject to larx - biIP < vi i = 1 ,2 , . . . , m (13)

To solve (13), we construct a barrier function q5 : (Rn x Rm) 4 (R U +GO) to
represent the inequality constraints [118]:

The barrier function is finite and twice differentiable whenever the inequality
constraints in (13) are strictly satisfied, and + m otherwise. This barrier is
used to create a family of functions gt parameterized over a quantity t > 0:

It can be shown that, as t -, 0, the minimizing values for gt (x, v) converge to
the solution to the original problem. A practical barrier method takes Newton
steps to minimize gt(x,v), decreasing the value of t between iterations in a
manner chosen to insure convergence and acceptable performance.

This approach is obviously significantly more challenging than the previous
efforts. As with the Newton method for the p > 2 case, code must be written

160 Michael Grant, Stephen Boyd, and Yinyu Ye

(or automatic differentiation employed) to compute the gradient and Hessian
of gt(x, v). Furthermore, the authors are unaware of any readily available
software implementing a general purpose barrier methods such as this, so one
would be forced to write their own.

An uncommon choice

Given a vector w E Em, let w[lkll be the k-th element of the vector after it
has been sorted from largest to smallest in absolute value:

Then let us define the largest-L norm as follows:

Solving (1) using this norm produces a vector x that minimizes the sum of the
L largest residuals of Ax - b. This is equivalent to the l, case for L = 1 and
the el case for L = m, but for 1 < L < m this norm produces novel results.

While it may not be obvious that (17) is a norm or even a convex function,
it is indeed both. Even less obvious is how to solve this problem-but in fact,
it turns out that it can be solved as an LP!

minimize Cz"_, Vi + Lq
subject to -vi - q < a r x - bi < vi + q, i = 1,2 , . . . , m (18)

v iLO, i = l , 2 ,..., m

This LP is only slightly larger than the one used for the el case. The result
is known-see, for example [124]-but not widely so, even among those who
actively study optimization. Thus it is likely that someone wishing to solve
this problem would consider a far more difficult approach such as a barrier
method or a subgradient method (or not even try).

2.2 The expertise barrier

The conceptual similarity of these problems is obvious, but the methods em-
ployed to solve them differ significantly. A variety of numerical algorithms
are represented: least squares, linear programming, Newton's method, and a
barrier method. In most cases, transformations are required to produce an
equivalent problem suitable for numerical solution. These transformations are
not likely to be obvious to an applications-oriented user whose primary ex-
pertise is not optimization.

As a result of this complexity, those wishing to solve a norm minimization
problem may, out of ignorance or practicality, restrict their view to norms for
which solution methods are widely known, such as e2 or em- even if doing

Chapter 7: Disciplined Convex Programming 161

so compromises the accuracy of their models. This might be understandable
for cases like, say, where the computational method employed is quite
complex. But the true computational complexity may be far less severe than
it seems on the surface, as is the case with the largest-L norm.

Even this simple example illustrates the high level of expertise needed
to solve even basic convex optimization problems. Of course, the situation
worsens if more complex problems are considered. For example, adding simple
bounds on x (e.g., 1 < x 5 u) eliminates analytical solutions for the &. case,
and prevents the use of a simple Newton's method for the t, case.

2.3 Lowering the barrier

In Figure 1, cvx specifications for three of the norm minimization problems
presented here are given. In each case, the problem is given in its original
form; no transformations described above have been applied in advance to
convert them into "solvable" form. Instead, the models utilize the functions
norm-inf, norm-p, and norm-largest for the t,, $, and largest-L norms,
respectively. The definitions of these functions have been stored in a separate
file norms. cvx, and referred to by an include command.

minimize norm-inf (A x - b) ;
parameters A [m,nl, b [nl ;
var iable x [nl ;
include "norms. CVX" ;

minimize norm-p(A x - b, p) ;
parameters A[m,nl, b h l , p >= 1;
var iable x[nl;
include "norms. CVX" ;

minimize norm-largest(A x - b, L 1;
parameters A[m,n], b b] , L i n #{1,2,. . . a) ;
var iable x [n] ;
include "norms. CVX" ;

Fig. 1. cvx specifications for the Chebyshev, Holder, and largest-L cases, respec-
tively.

In most modeling frameworks, function definitions consist of computer
code to compute their values and derivatives. This method is not useful for
these functions, because they are not differentiable. Graph implementations,
which we describe in detail in $10, solve this problem. For now, it is enough
to know that they effectively describe the very transformations illustrated in
52.1 above. For example, the definitions for the norm-inf and norm-largest
provide the information necessary to convert their respective problems into

162 Michael Grant, Stephen Boyd, and Yinyu Ye

LPs. The definition for norm-p includes a barrier function for its epigraph,
which can be used to apply a barrier method to the third problem.

So neither disciplined convex programming nor the cvx framework elim-
inates the transformations needed to solve any of these convex programs.
Rather, they allow the transformations to be encapsulated: that is, hidden
from the user, and performed without that user's intervention. A function
definition can be used in multiple models and shared with many users. A
natural, collaborative environment is suggested, where the work of those with
advanced expertise in convex programming can share their knowledge with
less experienced modelers in a practical way, by creating libraries of function
definitions. The task of solving convex programs is appropriately returned to
experts, freeing applications-oriented users to confidently focus on modeling.

3 Convex programming

A mathematical program is an optimization problem of the form

minimize f (x)
subject to gi(x) < 0 i = 1,2 , . . . ,n, (19)

h j (x)=O j = l , 2 , . . . , n h

or one that can be readily converted into this form. The vector x is the problem
variable; the quantity the quantity f (x) is the objective function, and the
relations gi(x) < 0 and hj(x) = 0 are the inequality and equality constraints,
respectively. The study of mathematical programs focuses almost exclusively
on special cases of (19). The most popular is certainly the LP, for which the
functions f , gi, hj are all affine. Least squares problems, QPs, and NLPs can
all be represented by this form (19) as well.

A convex program (CP) is yet another special case of (19), one in which
the objective function f and inequality constraint functions gi are convex, and
the equality constraint functions h j are affine. The set of CPs is a strict subset
of the set of NLPs, and includes all least squares problems, LPs, and convex
QPs. Several other classes of CPs have been identified recently as standard
forms. These include semidefinite programs (SDPs) [155], second-order cone
programs (SOCPs) [104], and geometric programs (GPs) [48, 3, 138, 52, 921.
The work we present her applies to all of these special cases as well as to the
general class of CPs.

The practice of modeling, analyzing, and solving CPs is known as convex
programming. In this section we provide a survey of convex programming,
including its theoretical properties, numerical algorithms, and applications.

3.1 Theoretical properties

A number of powerful and practical theoretical conclusions can be drawn once
it can be established that a mathematical program is convex. A comprehensive

Chapter 7: Disciplined Convex Programming 163

theory of convex analysis was developed by the 1970s [137, 1421, and advances
have continued since [83, 84, 21, 291.

The most fundamental distinction between CPs and general NLPs is that,
for the former, local optima are guaranteed to be global. Put another way, if
local optimality can somehow be demonstrated (say, using KKT conditions),
then global optimality is assured. Except in certain special cases, no similar
guarantees can be made for nonconvex NLPs. Such problems might exhibit
multiple local optima, so an exhaustive search would be required to prove
global optimality-an intractable task.

Convex programming also has a rich duality theory that is very similar to
the duality theory that accompanies linear programming, though it is a bit
more complex. The dual of a CP is itself a CP, and its solution often provides
interesting and useful information about the original problem. For example,
if the dual problem is unbounded, then the original must be infeasible. Un-
der certain conditions, the reverse implication is also true: if a problem is
infeasible, then its dual must be unbounded. These and other consequences of
duality facilitate the construction of numerical algorithms with definitive stop-
ping criteria for detecting infeasibility, unboundedness, and near-optimality.
For a more complete development of convex duality, see [137, 1021.

Another important property of CPs is the provable existence of efficient
algorithms for solving them. Nesterov and Nemirovsky proved that a polyno-
mial-time barrier method can be constructed for any CP that meets certain
technical conditions [117]. Other authors have shown that problems which do
not meet those conditions can be embedded into larger problems that do-
effectively making barrier methods universal [169, 102, 1711.

Finally, we note that the theoretical properties discussed here, including
the existence of efficient solution methods, hold even if a CP is nondifferentiable-
that is, if one or more of the constraint or objective functions is nondifferen-
tiable. The practical ramifications of this fact are discussed in g3.4.

3.2 Numerical algorithms

The existence of efficient algorithms for solving CPs has been known since
the 1970s, but it is only through advances in the last two decades that this
promise has been realized in practice. Much of the modern work in numerical
algorithms has focused on interior-point methods [166, 37, 1631. Initially such
work was limited to LPs [88, 133, 73,89, 109, 105,621, but was soon extended
to encompass other CPs as well 1117, 118, 7, 87, 119, 162, 15, 1201. Now a
number of excellent solvers are readily available, both commercial and freely
distributed.

Below we provide a brief survey of solvers for convex optimization. For
the purposes of our discussion, we have separated them into two classes: those
that rely on standard forms, and those that rely on custom code.

164 Michael Grant, Stephen Boyd, and Yinyu Ye

Standard forms

Most solvers for convex programming are designed to handle certain proto-
typical CPs known as standard forms. In other words, such solvers handle a
limited family of problems with a very specific structure, or obeying certain
conventions. The least squares problem and the LP are two common examples
of standard forms; we list several others below. These solvers trade generality
for ease of use and performance.

It is instructive to think of the collection of standard form solvers as a
"toolchest" of sorts. This toolchest is reasonably complete, in that most CPs
that one might encounter can be transformed into one (or more) of these
standard forms. However, the required transformations are often far from
obvious, particularly for an applications-oriented user.

Smooth convex programs

A number of solvers have been designed to solve CPs in standard NLP form
(19), under the added condition that the objective function f and inequality
constraint functions gi are smooth-that is, twice continuously differentiable-
a t least over the region that the algorithm wishes to search. We will call
such problems smooth CPs; conversely, we will label CPs that do not fit this
categorization as nonsmooth CPs.

Software packages that solve smooth CPs include LOQO [154], which
employs a primalldual method, and the commercial package MOSEK [110],
which implements the homogeneous algorithm. These solvers generally per-
form quite well in practice. Many systems designed for smooth nonconvex
NLPs will often solve smooth CPs efficiently as well [32, 69, 112, 70, 41, 31,
156, 122, 14, 33, 13, 71, 61, 1531. This is not surprising when one considers
that these algorithms typically exploit local convexity when computing search
directions.

One practical difficulty in the use of smooth CP or NLP solvers is that
the solver must be able to calculate the gradient and Hessian of the objective
and inequality constraint functions at points of its choosing. In some cases,
this may require the writing of custom code to perform these computations.
Many modeling frameworks simplify this process greatly in most cases by
allowing functions to be expressed in natural mathematical form and compute
derivatives automatically (e.g., [56, 181).

Conic programs

An entire family of standard forms that have become quite common are the
primal and dual conic forms

minimize cTx minimize bT y
subject to Ax = b or subject to ATY + z = c (20)

x E K: z E K*

Chapter 7: Disciplined Convex Programming 165

in which the sets K and K* are closed, convex cones (i e . , they satisfy a K K
and a K * - K* for all a > 0). The most common conic form is the LP, for
which K = K* is the nonnegative orthant

It can be shown that virtually any CP can be represented in conic form, with
appropriate choice of K or K* [118]. In practice, two conic forms (besides
LP) dominate all recent study and implementation. One is the semidefinite
program (SDP), for which K = K* is an isomorphism of the cone of positive
semidefinite matrices

The second is the second-order cone program (SOCP), for which K = K* is
the Cartesian product of one or more second-order or Lorentz cones,

SDP and SOCP receive this focused attention because many applications have
been discovered for them, and because their geometry admits certain useful
algorithmic optimizations [121, 66, 149, 53, 68, 102, 1261. Publicly available
solvers for SDP and SOCP include SeDuMi [140], CDSP [22], SDPA [58],
SDPT3 [152], and DSDP [12]. These solvers are generally quite efficient, re-
liable, and are entirely data-driven: that is, they require no external code to
perform function calculations.

Geometric programs

Another standard form that has been studied for some time, but which has
generated renewed interest recently, is the geometric program (GP). The GP
is actually a bit of an unique case, in that it is in fact not convex-but a simple
transformation produces an equivalent problem that is convex. In convex form,
the objective and inequality constraint functions obtain a so-called "log-sum-
exp" structure; for example,

M

f (x) log earxibk a, E Rn, bk E R, k = 1 ,2 , . . . , M (24)

GPs have been used in various fields since the late 1960s [48]. In convex form
they are smooth CPs, but recent advances in specialized algorithms have
greatly improved the efficiency of their solution [92].

Custom code

There are instances where a CP cannot be transformed into one of the stan-
dard forms a b o v e o r perhaps the transformations cannot be determined. An

166 Michael Grant, Stephen Boyd, and Yinyu Ye

alternative is to use one of the methods that we list here, which are universal
in the sense that they can, in theory, be applied to any CP. The cost of this
universality is that the user must determine certain mathematical construc-
tions, and write custom code to implement them.

Barrier methods

A barrier method replaces the inequality constraint set

with a twice differentiable convex barrier function 4 : Rn -+ R satisfying
dom 4 = Int S, producing a modified problem

minimize f (x) + @(x)
subject to hj(x) = 0 j = 1,2, . . . , n h (26)

Under mild conditions, the solution to this modified problem converges to that
of the original problem as t -+ 0. Each iteration of a barrier method effectively
performs Newton minimization steps on (26) for steadily decreasing values of
t. A complete development of barrier methods, including proofs of universality,
convergence, and performance, as well as a number of complete algorithms, is
given in [118].

There are several practical roadblocks to the use of a barrier method.
First of all, this author knows of no publicly-available, general purpose barrier
solver; someone wishing to use this technique would have to write their own.
Even if a barrier solver is found, the user must supply code to compute the
value and derivatives of the barrier function. Furthermore, determining a valid
barrier function is not always trivial, particularly if the inequality constraints
are nondifferentiable.

Cutting plane methods

Localization or cutting-plane methods such as ACCPM [I311 require no
derivative information for the functions f and g i , instead relying solely on
cutting planes to restrict the search set. The user is expected to supply code
to compute subgradients or cutting planes. The performance of these meth-
ods is usually inferior to the others mentioned here, but they are ideal for use
when second derivative information is not available or difficult to compute. In
addition, they often lend themselves to distributed methods for solution.

3.3 Applications

A wide variety of practical applications for convex programming have already
been discovered, and the list is steadily growing. Perhaps the field in which
the application of convex programming is the most mature and pervasive is
control theory; see [44,8, 11,40,114] for a sample of these applications. Other
fields where applications for convex optimization are known include, but are
not limited to,

Chapter 7: Disciplined Convex Programming 167

robotics 1132, 35, 821;
pattern analysis and data mining, including support vector machines [141,
172, 134, 164, 911;
combinatorial optimization and graph theory [lo l l 5, 28, 77, 57, 55, 90,
170, 174, 111, 42, 60, 59, 851;
structural optimization [2, 23, 9, 25, 26, 173, 86, 27, 24, 941;
algebraic geometry [125, 95, 971 ,[96];
signal processing [79, 161, 65, 139, 150, 165, 49, 151, 6, 47, 103, 143, 54,
144, 64, 146, 108, 107, 128, 50, 129, 45, 17, 72, 168, 160, 145, 1751;
communications and information theory [19, 98, 43, 135, 75, 148, 41;
networking 120, 301;
circuit design 1157, 158, 80, 39, 78, 161;
quantum computation [46];
neural networks [127];
chemical engineering 11361;
economics and finance 167, 1671.

This list, while large, is certainly incomplete, and excludes applications where
only LP or QP is employed. Such a list would be significantly larger; and yet
convex programming is of course a generalization of these technologies.

One promising source of new applications for convex programming is the
extension and enhancement of existing applications for linear programming.
An example of this is robust linear programming, which allows uncertainties
in the coefficients of an LP model to be accounted for in the solution of
the problem, by transforming it into a nonlinear CP [104]. This approach
produces robust solutions more quickly, and arguably more reliably, than using
Monte Carlo methods. Presumably, robust linear programming would find
application anywhere linear programming is currently employed, and where
uncertainty in the model poses a significant concern.

Some may argue that our prognosis of the usefulness of convex program-
ming is optimistic, but there is good reason to believe the number of applica-
tions is in fact being underestimated. We can appeal to the history of linear
programming as precedent. George Dantzig first published his invention of
the simplex method for linear programming in the 1947; and while a number
of military applications were soon found, it was not until 1955-1960 that the
field enjoyed robust growth [38]. Certainly, this delay was in large part due
to the dearth of adequate computational resources; but that is the point: the
discovery of new applications accelerated only once hardware and software
advances made it truly practical to solve LPs.

Similarly, then, there is good reason to believe that the number of known
applications for convex programming will rise dramatically if it can be made
easier for people to create, analyze, and solve CPs.

168 Michael Grant, Stephen Boyd, and Yinyu Ye

3.4 Convexity and differentiability

As mentioned in $3.2, many solvers for smooth (nonconvex) NLPs can be used
to effectively solve many smooth CPs. An arguable case can be made that
the advance knowledge of convexity is not critical in such cases. Dedicated
solvers for smooth CPs do provide some advantages, such as the ability to
reliably detect infeasibility and degeneracy; see, for example, [171]. But such
advantages may not immediately seem compelling to those accustomed to
traditional nonlinear programming.

In the nonsmooth case, the situation is markedly different. Nondifferentia-
bility poses a significant problem for traditional nonlinear programming. The
best methods available to solve nondifferentiable NLPs are far less accurate,
reliable, or efficient than their smooth counterparts. The documentation for
the GAMS modeling framework "strongly discourages'' the specification of
nonsmooth problems, instead recommending that points of nondifferentiabil-
ity be eliminated by replacing them with Boolean variables and expressions
[18]. But doing so is not always straightforward, and introduces significant
practical complexities of a different sort.

In contrast, there is nothing in theory that prevents a nonsmooth CP
from being solved as efficiently as a smooth CP. For example, as mentioned
in 53.1, the proof provided by Nesterov and Nemirovsky of the existence of
barrier functions for CPs does not depend on smoothness considerations. And
nonsmooth CPs can often be converted to an equivalent smooth problem with
a carefully chosen transformation-consider the e,, el , and largest-L norm
minimization problems presented in 52. Of course, neither the construction of
a valid barrier function nor the smoothing transformation is always (or even
often) obvious.

One might ask: just how often are the CPs encountered in practice nons-
mooth? We claim that it is quite often. Most non-trivial SDPs and SOCPs,
for example, are nonsmooth. Common convex functions such as the absolute
value and most norms are nonsmooth. Examining the current inventory of
applications for convex programming, and excluding those that immediately
present themselves as LPs and QPs, smoothness is the exception, not the rule.

Thus a convex programming methodology that provides truly practical
support for nonsmooth problems is of genuine practical benefit. If such a
solution can be achieved, then the a priori distinction between convexity
and nonconvexity becomes far more important, because the need to avoid
nondifferentiability remains only in the nonconvex case.

3.5 Convexity verification

Given the benefits of advance knowledge of convexity, it would be gen-
uinely useful to perform automatic convexity verification: that is, to determine
whether or not a given mathematical program is convex. Unfortunately, the
task of determining whether or not a general mathematical program is convex

Chapter 7: Disciplined Convex Programming 169

is a t least as difficult as solving nonconvex problems: that is, it is theoretically
intractable. Practical attempts have achieved various degrees of success, as we
survey here.

Perhaps the most computationally ambitious approach to convexity ver-
ification has been independently developed by Crusius [36] and Orban and
Fourer 11231. The first of these has been refined and integrated into a com-
mercial offering [116, 631. These systems combine interval methods, symbolic
or automatic differentiation, and other methods to determine if the Hessians
of key subexpressions in the objective and constraints are positive semidef-
inite over an estimate of the feasible region. The efforts are impressive, but
these systems do fail to make conclusive determinations in many cases-that
is, some problems can neither be proven convex nor nonconvex. Furthermore,
these systems are limited to smooth NLPs, due to their reliance on derivative
information.

Limiting the scope to one or more standard forms produces more reliable
results. For example, many modeling frameworks automatically determine if
a model is an LP, enabling specialized algorithms to be selected for them
[56, 181. Similar approaches are employed by modeling tools such as SDPSOL
and LMITOOL to automatically verify SDPs 1159, 511. These approaches are
effective because these particular standard forms can be recognized entirely
through an analysis of their textual structure. They are perfectly reliable,
making conclusive determinations in every case: e.g., a model is proven to
be an LP, or proven otherwise. But of course, generality is significantly com-
promised. And these systems do not attempt to recognize problems that are
transformable into the supported standard form. For example, the el norm
minimization in 52.1 would have to be manually converted to an LP before it
would be recognized as such by these systems.

Yet another alternative is provided by the MPROBE [34] system, which
employs numerical sampling to empirically determine the shapes of constraint
and objective functions. It will often conclusively disprove linearity or convex-
ity in many cases, but it can never conclusively prove convexity, because doing
so would require an exhaustive search. To be fair, its author makes no claims
to that effect, instead promoting MPROBE as a useful tool for interactively
assisting the user to make his own decisions.

These practical approaches to automatic convexity verification compro-
mises generality, whether due to limitations of the algorithms or by deliberate
restrictions in scope. As we will see below, disciplined convex programming
makes a compromise of a different sort, recovering generality by incorporating
knowledge provided by its users.

4 Modeling frameworks

The purpose of a modeling framework is to enable someone to become a profi-
cient user of a particular mathematical technology (e.g., convex programming)

170 Michael Grant, Stephen Boyd, and Yinyu Ye

without requiring that they may become an expert in it (e.g., interior-point
methods). It accomplishes this by providing a convenient interface for specify-
ing problems, and then by automating many of the underlying mathematical
and computational steps for analyzing and solving them.

A number of excellent modeling frameworks for LP, QP, and NLP are
in widespread use and have had a broad and positive impact on the use of
optimization in many application areas, including AMPL [56], GAMS [18],
LINGO [99], and Frontline [63]. These frameworks are well-suited for solv-
ing smooth CPs as well. More recently, a number of modeling frameworks
for semidefinite programming have been developed, including SDPSOL 11591,
LMITool [51], MATLAB's LMI Control Toolbox [147], YALMIP [loo], and
SOSTOOLS [130]. These tools are used by thousands in control design, anal-
ysis, and research, and in other fields as well.

We are developing a modeling framework called cvx to support the disci-
plined convex programming methodology. The framework addresses a number
of the challenges already addressed in this article, including support for non-
differentiable problems, convexity verification, and automatic conversion to
solvable form. We have implemented a simple barrier solver for the frame-
work; but in fact, any numerical method currently used to solve CPs can be
used to solve DCPs. So we intend to work to create interfaces between cvx
and other well-known solvers.

maximize entropy (xi, x2, x3, x4) ;
subject to all xi + a12 x2 + a13 x3 + a14 x4 = bl;

a21 xi + a22 x2 + a23 x3 + a24 x4 = b2;
XI + x2 + x3 + x4 = 1;

parameters all, a12, a13, a14, bi,
a21, a22, a23, a24, b2;

variables x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0;
function entropy(. . .) concave;

Fig. 2. An example CP in the cvx modeling language.

The cvx framework is built around a modeling language that allows op-
timization problems to be expressed using a relatively obvious mathematical
syntax. The language shares a number of basic features with other modeling
languages such as AMPL or GAMS, such as parameter and variable dec-
larations, common mathematical operations, and so forth. See Figure 2 for
an example of a simple entropy maximization problem expressed in the cvx
syntax.

Throughout this article, we will illustrate various concepts using examples
rendered in the cvx modeling language, using a fixed-width font (example) to
distinguish them. However, because cvx is still in development, it is possible
that future versions of the language will use a slightly different syntax; and a

Chapter 7: Disciplined Convex Programming 171

few examples use features of the language that have not yet been implemented.
So the examples should not be treated as definitive references. The reader is
invited to visit the Web site h t tp : //www. stanf ord. edu/"boyd/cvx to find
the most recent information about cvx.

5 Disciplined convex programming

Disciplined convex programming is inspired by the practices of those who reg-
ularly study and use convex optimization in research and applications. They
do not simply construct constraints and objective functions without advance
regard for convexity; rather, they draw from a mental library of functions and
sets whose convexity properties are already known, and combine and manip-
ulate them in ways which convex analysis insures will produce convex results.
When it proves necessary to determine the convexity properties of a new func-
tion or set from basic principles, that function or set is added to the mental
library to be reused in other models.

Disciplined convex programming formalizes this strategy, and includes two
key components:

An atom library: an extensible collection of functions and sets, or atoms,
whose properties of curvature/shape (convex/concave/affine), monotonic-
ity, and range are explicitly declared.
A convexity ruleset, drawn from basic principles of convex analysis, that
governs how atoms, variables, parameters, and numeric values can be com-
bined to produce convex results.

A valid disciplined convex program, or DCP, is simply a mathematical pro-
gram built in accordance with the convexity ruleset using elements from the
atom library. This methodology provides a teachable conceptual framework
for people to use when studying and using convex programming, as well as an
effective platform for building software to analyze and solve CPs.

The convexity ruleset, introduced in $6 below, has been designed to be easy
to learn and understand. The rules constitute a set of sufficient conditions to
guarantee convexity. In other words, any mathematical program constructed
in accordance with the convexity ruleset is guaranteed to be convex. The
converse, however, is not true: it is possible to construct problems which do
not obey the rules, but which are convex nonetheless. Such problems are not
valid DCPs, and the methodology does not attempt to accommodate them.
This does not mean that they cannot be solved, but it does mean that they
will have to be rewritten to comply with the convexity ruleset.

Because the convexity ruleset limits the variety of CPs that can be con-
structed from a fixed atom library, it follows that the generality of disciplined
convex programming depends upon that library being extensible. Each atom
must be given a declaration of information about its curvature or shape, mono-
tonicity, and range, information which is referred to when verifying that the

172 Michael Grant, Stephen Boyd, and Yinyu Ye

atom is used in accordance with the convexity ruleset. We introduce the atom
library in detail in $7.

In $9, we examine the consequences of a restricted approach such as this.
In particular, we provide some examples of some common and useful CPs
that, in their native form, are not disciplined convex programs. We show
that the these limitations are readily remedied using the extensibility of the
atom library. We argue that the remedies are, in fact, consistent with the
very thought process that disciplined convex programming is attempting to
formalize.

Finally, in $10, we discuss how the elements in the atom library can be
implemented-that is, how they can be represented in a form usable by nu-
merical algorithms. In addition to some very traditional forms, such as barrier
functions, cutting planes, derivatives for Newton's method, and so forth. we
introduce the concept of graph implementations. Graph implementations al-
low functions and sets to be defined in terms of other DCPs, and provide such
benefits as support for nondifferentiable functions.

Before we proceed, let us address a notational issue. We have chosen to
follow the lead of [I371 and adopt the extended-valued approach to defining
convex and concave functions with limited domains; e.g.,

Using extended-valued functions simplifies many of the derivations and proofs.
Still, we will on occasion use the dom operator to refer to the set of domain
values that yield finite results:

6 The convexity ruleset

The convexity ruleset governs how variables, parameters, and atoms (functions
and sets) may be combined to form DCPs. DCPs are a strict subset of general
CPs, so another way to say this is that the ruleset imposes a set of conventions
or restrictions on CPs. The ruleset can be separated into four categories: top-
level rules, product-free rules, sign rules, and composition rules.

6.1 Top-level rules

As the name implies, top-level rules govern the top-level structure of DCPs.
These rules are more descriptive than they are restrictive, in the sense that

Chapter 7: Disciplined Convex Programming 173

nearly all general CPs follow these conventions anyway. But for completeness
they must be explicitly stated.

Problem types. A valid DCP can either be:
T1 a minimization: a convex objective and zero or more convex con-

straints;
T2 a maximization: a concave objective and zero or more convex con-

straints; or
T3 a feasibility problem: no objective, and one or more convex con-

straints.
A valid DCP may also include any number of assertions; see rule T9.

At the moment, support for multiobjective problems and games has not been
developed, but both are certainly reasonable choices for future work.

afine = afine (T4)
convex <= concave or convex < concave (T5)
concave >= convex or concave > convex (T6)

(afine, afine, . . . , afine) i n convex set (T7)

Fig. 3. Valid constraints.

Constraints. See Figure 3. Valid constraints include:
T4 an equality constraint with affine left- and right-hand expressions.
T5 a less than (<,_<) inequality, with a convex left-hand expression

and a concave right-hand expression;
T6 a greater than (>,>) inequality, with a concave left-hand expres-

sion and a convex right-hand expression; or
T7 a set membership constraint (lexpl, . . . , lexpm) E cset, where m 2

1, lexpl,. . . , lexpm are affine expressions, and cset is a convex set.

Non-equality (#) constraints and set non-membership (6) constraints are not
permitted, because they are convex only in exceptional cases-and support
for exceptional cases is anathema to the philosophy behind disciplined convex
programming.

Constant expressions and assertions.
T8 Any well-posed numeric expression consisting only of numeric val-

ues and parameters is a valid constant expression.
T9 Any Boolean expression performing tests or comparisons on valid

constant expressions is a valid assertion.
TI0 If a function or set is parameterized, then those parameters must

be valid constant expressions.

A constant expression a numeric expression involving only numeric values
and/or parameters; a non-constant expression depends on the value of a t
least one problem variable. Obviously a constant expression is trivially affine,

174 Michael Grant, Stephen Boyd, and Yinyu Ye

convex, and concave. Constant expressions must be well-posed: which, for
our purposes, means that they produce well-defined results for any set of
parameter values that satisfy a problem's assertions.

An assertion resembles a constraint, but involves only constant expres-
sions. As such, they are not true constraints per se, because their truth or
falsity is determined entirely by the numerical values supplied for a model's
parameters, before the commencement of any numerical optimization algo-
rithm. Assertions are not restricted in the manner that true constraints are;
for example, non-equality (#) and set non-membership (e) operations may be
freely employed. Assertions serve as preconditions, guaranteeing that a prob-
lem is numerically valid or physically meaningful. There are several reasons
why an assertion may be wanted or needed; for example:

to represent physical limits dictated by the model. For example, if a pa-
rameter w represents the physical weight of an object, an assertion w > 0
enforces the fact that the weight must be positive.
to insure numeric well-posedness. For example, if x, y, and z are variables
and a, b, and c are parameters, then the inequality constraint ax + by +
z / c 5 1 is well-posed only if c is nonzero; this can be insured by an assertion
such as c # 0 or c > 0.
to guarantee compliance with the preconditions attached to a function or
set in the atom library. For example, a function f,(x) = llxll, is parame-
terized by a value p L 1. If p is supplied as a parameter, then an assertion
such as p 2 1 would be required to guarantee that the function is be-
ing properly used. See $7.1 for information on how such preconditions are
supplied in the atom library.
to insure compliance with the sign rules $6.3 or composition rules $6.4
below; see those sections and $8 for more details.

The final rule TI0 refers to functions or sets that are parameterized; e.g.,

and simply states that parameters such a sp above must be constant. Of course
this is generally assumed, but we must make it explicit for the purposes of
computer implementation.

6.2 The product-free rules

Some of the most basic principles of convex analysis govern the sums and
scaling of convex, concave, and affine expressions; for example:

The sum of two or more convex (concave, affine) expressions is convex
(concave, affine) .

Chapter 7: Disciplined Convex Programming 175

The product of a convex (concave) expression and a nonnegative constant
expression is convex (concave).

0 The product of a convex (concave) expression and a nonpositive constant
expression, or the simple negation of the former, is concave (convex).
The product of an affine expression and any constant is affine.

Conspicuously absent from these principles is any mention of the product of
convex or concave expressions. The reason for this is simple: there is no simple,
general principle that can identify the curvature in such cases. For instance,
suppose that x is a scalar variable; then:

0 The expression x . x, a product of two affine expressions, is convex.
The expression x . log x, a product between and affine and a concave ex-
pression, is convex.
The expression x.ex, a product between an affine and a convex expression,
is neither convex nor concave.

For this reason, the most prominent structural convention enforced by disci-
plined convex programming is the prohibition of products (and related oper-
ations, like exponentiation) between non-constant expressions. The result is a
set of rules appropriately called the product-free rules:

Product-free rule for numeric expressions: All valid numeric expres-
sions must be product-free; such expressions include:
PN1 A simple variable reference.
PN2 A constant expression.
PN3 A call to a function in the atom library. Each argument of the

function must be a product-free expression.
PN4 The sum of two or more product-free expressions.
PN5 The difference of product-free expressions.
PN6 The negation of a product-free expression.
PN7 The product of a product-free expression and a constant expres-

sion.
PN8 The division of a product-free expression by a constant expres-

sion.
We assume in each of these rules that the results are well-posed; for
example, that dimensions are compatible.

In the scalar case, a compact way of restating these rules is to say that a valid
numeric expression can be reduced to the form

where a , bi, cj are constants; xi are the problem variables; and f j : IRmj -+ IR
are functions from the atom library, and their arguments argj,l, are product-
free expressions themselves. Certain special cases of (33) are notable: if L = 0,

176 Michael Grant, Stephen Boyd, and Yinyu Ye

then (33) is a simple affine expression; if, in addition, bl = b2 = . . = bn = 0,
then (33) is a constant expression.

For an illustration of the use of these product-free rules, suppose that a ,
b, and c are parameters; x, y, and z are variables; and f (.), g(., .), and h(., ., .)
are functions from the atom library. Then the expression

satisfies the product-free rule, which can be seen by rewriting it as follows:

On the other hand, the following expression does not obey the product-free
rule:

axy/2 - f (X) ~ (Y , 2) + h(x, yb, z,c) (36)

Now certainly, because these rules prohibit all products between non-constant
expressions, some genuinely useful expressions such as quadratic forms like x.x
are prohibited; see 59 for further discussion on this point.

For set expressions, a similar set of product-free rules apply:

Product-free rules for set expressions: All valid set expressions used
in constraints must be product-free; such expressions include:
PSI A call to a convex set in the atom library.
PS2 A call to a function in the atom library. Each argument of the

function must be a product-free set expression or a constant (nu-
meric) expression.

PS3 The sum of product-free expressions, or of a product-free expres-
sion and a constant expression, or vice versa.

PS4 The difference of two product-free set expressions, or of of a prod-
uct-free set expression and a constant expression, or vice versa.

PS5 The negation of a product-free set expression.
PS6 The product of a product-free set expression and a constant ex-

pression.
PS7 The division of a product-free set expression by a constant ex-

pression.
PS8 The intersection of two or more product-free set expressions.
PS9 The Cartesian product of two or more product-free set expres-

sions.
We also assume in each of these rules that the results are well-posed;
for example, that dimensions are compatible.

In other words, valid set expressions are reducible to the form

Chapter 7: Disciplined Convex Programming 177

where a , bi, c j are constants, and the quantities Sk are either sets from the
atom library, or intersections and/or Cartesian products of valid set expres-
sions. The functions f j : Rmj + W are functions in the atom library, and their
arguments argj,k are product-free set expressions themselves. As we will see in
$6.3 below, set expressions are more constrained than numerical expressions,
in that the functions f j must be affine.

It is well understood that the intersection of convex sets is convex, as is the
direct product of convex sets; and that unions and set differences generally are
not convex. What may not be clear is why PS8-PS9 are considered "product-
free" rules. By examining these rules in terms of indicator functions, the link
becomes clear. Consider, for example, the problem

minimize ax + by
subject to (x, y) E (SI x S l) U S 2

If : R -, W and $2 : (IR x R) -, W are convex indicator functions for the
sets S1 and S2, respectively, then the problem can be reduced to

and the objective function now violates the product-free rule. What has oc-
curred, of course, is that the union operation became a forbidden product.

6.3 The sign rules

Once the product-free conventions are established, the sum and scaling prin-
ciples of convex analysis can be used to construct a simple set of sufficient
conditions to establish whether or not expressions are convex, concave, or
affine. These conditions form what we call the sign rules, so named because
their consequence is to govern the signs of the quantities cl , . . . , c~ in (33).
We can concisely state the sign rules for numeric expressions in the following
manner.

Sign rules for numeric expressions. Given a product-free expression,
the following must be true of its reduced form (33):
SN1 If the expression is expected to be convex, then each term

cj f j (. . .) must be convex; hence of the following must be true:
f j (a ~ g ~ , ~ , argj,2, . . . , argjjmj) is affine;
f j (~ r g ~ , ~ , argj,2,. . . , argj,m,) is convex and cj 2 0;
f j (argjjl, argjB2, . . . , argj,,,) is concave and cj < 0.

SN2 If the expression is expected to be concave, then each term
cj f j (. . .) must be concave; hence one of the following must be
true:

f j (~ r g ~ , ~ , argjY2, . . . , argj,,,) is affine;
f j (argj,, , argj ,~, . . . , argj,m,) is concave and cj 2 0;
f j (argj,, , ~ r g ~ , ~ , . . . , argj,,,) is convex and cj 5 0.

178 Michael Grant, Stephen Boyd, and Yinyu Ye

SN3 If the expression is expected to be affine, then each function f j
must be affine, as must each of its arguments argjVl, argj,:!, . . . , argj,,j.

SN4 If the expression is expected to be constant, then it must be true
that L = 0 and bl = b2 = . . . = b, = 0.

All function arguments must obey these rules as well, with their ex-
pected curvature dictated by the composition rules (56.4).

For example, suppose that that the expression (34) is expected to be convex,
and that the atom library indicates that the function f (.) is convex, g(. , .) is
concave, and h(., ., .) is convex. Then the sign rule dictates that

af (x) convex ===+ a 2 0 (40)
(l/a)h(x, bg(y,z), c) convex l l a 2 0 (41)

F'unction arguments must obey the sign rule as well, and their curvature is dic-
tated by the composition rules discussed in the next section. So, for example,
if the second argument of h is required to be convex, then

bg(y,z) convex + b < O (42)

It is the responsibility of the modeler to insure that the values of the co-
efficients c l , . . . , CL obey the sign rule; that is, that conditions such as those
generated in (40)-(42) are satisfied. This can be accomplished by adding ap-
propriate assertions to the model; see 58 for an example of this.

There is only one "sign rule" for set expressions:

The sign mle for set expressions. Given a product-free set expression,
the following must be true of its reduced form (37):
SS1 Each function fj, and any functions used in their arguments,

must be affine.

Unlike the product-free rule for numerical expressions, functions involved in
set expressions are required to be affine. To understand why this must be the
case, one must understand how an expression of the form (37) is interpreted.
A simple example should suffice; for the L = 0 case,

When L > 0, similar substitutions are made recursively in the function argu-
ments as well, producing a similar result: a series of simple set membership
constraints of the form t k E Sk, and a single equality constraint. Thus in or-
der to insure that this implied equality constraint is convex, set expressions
(specifically, those used in constraints) must reduce to affine combinations of
sets. (Of course, set expressions used in assertions are not constrained in this
manner.)

Chapter 7: Disciplined Convex Programming 179

6.4 The composition rules

A basic principle of convex analysis is that the composition of a convex func-
tion with an affine mapping remains convex. In fact, under certain conditions,
similar guarantees can be made for compositions with nonlinear mappings
as well. The ruleset incorporates a number of these conditions, and we have
called them the composition rules.

Designing the composition rules required a balance between simplicity
and expressiveness. In [29], a relatively simple composition rule for convex
functions is presented:

Lemma 1. I f f : R -+ (R U +m) is convex and nondecreasing and g : Rn -t
(R U f m) is convex, then h = f o g is convex.

So, for example, if f (y) = eY and g (x) = x 2 , then the conditions of the lemma
are satisfied, and h (x) = f (g (x)) = ex' is convex. Similar composition rules
are given for concave and/or nonincreasing functions as well:

If f : R -+ (R U +m) is convex and nonincreasing and g : Rn -+ (R U -m)
is concave, then f o g is convex.
If f : R -+ (R u -00) is concave and nondecreasing and g : R n -+ (R u -m)
is concave, then f o g is concave.
If f : R -+ (R u -a) is concave and nonincreasing and g : Rn -+ (R u +m)
is convex, then f o g is concave.

In addition, similar rules are described for functions with multiple arguments.
One way to interpret these composition rules is that they only allow those

nonlinear compositions that can be to be separated or decomposed. To ex-
plain, consider a nonlinear inequality f (g (x)) < y, where f is convex and
nondecreasing and g is convex, thus satisfying the conditions of Lemma 1.
Then it can be shown that

Similar decompositions can be constructed for the other composition rules as
well. Decompositions serve as an important component in the conversion of
DCPs into solvable form. Thus the composition rules guarantee that equiva-
lence is reserved when these decompositions are performed.

Now the composition rules suggested by Lemma 1 and its related corol-
laries are a good start. But despite their apparent simplicity, they require a
surprising amount of care to apply. In particular, the use of extended-valued
functions is a necessary part of the lemma and has subtle impact. For example,
consider the functions

Certainly, h (x) = f (g (x)) = 11x11; is convex; but Lemma 1 would not predict
this, because f (y) is not monotonic. A sensible attempt to rectify the problem

f f̄ ¯̄f

Chapter 7: Disciplined Convex Programming 181

f is therefore nondecreasing over this interval; so

f (d e x l -1- (1 - 61x2)) I f (& ? (X I) + (1 - e) g (x 2)) (f nondecreasing)

I O f (d m)) + (1 - e l f (g (x 2)) (f convex)

establishing that h = f o g is convex.
(50)

This lemma does indeed predict the convexity of (45): f is nondecreasing over
the interval [O, +m), and g(Rn) = [O, +m), which coincide perfectly; hence,
f o g is convex.

And yet this revised lemma, while more inclusive, presents its own chal-
lenge. A critical goal for these composition rules is that adherence can be
quickly, reliably, and automatically verified; see 88. The simple composition
rules such as Lemma 1 plainly satisfy this condition; but can we be sure to
accomplish this with these more complex rules? We claim that it is simpler
than it may first appear. Note that our example function f (x) = x2 is non-
decreasing over a half-line; specifically, for all x E [0, +m). This will actually
be true for any nonmonotonic scalar function:

L e m m a 3. Let f : R -+ R U +co be a convex function which is nondecreasing
over some interval F c R , Int F # 0. Then it is, i n fact, nonincreasing over
the entire half-line F = F + [0, + a) ; that is,

Proof. If F already extends to +m, we are done. Otherwise, select any two
points X I , 2 2 E F and a third point x3 > x2. Then

So f (x 3) 2 f (x 2) for all 2 3 > 2 2 . Now consider another point x4 > 23; then,

So f (x 4) 2 f (x 3) for all 2 4 > x3 > x2; that is, f is nondecreasing for all
x > x2 E F .
In other words, any scalar convex function which is nondecreasing between two
points is so over an entire half-line. So determining whether f is nondecreasing
over g (d o m g) reduces to a single comparison between F,i, and inf, g (x) . For
concave or nonincreasing functions, similar intervals can be constructed:

f convex, nonincreasing: F = (-m, Fmax] or F = (-a, Fmax)

182 Michael Grant, Stephen Boyd, and Yinyu Ye

f concave, nondecreasing: F = (-oo, F,,,] or F = (--a, F,,,)
f concave, nonincreasing: F = [Fmi,, +oo) or F = (Fmin, +co)

As we show in 97, it is straightforward to include such intervals in the atom
library, so that they are readily available to verify compositions.

The task of determining inf, g(x) or sup, g(x) remains. In §7, we show
that function ranges are included in the atom library for just this purpose,
alongside information about their curvature and monotonicity properties. But
often the inner expression g(x) is not a simple function call, but an expression
reducible to the form (33):

We propose the following heuristic in such cases. Let Xi C R, i = 1,2, . . . , n,
be simple interval bounds on the variables, retrieved from any simple bounds
present in the model. In addition, let Fj = fj(R) C R, j = 1 ,2 , . . . , L, be the
range bounds retrieved from the atom library. Then

So (55) provides a conservative bound on inf, g(x) or sup, g(x), as needed. In
practice, this heuristic proves sufficient for supporting the composition rules
in nearly all circumstances. In those exceptional circumstances where it the
bound is too conservative, and the heuristic fails to detect a valid composition,
a model may have to be rewritten slightly-say, by manually performing the
decomposition (44) above. It is a small price to pay for added expressiveness
in the vast majority of cases.

Generalizing these composition rules to functions with multiple arguments
is straightforward, but requires a bit of technical care. The result is as follows:

The composition rules. Consider a numerical expression of the form

where f is a function from the atom library. For each argument argk,
construct a bound Gk G R on the range using the heuristic described
above, so that

Given these definitions, (56) must satisfy exactly one of the following
rules:
C1-C3 If the expression is expected to be convex, then f must be

affine or convex, and one of the following must be true for each
k = l , . . . , m :

Chapter 7: Disciplined Convex Programming 183

C1 f is nondecreasing in argument k over G, and argk is convex;
or

C2 f is nonincreasing in argument k over G, and argk is concave;
or

C3 argk is affine.
C4-C6 If the expression is expected to be concave, then f must be

affine or concave, and one of the following must be true for each
k = 1, . . . , m:
C4 f is nondecreasing in argument k over G, and argk is concave;

or
C5 f is nonincreasing in argument k over G, and argk is convex;

or
C6 argk is affine.

C7 If the expression is expected to be affine, then f must be affine,
and each argk is affine for all k = 1 , . . . , m.

7 The atom library

The second component of disciplined convex programming is the atom library.
As a concept, the atom library is relatively simple: an extensible list of func-
tions and sets whose properties of curvature/shape, monotonicity, and range
are known. The description of the convexity ruleset in $6 shows just how this
information is utilized.

As a tangible entity, the atom library requires a bit more explanation. In
cvx, the library is a collection of text files containing descriptions of functions
and sets. Each entry is divided into two sections: the declaration and the
implementation. The declaration is divided further into two components:

the prototype: the name of the function or set, the number and structure
of its inputs, and so forth.

0 the attribute list: a list of descriptive statements concerning the curvature,
monotonicity, and range of the function; or the shape of the set.

The implementation is a computer-friendly description of the function or set
that enables it to be used in numerical solution algorithms. What is impor-
tant to note here is that the implementation section is not used to determine
whether or not a particular problem is a DCP. Instead, it comes into play only
after a DCP has been verified, and one wishes to compute a numerical solu-
tion. For this reason, we will postpone the description of the implementation
until §lo.

7.1 The prototype

A function prototype models the usage syntax for that function, and in the
process lists the number and dimensions of its arguments; e.g.,

184 Michael Grant, Stephen Boyd, and Yinyu Ye

Some functions are parameterized; e.g., hp(x) = llxllp. In CVX, parameters are
included in the argument list along with the arguments; e.g.,

funct ion norm-p(p , x [nl) convex(x) i f p >= 1 ;
hP(X) = llxllp (P 2 1)

(60)

Parameters are then distinguished from variables through the curvature at-
tribute; see $7.2 below.

The norm-p example also illustrates another feature of cvx, which is to
allow conditions to be placed on the a function's parameters using an i f
construct. In order to use a function with preconditions, they must be enforced
somehow; if necessary, by using an assertion. For example, norm-p (2.5, x)
would be verified as valid; but if b is a parameter, norm-p (b , x) would not
be, unless the value of b could somehow be guaranteed to be greater than 1;
for example, unless an assertion like b > 1 was provided in the model.

Set prototypes look identical to that of functions:

s e t i n t ege r s (x) ; A = Z = { . . . , -2,- l ,0 ,1,2 , . . . I (61)

s e t s i m p l e x (x [n]) ; B = { x E R ~ I x L O , C ~ X ~ = ~) (62)

s e t less- than(x , y) ; C = { (X , ~) E R X R 1 x < y) (63)

Unlike functions, the actual usage of a set differs from its prototype-the
arguments are in fact the components of the set, and therefore appear to the
left of a set membership expression: e.g.,

x i n i n t ege r s ;

y i n simplex;

(x,y) i n less- than;

For parameterized sets, there is yet another difference: the parameters are
supplied in a separate parameter list, preceding the argument list: e.g.,

This parameter list remains on the right-hand side of the constraint along
with the name of the set:

7.2 Attributes

As we have seen in $6, the convexity ruleset depends upon one or more of the
following pieces of information about each function and set utilized in a DCP.
For sets, it utilizes just one piece of information:

Chapter 7: Disciplined Convex Programming 185

shape: specifically, whether or not the set is convex.

For functions, a bit more information is used:

curvature: whether the function is convex, concave, affine, or otherwise.
monotonicity: whether the functions are nonincreasing or nondecreasing;
and over what subsets of their domain they are so.
range: the minimum of convex functions and the maximum of concave
functions.

The cvx framework allows this information to be provided through the use
of attributes: simple text tags that allow each of the above properties to be
identified as appropriate.

Shape

For sets, only one attribute is recognized: convex. A set is either convex, in
which case this attribute is applied, or it is not. Given the above four examples,
only integers is not convex:

set integers(x) ; (69)
set simplex(x[n]) convex; (70)

set less-than(x, y) convex; (71)
set ball-p(p) (x[nl) convex if p >= 1; (72)

Sets which are not convex are obviously of primary interest for DCP, but non-
convex sets may be genuinely useful, for example, for restricting the values of
parameters to realistic values.

Curvature

Functions can be declared as convex, concave, or affine, or none of the
above. Clearly, this last option is the least useful; but such functions can
be used in constant expressions or assertions. No more than one curvature
keyword can be supplied. For example:

function max(x, y) convex; d x , Y) = max{x, Y) (73)
function min(x, y) concave; f (x, Y) = minix, Y) (74)
function plus(x, y) affine; P(X, Y) = X + Y (75)
function sin(x) ; g(x) = sin x (76)

By default, a function declared as convex, concave, or affine is assumed to be
jointly so over all of its arguments. It is possible to specify that it is so only
over a subset of its arguments by listing those arguments after the curvature
keyword; for example,

186 Michael Grant, Stephen Boyd, and Yinyu Ye

func t ion norm-p(p , x [nl) convex(x) i f p >= 1 ;

hP(4 = IIxllp (P 2 1)
(77)

In effect, this convention allows parameterized functions to be declared: ar-
guments omitted from the list are treated as the parameters of the function
and are expected to be constant.

Disciplined convex programming allows only functions which are globally
convex or concave to be specified as such. Functions which are "sometimes"
convex or concave-that is, over a subset of their domains-are not permitted.
For example, the simple inverse function

f : R -+ R, f (x) A 1/x (x # 0) (78)

is neither convex nor concave, and so cannot be used to construct a DCP.
However, we commonly think of f as convex if x is known to be positive.
In disciplined convex programming, this understanding must be realized by
defining a different function

which is globally convex, and can therefore be used in DCPs. Similarly, the
power function

g : lR2 -+ R, g(x, y) xY (when defined) (80)

is convex or concave on certain subsets of R2, such as:

0 convex for x E [co) and fixed y E
0 concave for x E gb, m) an fixed y E
0 convex for fixed x E (0, co!) and y E

In order to introduce nonlinearities such as x2.5 or x0.25 into a DCP, then,
there must be appropriate definitions of these "restricted" versions of the
power function:

Thus the disciplined convex programming approach forces the user to consider
convexity more carefully. We consider this added rigor an advantage, not a
liability.

Chapter 7: Disciplined Convex Programming 187

Monotonicity

The monotonicity of a function with respect to its arguments proves to be
a key property exploited by the ruleset. For this reason, the cvx atom li-
brary provides the keywords increasing, nondecreasing, nonincreasing,
or decreasing in each of its arguments. Each argument can be given a sepa-
rate declaration:

function exp(x) convex increasing; f (x) = ex (84)

As far as the convexity ruleset is concerned, strict monotonicity is irrelevant;
so, for example, increasing and nondecreasing are effectively synonymous,
as are decreasing and nonincreasing.

There is one somewhat technical but critical detail that must be adhered
to when declaring a function to be monotonic. Specifically, monotonicity must
be judged in the extended-valued sense. For example, given p 2 1, the function

function pow-p(p, x) XP x > O
convex(x) if p >= I; (85)

is increasing (and, therefore, nondecreasing) over its domain. However, in the
extended-valued sense, the function is nonmonotonic, so fp cannot be declared
as globally nondecreasing.

As suggested in $6.4, the cvx atom library allows conditions to be placed
on monotonicity. So, for example, fp(x) is, of course, nondecreasing over x E
[0, +oo), suggesting the following declaration:

function pow-p(p, x) convex(x) if p >= 1,
increasing(x) if x >= 0; (86)

Multiple declarations are possible: for example, the function f (x) = x2 is both
nonincreasing over x E (-oo, 01 and nondecreasing over x E [0, +m):

function sq(x) convex, decreasing if x <= 0,
increasing(x) if x >= 0; (87)

Each argument of a function with multiple inputs can be given a sepa-
rate, independent monotonicity declaration. For example, f (x, y) = x - y is
increasing in x and decreasing in y:

function minus(x, y)
affine increasing(x) decreasing(y) ; (88)

Range

Each function definition can include a declaration of its its range, using a sim-
ple inequality providing a lower or upper bound for the function. For example,

188 Michael Grant, Stephen Boyd, and Yinyu Ye

funct ion exp(x) convex, increas ing , >= 0; f (x) = ex (89)

As with the monotonicity operations, the range must indeed be specified in the
extended-valued sense, so it will inevitably be one-sided: that is, all convex
functions are unbounded above, and all concave functions are unbounded
below.

8 Verification

In order to solve a problem as a DCP, one must first establish that it is indeed
a valid DCP-that is, that it involves only functions and sets present in the
atom library, and combines them in a manner compliant with the complexity
ruleset. A proof of validity is necessarily hierarchical in nature, reflecting the
structure of the problem and its expressions. To illustrate the process, consider
the simple optimization problem

minimize cx
subject to exp(y) I log(afi + b) (90)

ax + by = d

where a , b, c, d are parameters, and x, y are variables. A cvx version of this
model is given in Figure 5. Note in particular the explicit declarations of the
three atoms exp, log , and s q r t . Usually these declarations will reside in an
external file, but we include them here to emphasize that every atom used in
a model must be accounted for in the atom library.

minimize c x;
subject to exp(y) <= log(a sqrt(x) + b) ;

a x + b y = d ;
variables x, y;
parameters a, b, c, d;
function exp(x) convex increasing >= 0;
function sqrt(x) concave nondecreasing;
function log(x) concave increasing;

Fig. 5. The cvx specification for (90).

It is helpful to divide the proof into two stages. The first stage verifies that
each of expressions involved is product-free. Below is a textual description of
this stage. Each line has been indented to represent the hierarchy present in
the proof, and includes the rule employed to establish that line of the proof:

cx is product-free, because (PN6)
c is a constant expression(T8)
x is product-free (PN1)

Chapter 7: Disciplined Convex Programming 189

exp(y) is product-free, because (PN3)
y is product-free (PN2)

log(afi + b) is product-free, because (PN3)
a f i + b is product-free, because (PN4)

a f i is product-free, because (PN6)
a is a constant expression (PN2)
fi is product-free, because (PN3)

x is product-free (PN2)
b is product-free (PN2,T8)

ax + by is product-free, because(PN4)
ax is product-free, because (PN6)

a is a constant expression (T8)
x is product-free (PN1)

by is product-free, because (PN6)
b is a constant expression (T8)
y is product-free (PN1)

d is product-free (PN2)

The second stage proceeds by verifying that the top-level, sign, and composi-
tion rules in a similarly hierarchical fashion:

The minimization problem is valid if a 2 0, because (T l)
The objective function is valid, because (T I)

cx is convex (SN1)
The first constraint is valid if a > 0, because (T I)

exp(y) 5 log(a& + b) is convex if a 2 0, because (T5)
exp(y) is convex, because (SN1)

exp(y) is convex, because (C l)
exp(.) is convex and nondecreasing (atom library)
y is convex (SN1)

log(afi + b) is concave if a 2 0, because (SN2)
log(afi + b) is concave if a 2 0, because (C4)

log(.) is concave and nondecreasing (atom library)
a f i + b is concave if a 2 0, because (SN2)

fi is concave, because (C4)
J is concave and nondecreasing (atom

library)
x is concave (SN2)

The second constraint is valid, because (T I)
ax + by = d is convex, because (T4)

ax + by is affine (SN3)
d is affine (SN3)

It can be quite helpful to examine the structure of the problem and its validity
proof graphically. Figure 6 presents an expression tree of the problem (go),
annotated with the relevant rules verified at each position in the tree.

The verification process is guaranteed to yield one of three conclusions:

190 Michael Grant, Stephen Boyd, and Yinyu Ye

PNP PNP PN1 PNP PN1 6
PNl

Fig. 6. An expression tree for (go), annotated with applicable convexity rules.

valid: the rules are fully satisfied.
conditionally valid: the rules will be fully satisfied if one or more additional
preconditions on the parameters are satisfied.
invalid: one or more of the convexity rules has been violated.

In this case, a conclusion of conditionally valid has been reached: the anal-
ysis has revealed that an additional condition a > 0 must satisfied. If this
precondition were somehow assured, then the proof would have conclusively
determined that the problem is a valid DCP. One simple way to accomplish
this would be to add it as an assertion; i.e., by adding the assertion a >= 0
to the list of constraints. If, on the other hand, we were to do the opposite
and add an assertion a < 0, the sign rule SN2 would be violated; in fact, the
expression a f i + b would be verifiably convex.

The task of verifying DCPs comprises yet another approach to the chal-
lenge of automatic convexity verification described in $3.5. Like the methods
used to verify LPs and SDPs, a certain amount of structure is assumed via the
convexity rules that enables the verification process to proceed in a reliable
and deterministic fashion. However, unlike these more limited methods, dis-
ciplined convex programming maintains generality by allowing new functions
and sets to be added to the atom library. Thus disciplined convex program-
ming provides a sort of lcnowledgebase environment for convex programming,
in which human-supplied information about functions and sets is used to ex-
pand the body of problems that can be recognized as convex.

Chapter 7: Disciplined Convex Programming 191

9 Creating disciplined convex programs

As mentioned previously, adherence to the convexity ruleset is sufficient but
not necessary to insure convexity. It is possible to construct mathematical
programs that are indeed convex, but which fail to be DCPs, because one or
more of the expressions involved violates the convexity ruleset.

It is actually quite simple to construct examples of such violations. For
example, consider the entropy maximization problem

maximize - EL1 Xi log Xi
subject to A x = b

l T x = l (91)

where x E Rn is the problem variable and A E RmXn and b E Rm are
parameters; and log(.) is defined in the atom library. The expression xi log xi
violates the product-free rule PS6-and as a result, (91) is not a DCP, even
though it is a well-known CP.

Alternatively, consider the GP in convex form,

where x E Rn is the problem variable,

are parameters; and both log(-) and exp(.) are defined in the atom library.
This problem satisfies the product-free rules, but the objective function and
inequality constraints fail either the sign rule SN1 or composition rule C4,
depending on how you verify them. But of course, (92) is a CP.

It is important to note that these violations do not mean that the problems
cannot solved in the disciplined convex programming framework; it simply
means that they must be rewritten in a compliant manner. In both of these
cases, the simplest way to do so is to add new functions to the atom library
that encapsulate the offending nonlinearities. By adding the two functions

to the atom library, both problems can be rewritten as valid DCPs; (91) as

192 Michael Grant, Stephen Boyd, and Yinyu Ye

maximize EL1 fentr(xi)
subject to Ax = b

l T x = l
x 2 0

and the GP (92) as

minimize flSe (A(O)x + b(O))
subject to f~, , (A(~)x + b(i)) I 0, i = 1 ,2 , . . . , m

A(m+lIX + b(m+l) = 0
(96)

The ability to extend the atom library as needed has the potential to be
taken to an inelegant extreme. For example, consider the problem

minimize fo (x)
subject to fm(x) 1 0, k = 1,2, . . . , m (97)

where the functions fo, f l , . . . , fm are all convex. One way to cast this problem
as a DCP would simply be to add all m + 1 of the functions to the atom
library. The convexity rules would then be satisfied rather trivially; and yet
this would likely require more, not less, effort than a more traditional NLP
modeling method. In practice, however, the functions f k are rarely monolithic,
opaque objects. Rather, they will be constructed from components such as
affine forms, norms, and other known functions, combined in ways consistent
with the basic principles of convex analysis, as captured in the convexity
ruleset. It is those functions that are ideal candidates for addition into the
atom library.

We should add that once an atom is defined and implemented, it can be
freely reused across many DCPs. The atoms can be shared with other users as
well. The effort involved in adding a new function to the atom library, then,
is significantly amortized. A collaborative hierarchy is naturally suggested,
wherein more advanced users can create new atoms for application-specific
purposes, while novice users can take them and employ them in their models
without regard for how they were constructed.

We argue, therefore, that (91) and (92) are ideal examples of the kinds of
problems that disciplined convex programming is intended to support, so that
the convexity ruleset poses little practical burden in these cases. While it is
true that the term -xi log xi violates the product-free rules, someone inter-
ested in entropy maximization does not consider this expression as a product
of nonlinearities but rather as a single, encapsulated nonlinearity-as repre-
sented by the function fexp,. In a similar manner, those studying geometric
programming treat the function fexpr(y) = log C exp(yi) as a monolithic con-
vex function; it is irrelevant that it happens to be the composition of a concave
function and a convex function. Thus the addition of these functions to the
atom library coincides with the intuitive understanding of the problems that
employ them.

Chapter 7: Disciplined Convex Programming 193

Still, the purity of the convexity rules prevent even the use of obviously
convex quadratic forms such as x2 + 2xy + y2 in a model. It could be argued
that this is impractically restrictive, since quadratic forms are so common.
And indeed, we are considering extending the relaxation of the product-free
rules to include quadratic forms. However, in many cases, a generic quadratic
form may in fact represent a quantity with more structure or meaning. For
example, traditionally, the square of a Euclidean norm [[Ax + blli would be
converted to a quadratic form

But within a DCP, this term can instead be expressed as a composition

In disciplined convex programming, there is no natural bias against (99), so it
should be preferred over the converted form (98) simply because it reflects the
original intent of the problem. So we argue that support for generic quadratic
forms would be at least somewhat less useful than in a more traditional mod-
eling framework. F'urthermore, we can easily support quadratic forms with
the judicious addition of functions to the atom library, such as the function
f (y) = Y2 above, or a more complex quadratic form such as

Thus support for quadratic forms is a matter of convenience, not necessity.

10 Implementing atoms

As enumerated in 53.2, there are a variety of methods that can be employed to
solve CPs: primalldual methods, barrier methods, cutting-plane methods, and
so forth. All of these methods can be adapted to disciplined convex program-
ming with minimal effort. Limited space prohibits us from examining these
methods in detail; please see [74] for a more thorough treatment of the topic.
It is sufficient here to say this: that each of these methods will need to perform
certain computations involving each of the atoms, each of the functions and
sets, employed in the problems they solve. The purpose of the implementation
of an atom, first introduced in 57 above, is to provide these solvers with the
means to perform these calculations.

Disciplined convex programming and the cvx modeling framework distin-
guish between two different types of implementations:

a simple implementation, which provides traditional calculations such as
derivatives, subgradients and supergradients for functions; and indicator
functions, barrier functions, and cutting planes for sets; and

194 Michael Grant, Stephen Boyd, and Yinyu Ye

0 a graph implementation, in which the function or set is defined as the
solution to another DCP.

The computations supported by simple implementations should be quite fa-
miliar to anyone who studies the numerical solution of optimization problems.
To the best of our knowledge, however, the concept of graph implementations
is new, and proves to be an important part of the power and expressiveness
of disciplined convex programming.

In cvx, an implementation is surrounded by curly braces, and consists of
a list of key/value pairs with the syntax key := value. See Figures 7 and 8
for examples. It is also possible for an implementation to be constructed in a
lower-level language like C, but we will not consider that feature here.

10.1 Simple implementations

Any continuous function can have a simple implementation. Simple function
implementations use the following key : = value entries:

0 value: the value of the function.
domain-point: a point on the interior of the domain of the function. If
omitted, then the origin is assumed to be in the domain of the function.

0 For differentiable functions:
- gradient : the first derivative.
- Hessian (if twice differentiable): the second derivative.
For nondifferentiable functions:
- subgradient (if convex): a subgradient of a function f a t point x E

dom f is any vector v E Rn satisfying

- supergradient (if concave): a supergradient of a function g at point
x E domg is any vector v E Rn satisfying

It is not difficult to see how different algorithms might utilize this informa-
tion. Most every method would use value and domain-point, for example.
A smooth CP method would depend on the entries gradient and Hessian to
calculate Newton search directions. A localization method would use the en-
tries gradient , subgradient, and supergradient to compute cutting planes.

Any set with a non-empty interior can have a simple implementation.
Simple set implementations use the following key : = value entries:

0 in te r ior -poin t : a point on the interior of the set.
0 ind ica tor : an expression that is 0 for points inside the set, and +oo for

points outside the set.
0 At least one, but ideally both, of the following:

Chapter 7: Disciplined Convex Programming 195

- barrier: a reference to a convex, twice differentiable barrier function
for the set, declared separately as a function atom with a direct imple-
mentation.

- oracle: a cutting plane oracle for the set. Given a set S c Rn, the
cutting plane oracle accepts as input a point x E Rn; and, if x @ S ,
returns a separating hyperplane; that is, a pair (a, b) E Rn x R satisfying

If x E S , then the oracle returns (a, b) = (0,O).

function min(x, y) concave, nondecreasing {
value := x < y ? x : y;
supergradient := x < y ? (1, 0) : (0, 1) ;

3
set pos(x) convex (

interior-point := 1.0;
indicator := x < 0 ? +Inf : 0;
oracle : = x < O ? (1, 0) : (0, 0) ;
barrier := neglog(x) ;

3
function neglog(x) convex {

domain-point : = 1.0 ;
value := x <= 0 ? +Inf : - log(x) ;
gradient := - 1 / x;
Hessian := 1 / x-2;

3

Fig. 7. Simple implementations.

Figure 7 presents several examples of simple implementations. Again, we do
not wish to document the cvx syntax here, only illustrate key the feasibility of
this approach. Note that the set pos has been given both a barrier function and
a cutting plane generator, allowing it to be used in both types of algorithms.

10.2 Graph implementations

A fundamental principle in convex analysis is the very close relationship be-
tween convex and concave functions and convex sets. A function f : Rn +
R U +m is convex if and only if its epigraph

is a convex set. Likewise, a function g : Rn -+ R U +m is concave if and only
if its hypograph

196 Michael Grant, Stephen Boyd, and Yinyu Ye

is a convex set. These relationships can be expressed in reverse fashion as well:

A graph implementation of a function is effectively a representation of the
epigraph or hypograph of a function, as appropriate, as a disciplined con-
vex feasibility problem. The cvx framework supports this approach using the
following key : = value pairs:

epigraph (if convex): the epigraph of the function.
0 hypograph (if concave): the hypograph of the function.

A simple example is the absolute value function f (x) = 1x1. The epigraph of
this function is

In Figure 8, we show how this epigraph is represented in cvx. Notice that the

function abs(x) convex, >= 0 1
value := x < 0 ? -x : x;
epigraph := -abs <= x <= +abs; 1

1
function min(x, y) concave, nondecreasing 1

value := x < y ? x : y;
supergradient := x < y ? (1, 0) : (0, 1) ;

hypograph := { min <= x; min <= y; >
1
function entropy(x) concave {

value := x < O ? -1nf : x = O ? 0 : - x log(x) ;

hypograph := { (x, y) in hypo-entropy; 1
>
set simplex(x[n]) convex {

constraints := sum(x) = 1; x >= 0; 1
1

Fig. 8. Graph implementations.

name of the function, abs is used to represent the epigraph variable.
The primary benefit of graph implementations is that they provide an

elegant means to define nondifferentiable functions. The absolute value func-
tion above is one such example; another is the two-argument minimum
g(x, y) = min{x, y). This function is concave, and its hypograph is

Chapter 7: Disciplined Convex Programming 197

Figure 8 shows how the function min represents this hypograph in cvx. Notice
that this function has a simple implementation as well-allowing the under-
lying solver to decide which it prefers to use. Of course, both abs and min
are rather simple, but far more complex functions are possible. For example,
graph implementations can be constructed for each of the norms examined in
$2.

More subtle but important instances of nondifferentiability occur in func-
tions that are discontinuous at the boundaries of their domains. These func-
tions require special care as well, and graph implementations provide that.
For example, consider the scalar entropy function

This function is smooth over the positive interval, but it is discontinuous at the
origin, and its derivative is unbounded near the origin. Both of these features
cause problems for some numerical methods [93]. Using the hypograph

can solve these problems. In Figure 8, we show the definition of a function
entropy that refers to a set hypo-entropy representing this hypograph. We
have chosen to omit the implementation of this set here, but it would certainly
contain a definition of the barrier function

[118], as well as an oracle to compute cutting planes alx + any 5 b, where

Graph implementations can also be used to unify traditional, inequality-
based nonlinear programming with conic programming. For example, consider
the maximum singular value function

This function is convex, and in theory could be used in a disciplined convex
programming framework. The epigraph of f is

198 Michael Grant, Stephen Boyd, and Yinyu Ye

where S;): is the set of positive semidefinite matrices. For someone who is famil-
iar with semidefinite programming, (115) is likely quite familiar. By burying
this construct within the implementation in the atom library, however, it en-
ables people who are not comfortable with semidefinite programming to take
advantage of its benefits in a traditional NLP-style problem.

Graph implementations are possible for sets as well, through the use of a
a single key : = value pair:

cons t ra in ts : a list of constraints representing the set.

What this means is that a set can be described in terms of a disciplined
convex feasibility problem. There are several reasons why this might be used.
For example, graph implementations can be used to represent sets with non-
empty interiors, such as the set of n-element probability distribution~

A cvx version of this set is given in Figure 8. Graph implementations can
also be used to represent sets using a sequence of smooth inequalities so that
smooth CP solvers can support them. For example, the second-order cone

can be represented by smooth inequalities as follows:

10.3 Using graph implementations

To solve a DCP involving functions or sets with graph implementations, those
transformations must be applied through a process we call graph expansion, in
which the DCP that describes a given atom is incorporated into the problem.
To illustrate what this entails, consider the problem

maximize min{cTx + dl , c r x + d2)
subject to Ax = b (119)

x 2 0

employing the function min{., a) . The hypograph of this function, presented
in (109) above, allows this problem to be rewritten as

maximize sup { y I y I cTx + d l , y < cTx + d2)
subject to Ax = b (120)

x 2 0

Chapter 7: Disciplined Convex Programming 199

Incorporating the variable y into the model itself yields expanded result

maximize y
subject to y < cTx + dl

y < cTx + dz (121)
Ax = b
x r o

It is not difficult to see that this problem is equivalent to the original, and yet
now it is a simple LP.

Thus, as stated in $2.3, cvx allows the transformations required to convert
DCPs into solvable form to be encapsulated-and graph implementations are
how this is accomplished. Indeed, consider once again the l,, l l , l,, and
largest-L minimization problems described in $2. The transformations used
to solve those problems in that section are, in fact, the very transformations
that cvx would use to solve them as well (or a t least, very nearly so).

Because graph implementations are expanded before a numerical algo-
rithm is deployed, they require no adjustment on the part of those algorithms
to support them. Thus graph implementations are algorithm agnostic: any
algorithm which can successfully support simply implemented functions and
sets-by computing derivatives, sub/supergradients, barrier functions, etc.-
can solve problems with functions and sets with graph implementations as
well. Put another way, algorithms which previously could not support nondif-
ferentiable functions are enabled to do so through cvx.

The concept of graph implementations is based on relatively basic princi-
ples of convex analysis; and yet, an applications-oriented user-someone who
is not expert in convex optimization-is not likely to be constructing new
atoms with graph implementations. Indeed they are not likely to be construct-
ing new simple implementations either. Thankfully, they do not need to build
them to use them. The implementations themselves can be built by those with
more expertise in such details, and shared with applications-oriented users.
As the development of the cvx framework continues, the authors will build a
library of common and useful functions; and we hope that others will do so
and share them with the community of users.

11 Conclusion

In this article, we have introduced a new methodology for convex optimiza-
tion called disciplined convex programming. Disciplined convex programming
simplifies the specification, analysis, and solution of convex programs by im-
posing certain restrictions on their construction. These restrictions are simple
and teachable; they are inspired by the basic principles of convex analysis; and
they formalize the intuitive practices of many who use convex optimization to-
day. Despite the restrictions, generality is preserved through the expandability
of the atom library.

200 Michael Grant, Stephen Boyd, and Yinyu Ye

We have enumerated a number of the benefits that disciplined convex pro-
graming obtains for practical convex optimization. Verifying that a model
is a valid DCP is a straightforward and reliable process. Nondifferentiable
functions may be freely employed without fear of sacrificing numerical per-
formance. And while we did not explore in detail how DCPs are solved, we
did discussed how the implementation of functions and sets enables a variety
of numerical methods to be used-methods whose performance and reliabil-
ity are well-known. We refer the reader to 1741 for more development on this
topic.

An overarching goal of the development of disciplined convex program-
ming is unz,fication. There are no less than seven standard forms for convex
programming being studied and used today: LS, LP, QP, SDP, SOCP, GP,
and smooth CP. Deciding which form best suits a given application is not
always obvious; and for many problems, a custom solver is the only appropri-
ate choice. Unification allows modelers to freely consider all of these problem
types simultaneously-because they need not think of them as separate types
a t all.

The principles of disciplined convex programming have been implemented
in the cvx modeling framework. The current version employs a simple barrier
solver, but we intend to develop a more powerful solver in the future, and
we hope to convince other developers to provide a link to cvx for their own
solvers. We will be disseminating cvx freely with BSD-like licensing, and it is
our hope that it will be used widely in coursework, research, and applications.

The reader is invited to visit the Web site h t t p : //www. s tanford . edu/
-boyd/cvx to monitor the development of cvx, to download the latest ver-
sions, and to read the accompanying documentation.

References

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users' Guide. SIAM, 1992.

2. W. Achtziger, M. Bendsoe, A. Ben-Tal, and J. Zowe. Equivalent displacement
based formulations for maximum strength truss topology design. Impact of
Computing in Science and Engineering, 4(4):315-45, December 1992.

3. M. Avriel, R. Dembo, and U. Passy. Solution of generalized geometric pro-
grams. International Journal for Numerical Methods in Engineering, 9:149-
168, 1975.

4. M. Abdi, H. El Nahas, A. Jard, and E. Moulines. Semidefinite positive relax-
ation of the maximum-likelihood criterion applied to multiuser detection in a
CDMA context. IEEE Signal Processing Letters, 9(6):165-167, June 2002.

5. F. Alizadeh. Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5(1):13-
51, February 1995.

Chapter 7: Disciplined Convex Programming 201

6. B. Alkire and L. Vandenberghe. Convex optimization problems involving finite
autocorrelation sequences. Mathematical Programming, Series A, 93:331-359,
2002.

7. E. Andersen and Y. Ye. On a homogeneous algorithm for the monotone com-
plementarity problem. Mathematical Programming, 84:375-400, 1999.

8. S. Boyd and C. Barratt. Linear Controller Design: Limits of Performance.
Prentice-Hall, 1991.

9. M. Bendsoe, A. Ben-Tal, and J. Zowe. Optimization methods for truss geom-
etry and topology design. Structural Optimization, 7:141-159, 1994.

10. C. Bischof, A. Carle, G. Corliss, A. Grienwank, and P. Hovland. ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming,
pages 1-29, December 1991.

11. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequal-
ities i n System and Control Theory. SIAM, 1994.

12. S. Benson. DSDP 4.5: A daul scaling algorithm for semidefinite programming.
Web site: h t t p : //www-mix .mcs . an1 . gov/"benson/dsdp/, March 2002.

13. D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 1995.

14. R. Byrd, N. Gould, J. Norcedal, and R. Waltz. An active-set algorithm for
nonlinear programming using linear programming and equality constrained
subproblems. Technical Report OTC 2002/4, Optimization Technology Center,
Northwestern University, October 2002.

15. 0. Bahn, J. Goffin, J. Vial, and 0. Du Merle. Implementation and behavior
of an interior point cutting plane algorithm for convex programming: An ap-
plication to geometric programming. Working Paper, University of Geneva,
Geneva, Switzerland, 1991.

16. S. Boyd, M. Hershenson, and T. Lee. Optimal analog circuit design via geomet-
ric programming, 1997. Preliminary Patent Filing, Stanford Docket S97-122.

17. R. Banavar and A. Kalele. A mixed norm performance measure for the design
of multirate filterbanks. IEEE Transactions on Signal Processing, 49(2):354-
359, February 2001.

18. A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS: A User's Guide.
The Scientific Press, South San Francisco, 1998. Web site: http: //www . gams .
com/docs/gams/GAMSUsersGuide.pdf.

19. J. Borwein and A. Lewis. Duality relationships for entropy-like minimization
problems. SIAM J. Control and Optimization, 29(2):325-338, March 1991.

20. D. Bertsimas and J. Nino-Mora. Optimization of multiclass queuing networks
with changeover times via the achievable region approach: part ii, the multi-
station case. Mathematics of Operations Research, 24(2), May 1999.

21. D. Bertsekas, A. Nedic, and A. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, Nashua, New Hampshire, 2004.

22. B. Borchers. CDSP, a C library for semidefinite programming. Optimization
Methods and Software, 11:613-623, 1999.

23. A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology design.
SIAM J. Optim., 13(2), 1993.

24. A. Ben-Tal, M. Kocvara, A. Nemirovski, and J. Zowe. Free material optimiza-
tion via semidefinite programming: the multiload case with contact conditions.
SIAM Review, 42(4):695-715, 2000.

202 Michael Grant, Stephen Boyd, and Yinyu Ye

25. A. Ben-Tal and A. Nemirovski. Interior point polynomial time method for
truss topology design. SIAM Journal on Optimization, 4(3):596-612, August
1994.

26. A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite
programming. SIAM J. Optim., 7(4):991-1016, 1997.

27. A. Ben-Tal and A. Nemirovski. Structural design via semidefinite program-
ming. In Handbook on Semidefinite Programming, pages 443-467. Kluwer,
Boston, 2000.

28. S. Boyd and L. Vandenberghe. Semidefinite programming relaxations of non-
convex problems in control and combinatorial optimization. In A. Paulraj,
V. Roychowdhuri, , and C. Schaper, editors, Communications, Computation,
Control and Signal Processing: a Tribute to Thomas Kailath, chapter 15, pages
279-288. Kluwer Academic Publishers, 1997.

29. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

30. P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor
network localization. Technical report, Stanford University, April 2004. Web
site: http://www.stanford.edu/-yyye/adhocn4.pdf.

31. A. Conn, N. Gould, D. Orban, and Ph. Toint. A primal-dual trust-region
algorithm for non-convex nonlinear programming. Mathematical Programming,
87:215-249, 2000.

32. A. Conn, N. Gould, and Ph. Toint. LANCELOT: a Fortran Package for Large-
Scale Nonlinear Optimization (Release A), volume 17 of Springer Series i n
Computational Mathematics. Springer Verlag, 1992.

33. A. Conn, N. Gould, and Ph. Toint. Trust-Region Methods. Series on Optimiza-
tion. SIAM/MPS, Philadelphia, 2000.

34. J. Chinneck. MProbe 5.0 (software package). Web site: http : //www . sce .
carleton. ca/f aculty/chinneck/mprobe . html, December 2003.

35. G. Calafiore and M. Indri. Robust calibration and control of robotic manipu-
lators. In American Control Conference, pages 2003-2007, 2000.

36. C. Crusius. A parser/solver for convex optimization problems. PhD thesis,
Stanford University, 2002.

37. T . Terlaky C. Roos and J.-Ph. Vial. Interior Point Approach to Linear Opti-
mization: Theory and Algorithms. John Wiley & Sons, New York, NY, 1997.

38. G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

39. J. Dawson, S. Boyd, M. Hershenson, and T. Lee. Optimal allocation of local
feedback in multistage amplifiers via geometric programming. IEEE Journal
of Circuits and Systems I, 48(1):1-11, January 2001.

40. M. Dahleh and I. Diaz-Bobillo. Control of Uncertain Systems. A Linear Pro-
gramming Approach. Prentice Hall, 1995.

41. S. Dirkse and M. Ferris. The PATH solver: A non-monotone stabilzation
scheme for mixed complementarity problems. Optimization Methods and Soft-
ware, 5:123-156, 1995.

42. Y. Doids, V. Guruswami, and S. Khanna. The 2-catalog segmentation problem.
In Proceedings of SODA, pages 378-380, 1999.

43. T. Davidson, Z. Luo, and K. Wong. Design of orthogonal pulse shapes for
communications via semidefinite programming. IEEE Transactions on Com-
munications, 48(5):1433-1445, May 2000.

Chapter 7: Disciplined Convex Programming 203

44. G. Dullerud and F. Paganini. A Course i n Robust Control Theory, volume 36
of Texts in Applied Mathematics. Springer-Verlag, 2000.

45. C. de Souza, R. Palhares, and P. Peres. Robust H , filter design for uncertain
linear systems with multiple time-varying state delays. IEEE Transactions on
Signal Processing, 49(3):569-575, March 2001.

46. A. Doherty, P. Parrilo, and F. Spedalieri. Distinguishing separable and entan-
gled states. Physical Review Letters, 88(18), 2002.

47. B. Dumitrescu, I. Tabus, and P. Stoica. On the parameterization of positive
real sequences and MA parameter estimation. IEEE Transactions on Signal
Processing, 49(11):2630-2639, November 2001.

48. R. Dufin. Linearizing geometric programs. SIAM Review, 12:211-227, 1970.
49. C. Du, L. Xie, and Y. Soh. H , filtering of 2-D discrete systems. IEEE

Transactions on Signal Processing, 48(6): 1760-1768, June 2000.
50. H. Du, L. Xie, and Y. Soh. H , reduced-order approximation of 2-D digital

filters. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 48(6):688-698, June 2001.

51. Laurent El Ghaoui, Jean-Luc Commeau, Francois Delebecque, and Ramine
Nikoukhah. LMITOOL 2.1 (software package). Web site: h t t p : / / robot ics .
eecs.berkeley.edu/"elghaoui/lmitool/lmitool.html, March 1999.

52. J . Ecker. Geometric programming: methods, computations and applications.
SIAM Rev., 22(3):338-362, 1980.

53. J.-P. A. Haeberly F. Alizadeh and M. Overton. Primal-dual interior-point
methods for semidefinite programming: Convergence rates, stability and nu-
merical results. SIAM J. Optimization, 8:46-76, 1998.

54. M. Fu, C. de Souza, and Z. Luo. Finite-horizon robust Kalman filter design.
IEEE Transactions on Signal Processing, 49(9):2103-2112, September 2001.

55. U. Feige and M. Goemans. Approximating the value of two prover proof sys-
tems, with applications to max 2sat and max dicut. In Proceedings of the 3nd
Israel Symposium on Theory and Computing Systems, pages 182-189, 1995.

56. R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press, December 1999.

57. A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut
and rnax bisection. Algorithmica, 18:67-81, 1997.

58. K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SDPA (Semi-Definite
Programming Algorithm) user's manual-version 6.00. Technical report, Tokyo
Insitute of Technology, July 2002.

59. U. Feige and M. Langberg. Approximation algorithms for maximization prob-
lems arising in graph partitioning. Journal of Algorithms, 41: 174-21 1, 2001.

60. U. Feige and M. Langberg. The rpr2 rounding technique for semidefinte pro-
grams. In ICALP, Lecture Notes in Computer Science. Springer, Berlin, 2001.

61. R. Fourer. Nonlinear programming frequently asked questions. Web site: h t t p :
//www-unix,mcs.anl.gov/otc/Guide/faq/
nonlinear-programming%-faq.htm1, 2000.

62. R. Freund. Polynomial-time algorithms for linear programming based only on
primal scaling and projected gradients of a potential function. Mathematical
Programming, 51:203-222, 1991.

63. Frontline Systems, Inc. Premium Solver Platform (software package). Web
site: h t t p : //www. so lver . com, September 2004.

64. E. Fridman and U. Shaked. A new H , filter design for linear time delay sys-
tems. IEEE Transactions on Signal Processing, 49(11):2839-2843, July 2001.

204 Michael Grant, Stephen Boyd, and Yinyu Ye

65. J. Geromel. Optimal linear filtering under parameter uncertainty. IEEE Trans-
actions on Signal Processing, 47(1):168-175, January 1999.

66. 0 . Giiler and R. Hauser. Self-scaled barrier functions on symmetric cones and
their classification. Foundations of Computational Mathematics, 2:121-143,
2002.

67. D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Techni-
cal report, Computational Optimization Research Center, Columbia Univer-
sity, March 2002. Web site: h t tp : / /www. corc . ieor . columbia. edu/reports/
techreports/tr-2002-03.pdf.

68. D. Goldfarb and G. Iyengar. Robust quadratically constrained problems pro-
gram. Technical Report TR-2002-04, Department of IEOR, Columbia Univer-
sity, New York, NY USA, 2002.

69. P. Gill, W. Murray, and M. Saunders. SNOPT: An sqp algorithm for large-
scale constrained optimization. SIAM Journal on Optimization, 12:979-1006,
2002.

70. P. Gill, W. Murray, M. Saunders, and M. Wright. User's guide for NPSOL
5.0: A FORTRAN package for nonlinear programming. Technical Report SOL
86-1, Systems Optimization Laboratory, Stanford University, July 1998. Web
site:http://www.sbsi-sol-optimize.com/manuals/
NPSOL%205-0%20Manual.p%df.

71. P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press,
London, 1981.

72. J. Geromel and M. De Oliveira. H;?/H, robust filtering for convex bounded
uncertain systems. IEEE Transactions on Automatic Control, 46(1):100-107,
January 2001.

73. C. Gonzaga. Path following methods for linear programming. SIAM Review,
34(2):167-227, 1992.

74. M. Grant. Disciplined Convex Programming. PhD thesis, Department of Elec-
trical Engineering, Stanford University, December 2004.

75. D. Guo, L. Rasmussen, S. Sun, and T. Lim. A matrix-algebraic approach
to linear parallel interference cancellation in CDMA. IEEE Transactions on
Communications, 48(1):152-161, January 2000.

76. G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Univ. Press,
Baltimore, second edition, 1989.

77. M. Goemans and D. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115-1145, 1995.

78. M. Hershenson, S. Boyd, and T. Lee. Optimal design of a CMOS op-amp
via geometric programming. IEEE Transactions on Computer-Aided Design,
January 2001.

79. L. Huaizhong and M. Fu. A linear matrix inequality approach to robust H ,
filtering. IEEE Transactions on Signal Processing, 45(9):2338-2350, September
1997.

80. M. Hershenson, S. Mohan, S. Boyd, and T. Lee. Optimization of inductor cir-
cuits via geometric programming. In Proceedings 36th IEEE/ACM Integrated
Circuit Design Automation Conference, 1999.

81. P. Hovland, B. Norris, and C. Bischof. ADIC (software package), November
2003. http://www-fp.mcs.anl.gov/adic/.

Chapter 7: Disciplined Convex Programming 205

82. L. Han, J. Trinkle, and Z. Li. Grasp analysis as linear matrix inequality prob-
lems. IEEE Transactions on Robotics and Automation, 16(6):663-674, Decem-
ber 2000.

83. J.-B. Hiriart-Urruty and C. Lemarbchal. Convex Analysis and Minimization
Algorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, New York, 1993.

84. J.-B. Hiriart-Urruty and C. Lemarkchal. Convex Analysis and Minimization Al-
gorithms II: Advanced Theory and Bundle Methods, volume 306 of Grundlehren
der mathematischen Wissenschaften. Springer-Verlag, New York, 1993.

85. Q. Han, Y. Ye, and J . Zhang. An improved rounding method and semidefinite
programming relaxation for graph partition. Math. Programming, 92:509-535,
2002.

86. F. Jarre, M. Kocvara, and J . Zowe. Optimal truss design by interior point
methods. SIAM J. Optim., 8(4):1084-1107, 1998.

87. F. Jarre and M. Saunders. A practical interior-point method for convex pro-
gramming. SIAM Journal on Optimization, 5:149-171, 1995.

88. N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373-395, 1984.

89. M. Kojima, S. Mizuno, and A. Yoshise. An O(&iL)-iteration potential reduc-
tion algorithm for linear complementarity problems. Mathematical Program-
ming, 50:331-342, 1991.

90. J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems. In
Proceedings of the 30th Symposium on Theory of Computation, pages 473-482,
1998.

91. J. Keuchel, C. Schnorr, C. Schellewald, and D. Cremers. Binary partitioning,
perceptual grouping, and restoration with semidefinite programming. IEEE
'Il-ansactions on Pattern Analysis and Machine Intelligence, 25(11):1364-1379,
November 2003.

92. K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solv-
ing primal and dual geometric progams. Mathematical Programming, 1:155-
181, 1997.

93. K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solv-
ing primal and dual geometric programs. Mathematical Programming, 76:155-
182, 1997.

94. M. Kocvara, J . Zowe, and A. Nemirovski. Cascading-an approach to robust
material optimization. Computers and Structures, 76:431-442, 2000.

95. J . Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM Journal of Optimization, ll:796-817, 2001.

96. J . Lasserre. Bounds on measures satisfying moment conditions. Annals of
Applied Probability, 12:lll4-1137, 2002.

97. J . Lasserre. Semidefinite programming vs. LP relaxation for polynomial pro-
gramming. Mathematics of Operations Research, 27(2):347-360, May 2002.

98. H. Lebret and S. Boyd. Antenna array pattern synthesis via convex optimiza-
tion. IEEE Transactions on Signal Processing, 45(3):526-532, March 1997.

99. Lindo Systems, Inc. LINGO version 8.0 (software package). Web site: h t tp :
//WWW. lindo . com, September 2004.

100. J . Lofberg. YALMIP verison 2.1 (software package). Web site: h t t p : //www .
control.isy.liu.se/"johanl/yalmip.html, September 2001.

206 Michael Grant, Stephen Boyd, and Yinyu Ye

101. L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convexity, vol-
ume 50 of CBMS-NSF Regional Conference Series i n Applied Mathematics.
SIAM, Philadelphia, 1986.

102. Z.-Q. Luo, J. Sturm, and S. Zhang. Duality and self-duality for conic con-
vex programming. Technical report, Department of Electrical and Computer
Engineering, McMaster University, 1996.

103. W. Lu. A unified approach for the design of 2-D digital filters via semidefinite
programming. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 49(6):814-826, June 2002.

104. M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-
order cone programming. Linear Algebra and its Applications, 284:193-228,
November 1998. Special issue on Signals and Image Processing.

105. R. Monteiro and I. Adler. Interior path following primal-dual algorithms:
Part 1 : Linear programming. Mathematical Programming, 44:27-41, 1989.

106. The MathWorks, Inc. PRO-MATLAB User's Guide. The MathWorks, Inc.,
1990.

107. M. Mahmoud and A. Boujarwah. Robust H , filtering for a class of linear
parameter-varying systems. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 48(9):1131-1138, September 2001.

108. G. Millerioux and J. Daafouz. Global chaos synchronization and robust filtering
in noisy context. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 48(10):1170-1176, October 2001.

109. N. Megiddo. Pathways to the optimal set in linear programming. In
N. Megiddo, editor, Progress i n Mathematical Programming: Interior Point
and Related Methods, pages 131-158. Springer Verlag, New York, 1989. Identi-
cal version in: Proceedings of the 6th Mathematical Programming Symposium
of Japan, Nagoya, Japan, 1-35, 1986.

110. MOSEK ApS. Mosek (software package). Web site: http : //www . mosek. com,
July 2001.

111. S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based
approximation algorithms. SIAM J. of Computing, 28:1641-1663, 1999.

112. B. Murtaugh and M. Saunders. MINOS 5.5 user's guide. Technical report,
Systems Optimizaiton Laboratory, Stanford University, July 1998. Web site:
http://www.sbsi-sol-optimize.com/manuals/
Minos%205-5%20Manual.p%df.

113. J . More and D. Sorensen. NMTR (software package), March 2000. Web site:
http://www-unix.mcs.anl.gov/-more/nmtr/.

114. M. Milanese and A. Vicino. Optimal estimation theory for dynamic systems
with set membership uncertainty: An overview. Autornatica, 27(6):997-1009,
November 1991.

115. Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,
volume 87 of Applied Optimization. Kluwer, Boston, 2004.

116. I. Nenov, D. Fylstra, and L. Kolev. Convexity determination in the microsoft
excel solver using automatic differentiation techniques. In The 4th Internation
Conference on Automatic Differentiation, 2004.

117. Yu. Nesterov and A. Nemirovsky. A general approach to polynomial-time
algorithms design for convex programming. Technical report, Centr. Econ. &
Math. Inst., USSR Acad. Sci., Moscow, USSR, 1988.

Chapter 7: Disciplined Convex Programming 207

118. Yu. Nesterov and A. Nemirovsky. Interior-Point Polynomial Algorithms i n
Convex Programming: Theory and Algorithms, volume 13 of Studies i n Ap-
plied Mathematics. Society of Industrial and Applied Mathematics (SIAM)
Publications, Philadelphia, PA 19101, USA, 1993.

119. Yu. Nesterov, 0. Peton, and J.-Ph. Vial. Homogeneous analytic center cutting
plane methods with approximate centers. In F. Potra, C. Roos, and T. Terlaky,
editors, Optimization Methods and Software, pages 243-273, November 1999.
Special Issue on Interior Point Methods.

120. S. Nash and A. Sofer. A barrier method for large-scale constrained optimiza-
tion. ORSA Journal on Computing, 5:40-53, 1993.

121. Yu. Nesterov and M. Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22:l-42, 1997.

122. J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Opera-
tions Research. Springer, New York, 1999.

123. D. Orban and R. Fourer. DrAmpl: a meta-solver for optimization. Technical
report, Ecole Poytechnique de Montreal, 2004.

124. M. Overton and R. Womersley. On the sum of the largest eigenvalues of
a symmetric matrix. SIAM Journal on Matrix Analysis and Applications,
13(1):41-45, January 1992.

125. P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming, Series B, 96(2):293-320, 2003.

126. G. Pataki. Geometry of cone-optimization problems and semi-definite pro-
grams. Technical report, GSIA Carnegie Mellon University, Pittsburgh, PA,
1994.

127. J. Park, H. Cho, and D. Park. Design of GBSB neural associative memo-
ries using semidefinite programming. IEEE Transactions on Neural Networks,
10(4):946-950, July 1999.

128. R. Palhares, C. de Souza, and P. Dias Peres. Robust H, filtering for uncertain
discrete-time state-delayed systems. IEEE Transactions on Signal Processing,
48(8):1696-1703, August 2001.

129. R. Palhares and P. Peres. LMI approach to the mixed Hz/H, filtering de-
sign for discrete-time uncertain systems. IEEE Transactions on Aerospace and
Electronic Systems, 37(1):292-296, January 2001.

130. S. Prajna, A. Papachristodoulou, and P. Parrilo. SOSTOOLS: Sum of squares
optimization toolbox for MATLAB, 2002. Available from
http://www.cds,caltech.edu/sostools and
http://www.aut.ee.ethz.ch/parrilo/sostools.

131. 0. Peton and J.-P. Vial. A tutorial on ACCPM: User's guide for version
2.01. Technical Report 2000.5, HEC/Logilab, University of Geneva, March
2001. Seealsothehttp://ecolu-info.unige.ch/-logilab/software/accpm/
accpm. html.

132. E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit.
Journal of Intelligent and Robotic Systems, 18:105-126, 1997.

133. J. Renegar. A polynomial-time algorithm, based on Newton's method, for
linear programming. Mathematical Programming, 40:59-93, 1988.

134. B. Radig and S. Florczyk. Evaluation of Convex Optimization Techniques for
the Weighted Graph-Matching Problem i n Computer Vision, pages 361-368.
Springer, December 2001.

208 Michael Grant, Stephen Boyd, and Yinyu Ye

135. L. Rasmussen, T . Lim, and A. Johansson. A matrix-algebraic approach to
successive interference cancellation in CDMA. IEEE Transactions on Commu-
nications, 48(1):145-151, January 2000.

136. M. Rijckaert and X. Martens. Analysis and optimization of the williams-otto
process by geometric programming. AIChE Journal, 20(4):742-750, July 1974.

137. R. Rockafellar. Convex Analysis. Princeton Univ. Press, Princeton, New Jersey,
second edition, 1970.

138. E. Rosenberg. Globally Convergent Algorithms for Convex Programming with
Applications to Geometric Programming. PhD thesis, Department of Opera-
tions Research, Stanford University, 1979.

139. P. Stoica, T . McKelvey, and J . Mari. Ma estimation in polynomial time. IEEE
Transactions on Signal Processing, 48(7): 1999-2012, July 2000.

140. J . Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11:625-653, 1999.

141. J . A. K. Suykens, T. Van Gestel, J . De Brabanter, B. De Moor, and J . Vande-
walle. Least squares support vector machines, 2002.

142. J . Stoer and C. Witzgall. Convexity and Optimization i n Finite Dimensions I.
Springer-Verlag, 1970.

143. U. Shaked, L. Xie, and Y. Soh. New approaches to robust minimum vari-
ance filter design. IEEE Transactions on Signal Processing, 49(11):2620-2629,
November 2001.

144. H. Tuan, P. Apkarian, and T . Nguyen. Robust and reduced-order filtering:
new LMI-based characterizations and methods. IEEE Transactions on Signal
Processing, 49(12):2975-2984, December 2001.

145. H. Tuan, P. Apkarian, T . Nguyen, and T . Narikiyo. Robust mixed H 2 / H ,
filtering of 2-D systems. IEEE Transactions on Signal Processing, 50(7):1759-
1771, July 2002.

146. C. Tseng and B. Chen. H , fuzzy estimation for a class of nonlinear discrete-
time dynamic systems. IEEE Transactions on Signal Processing, 49(11):2605-
2619, November 2001.

147. The Mathworks, Inc. LMI control toolbox 1.0.8 (software package). Web site:
http://www.mathworks.com/products/lmi, August 2002.

148. H. Tan and L. Rasmussen. The application of semidefinite programming for
detection in CDMA. IEEE Journal on Selected Areas i n Communications,
19(8):1442-1449, August 2001.

149. T . Tsuchiya. A polynomial primal-dual path-following algorithm for second-
order cone programming. Technical report, The Institute of Statistical Math-
ematics, Tokyo, Japan, October 1997.

150. Z. Tan, Y. Soh, and L. Xie. Envelope-constrained H , filter design: an LMI
optimization approach. IEEE Transactions on Signal Processing, 48(10):2960-
2963, October 2000.

151. Z. Tan, Y. Soh, and L. Xie. Envelope-constrained H , FIR filter design. IEEE
Transactions on Circuits and Systems 11: Andog and Digital Signal Processing,
47(1):79-82, January 2000.

152. R. Tutuncu, K. Toh, and M. Todd. SDPT3-a MATLAB software package
for semidefinite-quadratic-linear programming, version 3.0. Technical report,
Carnegie Mello University, August 2001.

153. R. Tapia, Y. Zhang, and L. Velazquez. On convergence of minimization meth-
ods: Attraction, repulsion and selection. Journal of Optimization Theory and
Applications, 107:529-546, 2000.

Chapter 7: Disciplined Convex Programming 209

154. R. Vanderbei. LOQO user's manual-version 4.05. Technical report, Opera-
tions Research and Financial Engineering, Princeton University, October 2000.

155. L. Vandenberghe and S. Boyd. Semidefinite programming. SIA M Review,
38(1):49-95, March 1996.

156. R. Vanderbei and H. Benson. On forumulating semidefinite programming prob-
lems as smooth convex nonlinear optimization problems. Technical Report
ORFE-99-01, Operations Research and Financial Engineering, Princeton Uni-
versity, January 2000.

157. L. Vandenberghe, S. Boyd, and A. El Gamal. Optimal wire and transistor sizing
for circuits with non-tree topology. In Proceedings of the 1997 IEEE/ACM
International Conference on Computer Aided Design, pages 252-259, 1997.

158. L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant time con-
stant in RC circuits. IEEE Transactions on Computer-Aided Design, 2(2):110-
125, February 1998.

159. S.-P. Wu and S. Boyd. SDPSOL: A parser/solver for semidefinite programs
with matrix structure. In L. El Ghaoui and S.-I. Niculescu, editors, Recent
Advances i n LMI Methods for Control, chapter 4, pages 79-91. SIAM, 2000.

160. F. Wang and V. Balakrishnan. Robust Kalman filters for linear time-varying
systems with stochastic parametric uncertainties. IEEE Transactions on Signal
Processing, 50(4):803-813, April 2002.

161. S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via spectral fac-
torization and convex optimization. In B. Datta, editor, Applied and Compu-
tational Control, Signals, and Circuits, volume 1, pages 215-245. Birkhauser,
1998.

162. M. Wright. Some properties of the Hessian of the logarithmic barrier function.
Mathematical Programming, 67:265-295, 1994.

163. S. Wright. Primal Dual Interior Point Methods. Society of Industrial and Ap-
plied Mathematics (SIAM) Publications, Philadelphia, PA 19101, USA, 1999.

164. J. Weickert and Christoph Schnorr. A theoretical framework for convex regu-
larizers in pde-based computation of image motion. International Journal of
Computer Vision, Band 45, 3:245-264, 2001.

165. S. Wang, L. Xie, and C. Zhang. Hz optimal inverse of periodic FIR digital
filters. IEEE Transactions on Signal Processing, 48(9):2696-2700, September
2000.

166. Y. Ye. Interior-point algorithms: Theory and practice. John Wiley & Sons,
New York, NY, 1997.

167. Y. Ye. A path to the arrow-debreu competitive market equilibrium. Technical
report, Stanford University, February 2004. Web site: http : //www . stanf ord .
edu/"yyye/arrow-debreu2.pdf.

168. F. Yang and Y. Hung. Robust mixed Hz/H, filtering with regional pole as-
signment for uncertain discrete-time systems. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 49(8):1236-1241, Au-
gust 2002.

169. Y.Ye, M. Todd, and S. Mizuno. An O(&L)-iteration homogeneous and self-
dual linear programming algorithm. Mathematics of Operations Research,
19(1):53-67, 1994.

170. Y. Ye and J. Zhang. Approximation for dense-n/2-subgraph and the comple-
ment of min-bisection. Manuscript, 1999.

210 Michael Grant, Stephen Boyd, and Yinyu Ye

171. S. Zhang. A new self-dual embedding method for convex programming. Techni-
cal report, Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, October 2001.

172. M. Zibulevsky. Pattern recognition via support vector machine with com-
putationally efficient nonlinear transform. Technical report, The Univer-
sity of New Mexico, Computer Science Department, 1998. Web site: h t t p :
//iew3.technion.ac.il/-mcib/nipspsvm.ps.gz.

173. J . Zowe, M. Kocvara, and M. Bendsoe. Free material optimization via mathe-
matical programming. Mathematical Programming, 9:445-466, 1997.

174. U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite
programming relaxations, with applications to max cut and other problems.
In Proceedings of the 31th Symposium on Theory of Computation, pages 679-
687, 1999.

175. H. Zhou, L. Xie, and C. Zhang. A direct approach to Hz optimal deconvo-
lution of periodic digital channels. IEEE Transactions on Signal Processing,
5O(7): 1685-1698, July 2002.

