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Abstract

Knowledge of the distance between a robot and its surrounding environment is vital for any

robotic system. The robot must obtain this information rapidly in order to plan and react in real-

time. Our technique �rst surrounds the robot links and the obstacles by optimal ellipsoids, and

then computes the clearance of the links from the obstacles with a generalized distance function.

This approach o�ers an attractive alternative to the widely used technique of computing the

distance via polyhedral representation of the robot and the obstacles. In particular, our approach

o�ers a drastic reduction in the complexity of the data structures: each polyhedron, typically

represented by a list of its features and their adjacency graph; is replaced by a minimum-volume

ellipsoid represented by its center and a symmetric matrix whose dimension is either two or

three (the workspace dimension). Moreover, while the computation time of the distance between

polyhedra is often a function of their geometrical complexity, computation time in the ellipsoidal

case is essentially constant; and becomes even more rapid when it is computed repeatedly along

the robot's trajectory.

Our method consists of the following two algorithms: The �rst computes the optimal ellipsoid

surrounding a convex polyhedron. The second is an analytic formula for the free margin about

one ellipsoid with respect to another, that is computed as a standard eigenvalue problem. An

e�cient incremental version of the latter algorithm is then proposed. This system has been

implemented and preliminary simulation results are provided throughout the paper.

1 Introduction

The technique of bounding sets with minimum-volume ellipsoids seems to be applicable in other

areas, such as pattern recognition and machine vision. The main concern of this paper, however,

is to demonstrate the e�ectiveness of the ellipsoid representation for geometrical reasoning in

the context of robotics. Speci�cally, this paper is concerned with the robot collision-detection

problem, that consists of computing a quantity that re
ects, as a function of the geometrical data,

the amount of clearance between the robot and its environment. Knowledge of this distance is

of central importance for planning collision-free paths [9], and its rapid computation is essential

in the low-level control, where the gradient vector-�eld of the distance is used to guard the robot

from collision [13]. A similar need also arises in many computer graphics applications, especially

in physical simulations [25].

Unfortunately, the distance depends on the various geometrical features of the robot and the

obstacles; and this introduces a major computational bottleneck. In many practical applications,

however, the robot links tend to be elongated objects that can be e�ectively surrounded by

ellipsoids. Supposing that the obstacles are described by union of convex polyhedra | there are

e�cient algorithms to decompose a polyhedron into union of convex polyhedra | we surround

each convex polyhedron by an ellipsoid as well. The problem of computing the distance between

polyhedral links and obstacles is thus replaced by the problem of computing the distance between

pairs of ellipsoids. We shall see that a function related to the distance, the free margin about an

ellipsoid, can be rapidly computed in constant time, independent of the geometrical complexity
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of the original polyhedra.

More generally, this work is part of a larger program of research, whose purpose is to develop

a geometric modeling system based on a catalogue of shapes expressed as Boolean combinations

of linear and quadratic inequalities. Such a catalogue would be able to approximate all possible

shapes and, unlike the purely polyhedral representation, seems to include shapes whose boundary

is smooth (continuous normal). The catalogue must come with a set of operations that render

it useful for robotic applications. To mention some of the most important ones: automatic

construction of the shapes from sensory data, rapid collision detection, and the computation of

a measure of the distance between pairs of shapes.

In the context of the latter problem, it can be easily veri�ed that computing the Euclidean

distance between two shapes described by intersection of linear and quadratic polynomials, such

that each quadratic polynomial describes a convex region, is a convex optimization problem

(see e.g., [3]). Being such, the Euclidean distance can be e�ectively computed up to desired

accuracy in time linear in the number of geometrical features . In robotics, however, e�cient

iterative methods are not good enough. Most of the reactive controllers use the gradient vector-

�eld (or subgradient when it is not di�erentiable) of the distance to guide the robot. It is

therefore advantageous to obtain a closed-form expression for the gradient. Moreover, there is

a basic need to explicitly parametrize the location of the con�guration-space \obstacles" | the

forbidden regions in the robot's con�guration space | in terms of the geometrical data i.e., the

inside-outside relation between shapes parametrized by the shapes' geometrical data. To the

best of our knowledge the free margin function constitutes, for the �rst time in the context of

robotics, an analytic formula for ellipsoids. The formula has the form of an eigenvalue problem,

and we also give a closed-form formula for the gradient vector-�eld.

1.1 Organization of the Paper

This section continues with a brief account of the related literature. In Section 2 we describe an

e�cient algorithm for the minimal-volume ellipsoid surrounding a convex polyhedron. This also

turns out to be a convex optimization problem, for which e�cient �-accurate algorithms that

require time proportional to log(1=�) and linear in the number of vertices are known. We shall

use the standard ellipsoid algorithm1, whose features, as well as the class of convex optimization

problems, are brie
y described in Appendix A. The ellipsoid algorithm, although simple and

e�cient, is not the only known algorithm for solving convex optimization problems. In fact,

interior-point algorithms recently developed by Nesterov and Nemirovsky [20] are much faster

and may be a better choice for high-dimensional versions of this problem.

A closed-form formula for the free margin about one ellipsoid with respect to another is

presented in Section 3. Speci�cally, let N be the dimension of the ambient space (N = 2

or 3 in our case), and let E(xi; X) be the ellipsoid with center xi and shape described by a

positive-de�nite symmetric matrix X (a condition written as X > 0),

E(xi; X) = fx 2 IRN : (x� xi)TX(x� xi) � 1g:
1The fact that the topic of this paper is ellipsoids and that convex optimization problems are solved by an

algorithm based on n-ellipsoids is coincidental.
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Let the two ellipsoids be E1 and E2. First, a formula for the point x� in E2 at which the

ellipsoidal level-surfaces surrounding E1 touch E2 for the �rst time is computed. Then the free

margin about E1 with respect to E2 is computed in terms of x� such that

margin(E1; E2)

8><
>:
< 0 i� E1 overlaps E2;
= 0 i� E1 touches E2;
> 0 otherwise:

Geometrically, margin(E1; E2) is the (signed) distance between E1 and E2 as determined by the

metric associated with the matrix of E1. When E1 is moving along a trajectory it becomes a

function of its current con�guration | E1's position and orientation. Under this interpretation

the condition margin(E1; E2) � 0 characterizes the con�guration-space \obstacle" due to E2 |

those con�gurations of E1 that involve intersection with E2.

The formula for x� involves the minimal eigenvalue of a 2N � 2N matrix whose entries

are expressed in terms of the geometrical data. The standard QR method is then used to �nd

the minimal eigenvalue. In Section 4 we describe how to accelerate the computation along the

robot trajectory by exploiting the previous computation. As long as the trajectory points are

su�ciently close by, the minimal eigenvalue is computed with the faster inverse iteration method.

We will make precise the notion of \su�ciently close by", and will show in the process that the

free-margin function is an analytic function of the geometrical data. This last result makes

margin(E1; E2) very attractive in actual implementations. In fact, we shall present a closed-form

expression for its gradient vector-�eld, which is readily computable in terms of the geometrical

data.

1.2 Related Literature

The topic of surrounding complicated shapes by simpler ones is considered in the computational

geometry literature. For example, [19] discusses the problem of surrounding a polyhedron by

minimum-volume box. Although such a box is an attractive alternative for the minimum-volume

ellipsoid, it is currently not clear which approach is more e�ective. In fact, both approaches

require the same number of parameters to represent their shape, and they seem to complement

each other as e�ective geometrical approximation. The selection of the most e�ective approxi-

mating shape is the topic of research now in progress.

The appeal of ellipsoids as e�ective means for shape representation has been recognized in

the machine vision literature for quiet some time (see e.g., [21]). In the context of computing

the ellipsoidal approximation, Post [22] has proposed an exact algorithm that computes the

minimum-volume ellipsoid in time proportional tom2 independent of the ambient dimension N ,

wherem is the number of vertices. Our algorithm uses standard convex programming techniques

and solves the problem within � accuracy in time mp(N) log(1=�), where p(N) is a polynomial

function which is a constant in our case.

The topic of closed-form formulas for the forbidden regions in con�guration-space is relatively

unexplored. It seems that general algebraic decision-methods can compute such formulas for

polynomially bounded shapes (using, for instance, the multivariate resultant [5]), but we are
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not aware of any practical implementation of them. Speci�c closed-form formulas are known

for the following cases: a polyhedron moving in the presence of polyhedral obstacles [15, Chap

3]; a convex rigid-body moving with �xed orientation amidst convex obstacles [1]; and speci�c

planar articulated chains [6]. This paper presents such a formula for the ellipsoidal case, where

an ellipsoidal object is moving in the presence of ellipsoidal obstacles. Characterization of

the intersection between general quadratic shapes is also discussed in the computer graphics

literature (see e.g., [17]).

Computation of the distance between polyhedral shapes has long history in robotics (see

e.g., [3, 9, 10, 18]), and the technique presented here complements these results for ellipsoidal

shapes. In particular, an algorithm recently proposed by Lin and Canny for polyhedra [18], com-

putes the distance between two moving convex polyhedra by tracking the closest two features.

The computational e�ort of their algorithm is essentially constant, except at instances where the

identity of the closest two features changes. At these singular events the new closest two features

are found in time roughly linear in the number of geometrical features. In contrast, the compu-

tational e�ort of our ellipsoid approach is always constant and does not require the substantial

bookkeeping required to manage the polyhedral features. Further, the free-margin function for

ellipsoids is an analytic function of the geometrical data (refer to Corollary 4.1), while the poly-

hedral distance is not even di�erentiable. Of course, these gains come on the expense of using

approximate shapes and a \distance" function that is not the Euclidean distance.

In relation to rapid distance computation, some researchers have suggested to trade com-

putation with memory, by computing the distance beforehand for all possible con�gurations on

a suitably discretized con�guration space (see e.g., [16]). Note that this computation must use

the aforementioned inside-outside functions to be e�ective. Unfortunately, the required memory

grows exponentially with the dimension of the con�guration space, and this approach becomes

impractical for more than few degrees of freedom. For low-dimensional stationary environments,

however, it o�ers very rapid (discretized) distance computation that can be made to be inde-

pendent of the geometrical complexity of the environment.

2 Computation of the Optimal Ellipsoid

It was shown quite some time ago that for any compact set2 with non-empty interior P there

exists a unique ellipsoid E of minimal volume containing it [12]. This ellipsoid is called the

L�owner-John ellipsoid of P, or simply the L-J ellipsoid. Of course, the L-J ellipsoid contains

the convex hall of P and for this reason we shall restrict our attention to convex sets P. The L-J
ellipsoid has a remarkable property that P contains the ellipsoid obtained from E by shrinking

it from its center by a factor equal to the dimension of the ambient space. This establishes an

upper bound on the distance of the surface of E from P, and consequently indicates that the

L-J ellipsoid is always an intuitively acceptable approximation.

We describe now an e�cient �-accuracy algorithm for what we shall call the L-J problem

| to compute the L-J ellipsoid containing a given convex polyhedron P . We do this in two

2i.e., closed and bounded.
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Figure 1: The N -dimensional L-J ellipsoid is obtained by intersecting the (N + 1)-dimensional

L-J ellipsoid centered at the origin with the plane at height xN+1 = 1.

steps. First, following [20], the L-J problem is shown to be a convex optimization problem. Then

the standard ellipsoid algorithm used to solve such problems is described in the context of our

problem. Appendix A contains a short account of the convex optimization problems and the

ellipsoid algorithm.

Let N be the dimension of the ambient space (N = 2 or 3 in our case), and denote its

coordinates by (x1; : : :xN ). Also, let EN+1
0 be an (N + 1)-dimensional ellipsoid centered at

the origin of IRN+1. The idea is to embed P in a space of dimension N + 1, in the plane at

height xN+1 = 1, and then to compute the minimum-volume EN+1
0 containing the embedded

P. It turns out that the resulting EN+1
0 determines the N -dimensional L-J ellipsoid by simply

intersecting EN+1
0 with the plane xN+1 = 1, as shown in Figure 1. This fact is mentioned in [20,

pp 229], and we prove it in Appendix B for the reader's convenience.

The latter problem | of computing the minimum-volume EN+1
0 containing P | is a convex

optimization problem. To see this, consider the volume of an (N + 1)-ellipsoid, E(x;X), given

by

volume (E) =
�N+1p
detX

; (1)

where X is E 's (N + 1)� (N + 1) symmetric positive-de�nite matrix, and �N+1 is the volume

of the unit ball in IRN+1, but we will not need �N+1. Since (1) is equivalent to the equation

log (volume (E)) = log �N+1 � 1
2
log(detX);

the L-J problem is equivalent to minimizing �log(detX) subject to the constraints that X

be symmetric positive-de�nite, and that EN+1
0 contain the polyhedron P embedded at height
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xN+1 = 1. In general, an ellipsoid contains a convex polyhedron if and only if it contains its

vertices, v1; ::vm. Thus the L-J problem becomes

minf�log(detX)g (2)

subject to

X > 0 and
�
vTi 1

�
X

 
vi
1

!
� 1 for i = 1; ::m: (3)

Let the optimization variables be the distinct entries of the symmetric matrix X , and let M

be the number of these entries, M = 1
2
(N + 1)(N + 2). The problem (2)-(3) is convex if the

objective function (2) and the constraints in (3) are convex functions in terms of the entries of

X . Indeed, it is shown in Appendix B that �log(detX) is convex in the region X > 0. The

convexity of the constraints in (3) can be seen as follows. The constraint X > 0 can be written

as

�max(�X) < 0 (4)

(�max(�X) is the largest eigenvalue of the matrix �X). The function �max(�X) can be written

as the maximum attained by a family of functions:

�max(�X) = max
kvk=1

fvT [�X ]vg;

where each vT [�X ]v is linear in the entries of X and is therefore convex. It is known from

convex analysis (see e.g., [24]) that the maximum of an arbitrary family of convex functions is

itself convex. Hence �max(�X) is convex. Similarly, the constraint (vTi ; 1)X

 
vi
1

!
� 1 is a

linear inequality in the entries of X and is also convex. Having shown that (2)-(3) is a convex

optimization problem, we can now apply the ellipsoid algorithm.

Given a convex polyhedron P � IRN described by its vertices v1; : : :vm, the ellipsoid algo-

rithm computes a matrix X that minimizes (2) up to � accuracy,

0 � (�log(detX))� (�log(detX�)) � �;

where X� is the true minimum. It is shown in Appendix B that the N -ellipsoid obtained by

intersecting the resulting �-optimal (N + 1)-ellipsoid with the plane xN+1 = 1 is also �-optimal.

Hence the original L-J problem is solved within a speci�ed relative error of e�� . Let us describe

now the algorithm and some of its details.

First, we will need to compute subgradients of �max(�X). Let E(0; X) be an (N+1)-ellipsoid.

Using the de�nition of subgradient given in Appendix A, the subgradient of �max(�X) is a matrix

G satisfying the inequality

�max(�Z) � �max(�X) + tr
�
GT (Z �X)

�
for all symmetric matrices Z

(tr denotes the trace). Let v be a unit-magnitude eigenvector of X corresponding to its maximal

eigenvalue. It can be easily veri�ed that the inequality

�max(�Z) � vT [�Z]v = vT [�X ]v � vT (Z �X)v for all symmetric matrices Z;
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implies that the desired G is simply the symmetric matrix

G = �vvT :

In the following, (Xk; Ak) 2 (IRM ; IRM�M) is the center and matrix of the kth ellipsoid in

the ellipsoid algorithm and, for simplicity, Xk also represents the corresponding matrix of the

(N + 1)-ellipsoid E(0; Xk). For simplicity, as well, we replace �max(�Xk) by the equivalent

expression �min(Xk). Last, we will need to use the stack notation: if A 2 IRn�n , then As

denotes the n2 � 1 vector obtained by stacking the columns of A over each other. More details

about the algorithm can be found in Appendix A and in [4].

X1; A1  an initial M -ellipsoid that contains the minimum;

k 0;

repeat f
k k + 1;

compute �min(Xk) and (vTi ; 1)Xk

 
vi
1

!
for i = 1; : : :m;

if (�min(Xk) � 0) f /* Xk is not positive de�nite */

compute eigenvector v for �min(Xk);

hk = (�vvT )s; /* compute a subgradient */

~g  hk=
q
hTkAkhk;

g else f

if ( (vTi ; 1)Xk

 
vi
1

!
> 1 for some i = i0 ) f /* Xk is infeasible */

hk =

  
vi0
1

!
(vTi0 ; 1)

!s
; /* compute a subgradient */

~g  hk=
q
hTkAkhk;

g
g else f /* Xk is feasible */

gk = r(� log(detXk)) =
�
�X�1k

�s
; /* compute a gradient */

~g  gk=
q
gTk Akgk;

g
Xk+1  Xk � 1

n+1Ak~g;

Ak+1  n2

n2�1

�
Ak � 2

n+1Ak~g~g
TAk

�
;

g until ( (�min(Xk) > 0) and ( no i0 exists) and (
q
gTk Akgk � �) ).

The initial X1; A1 can be conveniently chosen as follows. Let 0 < r < R be the radii of two balls

in IRN such that the r-ball is contained in the polyhedron P and the R-ball contains it. Then

the matrix X1 can be initialized to be

X1 = diag(
1

1 +R2
):

This yields a feasible (N + 1)-ellipsoid containing the embedded P and centered at the origin

of IRN+1. As for A1, it can be easily visualized in the planar case (and rigorously proved in
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Figure 2: The L-J ellipsoid of two convex polygons

general) that the cross-section of the optimal (N + 1)-ellipsoid for various values of xN+1 in the

interval [�1; 1] must contain the r-ball. It follows that the eigenvalues of the matrices Xk are

bounded from above by maxf1; 1=r2g and from below by 1=(1 + R2), so that the variation of

the eigenvalues of Xk around their initial value should not exceed maxf1; 1=r2g � 1=(1 + R2).

Since each Xk can be diagonalized by an appropriate rotation matrix, the variation of its entries

should not exceed (N + 1)(maxf1; 1=r2g � 1=(1 + R2)) � (N + 1)maxf1; 1=r2g. Thus a good

initial choice for the M �M matrix A1 is

A1 = diag

�
(N + 1)2max2f1; 1

r2
g
�
:

The ellipsoid algorithm computes the L-J ellipsoid to a relative accuracy of e�� inmp(M) log(1�)

steps, where p(M) is a constant polynomial (see Appendix A). We have implemented a two-

dimensional (N = 2 hence M = 6) version of this algorithm on a DEC5000 machine. A typical

computation takes 600 iterations and runs for about 2 seconds3. Two numerical examples are

shown in Figure 2.

3As we have already said, Nesterov and Nemirovsky's recent interior-point algorithms promise to be much

faster [20].
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3 The Free Margin Function

Given two ellipsoids in IRN , E1 = E(x1; P ) and E2 = E(x2; Q), we would like to �nd the point

x� in E2 such that

(x� � x1)TP (x� � x1) � (x� x1)TP (x � x1) for all x 2 E2. (5)

Geometrically, x� is the point in E2 that is the closest to E1 with respect to a distance function

whose equidistance level-sets are the ellipsoidal surfaces surrounding E1. We consequently de�ne

the free-margin of E1 about E2 is de�ned to be,

margin(E1; E2)
4

= (x� � x1)TP (x� � x1)� 1

(
4

= denotes a de�nition).

Clearly, margin(E1; E2) is positive when E1 and E2 are disjoint, zero when they touch, and

negative when their interiors overlap. Note, however, that margin(E1; E2) is not symmetric i.e.,

margin(E1; E2) 6= margin(E2; E1), and that it resembles the actual Euclidean distance only when

E1 and E2 are close to each other. Ideally, one would like to compute the Euclidean distance,

but we are not aware of any closed-form formula for it4. In contrast, the computation of the

free-margin function turns out to be equivalent to an eigenvalue problem, that can be solved by

traditional methods.

First let us apply a coordinate transformation that will make E2 look like a unit ball,

�x
4

= Q
1
2 (x� x2) or x = Q�

1
2 �x+ x2: (6)

In the new coordinates our problem becomes:

minf(�x� c)TC(�x� c))g such that k�xk2 � 1; (7)

where

C
4

= Q�
1
2PQ�

1
2 and c

4

= Q
1
2 (x1 � x2)

(C is positive de�nite). The ellipsoid E2 has thus become a unit ball. For our purposes we

may assume that the center c is always outside the unit ball. This implies that the quadratic

polynomial in (7) must attain its minimum on the boundary of the unit ball, where k�xk2 = 1.

For simplicity, we shall hereafter replace �x by x.

Using Lagrange multiplier, a necessary condition for x� to be a solution of (7) is

�x� = C(x� � c) for some scalar �; (8)

or, equivalently,

x� = [C � �I ]�1b;
4In the case of planar ellipses, for instance, this problem is equivalent to the minimization of a quadratic form

over a two-dimensional torus embedded in four-dimensional Euclidean space IR4. (This is, however, still a convex

programming problem).
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where

b
4

= Cc;

and I is the N �N identity matrix. Substituting x� into the constraint kxk2 = 1,

bT [C � �I ]�2b = 1; (9)

yields a 2N -degree polynomial in �.

It turns out that the minimal (real) root of the polynomial (9) solves the problem. This fact

is evident from the following identity:

Theorem 1 ([7]) If (x1; �1) and (x2; �2) are solutions of (8)-(9), then

(x2 � c)TC(x2 � c)� (x1 � c)TC(x1 � c) =
�2 � �1

2
kx1 � x2k2:

Thus the problem is solved if we can compute the minimal (real) root of the polynomial (9).

Using a method developed by Gander, Golub, and Matt [8], the problem is transformed into

an eigenvalue problem via the introduction of two new variables, y 2 IRN and z 2 IRN , as

follows

y
4

= [C � �I ]�2b and z
4

= [C � �I ]�1b: (10)

Expressing equations (9) and (10) in terms of (y; z) and �, yields the following system of equa-

tions
bTy = 1

[C � �I ] z = b

[C � �I ] y � z = 0:

(11)

Substituting bTy = 1 into the right side of the second equation yields,

[C � �I ]z = [bbT ]y:

Combining the third equation in (11) with the last equation yields,"
C �I
�bbT C

# 
y

z

!
= �

 
y

z

!
; (12)

a standard eigenvalue problem. Let �� be the minimal (real) eigenvalue of (12). It is shown in

Appendix C that �� is exactly the minimal root of the 2N -degree polynomial (9). It follows

that the point x�, and consequently margin(E1; E2), can be computed in terms of �� as follows:

Theorem 2 Given two ellipsoids E1 = E(x1; P ) and E2 = E(x2; Q), let �� be the the minimal

eigenvalue of (12). Then the point x� 2 E2 is given by

x� = [C � ��I ]�1b where C = Q�
1
2PQ

�
1
2 and b = Q

�
1
2P (x1 � x2); (13)

and the free-margin function, margin(E1; E2) = (x� � x1)TP (x� � x1)� 1, satis�es

margin(E1; E2)

8><
>:
< 0 i� E1 overlaps E2;
= 0 i� E1 touches E2;
> 0 otherwise:

(14)
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Figure 3: The closest point, x�, according to the generalized distance determined by the ellipse

surrounding the robot link

The correctness of (14) follows from the fact that the ellipsoid determined by the inequality

E = fx : (x� x1)TP (x � x1)� 1 � margin(E1; E2)g
= fx : (x� x1)TP (x � x1) � (x� � x1)TP (x� � x1)g;

is the smallest ellipsoid with center x1 and matrix P that touches E2.

Two planar (N = 2) examples are shown in Figure 3. We have computed the minimal

eigenvalue using the QR algorithm. This algorithm requires a preprocessing step that converts

the matrix in (12) into Hessenberg form in about (2N)3 steps [23, pp 386]. Then the QR-

algorithm computes all the eigenvalues in roughly 3(2N)3 operations [23, pp 392]. The QR

algorithm was used without exploiting the speci�cs of our matrix, and the average time for one

distance computation was 2:5 msec (on a DEC5000 machine). In the next section we describe

how to track only the minimal eigenvalue, and consequently achieve a considerable e�ciency

gain.

4 Incremental Computation of the Generalized Distance

We have seen that the computation of the generalized distance with the QR method is e�cient.

It computes, however, all the eigenvalues of the matrix

M
4

=

"
C �I
�bbT C

#
;
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while only the minimal eigenvalue is needed.

In robotics, as well as in computer-graphics animation, the distance is typically computed

along a trajectory i.e., the matrix M becomes M(x(k)), where x(k) is the robot's kth con-

�guration. The computation time can be substantially reduced by tracking only the minimal

eigenvalue along the trajectory. The Inverse Iteration method [23, pp 394] is suitable for this

task. It is initialized with an estimate for the minimal eigenvalue, �̂, and for the corresponding

eigenvector, v̂; and works as follows:

x(0) v̂;

k 0;

A [M � �̂I ]�1;
repeat f
k k + 1;

x(k) Ax(k � 1);

normalize x(k);

g until ( kx(k)� x(k � 1)k � �)
�� = �̂+ kx(k� 1)k2=(x(k) � x(k � 1)).

The idea behind this method is simple. Let �� and v� be the minimal eigenvalue and the

corresponding eigenvector of M . For any value of �̂, v� is also an eigenvector of M � �̂I , with
eigenvalue �� � �̂. Hence if �̂ is closer to �� than to the other eigenvalues of M , then the error

kx(k)� x(k � 1)k converges exponentially to zero. The number of steps K required for the error

to become less than � satis�es

K � c log(1
�
);

where c is a constant that depends on the initial estimate �̂. Note that K grows slowly with the

accuracy �. The constant c depends on �̂ via the ratio
����̂� ����� = ����̂� �(M)

��� for � 6= ��, and we

shall hereafter make the rather gross simpli�cation that c is approximately unity.

For this method to be of practical use, one must characterize the distance between �� and

the other eigenvalues of M . The following theorem asserts that �� is the only eigenvalue in the

left-hand side of the complex plane. We shall hereafter call �� the minimal eigenvalue of M . To

the best of our knowledge this fact was previously unknown.

Theorem 3 The minimal eigenvalue of M , ��, is negative real whenever the center c of the

ellipsoid E(c; C) is outside the unit ball. Moreover, all the other eigenvalues of M satisfy

Ref�(M)g � �1 > 0;

where �1 is the minimal eigenvalue of C (C > 0).

The theorem, whose proof is given Appendix C, asserts that �� is always isolated in the complex

plane. This, in turn, a�ords a conclusion, stated in the following corollary, that �� is a real

analytic function of the geometrical data. We will use in the corollary the following notation.
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Let R be an N � N rotation matrix that diagonalizes C, and let � be the resulting diagonal

matrix,

� = diag(�1; : : :�n)
4

= RTCR:

and let
�b
4

= RTb:

Corollary 4.1 ��, and consequently margin(E1; E2), are real analytic functions of the geo-

metrical data.

Moreover, a formula for the gradient of �� is given by

@��(�b;�)

@�bi
= � 1

�

�bi

(�i � ��)2
and

@��(�b;�)

@�i
=

1

�

�b2i
(�i � ��)3

;

where

�
4

=
NX
i=1

�b2i
(�i � ��)3

:

Proof: According to Theorem 3, �� is always an isolated root of the characteristic poly-

nomial of M . It is well-known from function theory that an isolated root of a polynomial

is an analytic function of its coe�cients [14, pp 125].

The formula for the gradient is easily derived by implicit di�erentiation of the equation:

NX
i=1

�b2i
(�i � ��(�b;�))2

= 1;

which holds true according to Lemma C.1 in Appendix C.

2

Theorem 3 guarantees that there is a �xed-size disc of radius larger than �1 in the complex

plane from which all initial guesses �̂ will converge to ��. In fact, only when j��j �
����̂��� > �1

correct convergence is not guaranteed. A practical criterion to detect correct convergence is

the attainment of �-convergence to some negative real number in less than K steps, where

K = log(1�).

Let us count the number of operations required. The inverse-iteration method requires one

matrix inversion | a (2N)3-step operation, and then a repetitive multiplication by a vector

| a (2N)2-step operation. We have used in our implementation a closed-form formula for

[M � �̂I ]�1 that takes only 5N3 steps to compute. Thus the total number of operations is about

5N3 + (2N)2 log(1�). Comparing this with the QR method yields the ratio

QR method

inverse iteration
=

4(2N)3

5N3 + (2N)2 log(1�)
=

32

5 + 4
N log(1�)

:
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Figure 4: The closest point, marked by �, is traced as the ellipse surrounding the robot link

moves around an obstacle (the ellipse surrounding the obstacle is not shown)

Substituting K for log(1�), it follows that the number of steps K required for an e�ciency gain

of two is

K = 3N where N = 2; 3;

and the accuracy of the solution obtained after K such steps is

� = 10�3N =

(
10�6 if N = 2

10�9 if N = 3:

We have experimented with the incremental algorithm on a planar scene, in which an ellip-

soidal link navigates in the presence of one stationary ellipsoidal obstacle. The link executes a

biased random-walk, and at each step the free margin about the ellipsoidal link is computed with

the incremental method. The random-walk was repeated for several randomly chosen polygonal

link and obstacle pairs. A numerical example is shown in Figure 4, in which the rotational incre-

ment is one degree and the translational increment is one cell in a 128� 128 grid. The average

number of iterations required to attain � = 1e � 06 accuracy was 7, and the average time for

one distance computation was 1 msec (on a DEC5000 machine)| shorter by a factor of about

2:5 than the QR-method discussed in the previous section. The incremental method ceased to

converge correctly for rotational increment of about �ve degrees and translational increment of

about �ve cells.
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4.1 Conclusion

We have proposed in this paper a \complete" system: First a polyhedral robot and environ-

ment are approximated by ellipsoids. Then the free margin about each of the ellipsoidal links is

computed in constant time per ellipsoidal obstacle. Hence, in terms of the ellipsoidal represen-

tation, the free margin about an n-link robot in an environment described by union of m convex

polyhedra takes O(n �m) to compute. We have also shown how to accelerate the computation

by exploiting the previous one along the robot's trajectory. Our ellipsoidal approach compares

favorably with the polyhedral one, since there is no need to deal with the geometrical features of

the underlying polyhedra the free-margin function takes essentially constant time to compute.

We have also presented in this paper an analytic formula for the free-margin function, and

for its gradient vector-�eld. This, in turn, expands the catalogue of shapes for which a closed-

form formula for the forbidden regions in con�guration-space is known. This new formula also

advances our larger program of research, concerned with setting up a system that will admit

arbitrary Boolean combinations of linear and quadratic inequalities.

Last, it is worthwhile to note in the context of bounding shapes by ellipsoids that similar

convex programming techniques can be used to e�ciently compute the ellipsoid of maximal

volume contained in a given convex polyhedron. This could be used to model the outer boundary

of a robot work-cell. Moreover, by maintaining a pair of such ellipsoids, one surrounding the

polyhedron and one contained in it, an estimate for the tightness of the ellipsoidal approximation

can be e�ectively computed. The intersection between two polyhedra could then be �rst checked

for the enclosing ellipsoids, for if they do not intersect than the underlying polyhedra are disjoint.

Otherwise their interior ellipsoids are checked for intersection, and their intersection would imply

that the underlying polyhedra intersect.

A Convex Programming

This appendix contains a short account of the class of convex optimization problems and the

ellipsoid algorithm.

A real-valued function � : IRn ! IR is a convex function if

�(�x1 + (1� �)x2) � ��(x1) + (1� �)�(x2) for all x1; x2 2 IRn and 0 � � � 1:

Geometrically, � is convex if and only if its epigraph | the set above its graph described by

f(x; t) 2 IRn+1 : t � �(x)g

is a convex set. Moreover, convexity of � implies that for any constant c the region in IRn

fx 2 IRn : �(x) � cg

is a convex set in IRn.

A convex optimization (or convex programming) problem is to compute x� that minimizes

�(x), subject to the constraint that x be in K, where � is a convex function and K � IRn is a
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convex region. One standard algorithm used to solve this problem is the ellipsoid algorithm

developed in the 1970's by Shor,Yudin, and Nemirovsky [4, chap. 14]. It requires that K be

described by a convex function  : IRn ! IR in the form

K = fx 2 IRn :  (x) � 0g:

The algorithm produces a sequence of points xk 2 IRn that converge to x�. It needs to compute

at the kth step a separating plane passing through xk for one of the two convex regions

fx : �(x) � �(xk)g or fx :  (x) �  (xk)g:

The separating plane is not necessarily unique, since the boundary of the region may have a sharp

corner at xk. In such situations the separating-plane's normal becomes a subgradient. More

precisely, if � : IRn ! IR is convex, but not necessarily di�erentiable, g 2 IRn is a subgradient

of � at x if

�(z) � �(x) + gT(z � x) for all z 2 IRn:

The ellipsoid algorithm is initialized with an n-ellipsoid containing the minimizer x� (e.g. a

large n-ball containing K). At the kth step the current center of the ellipsoid, xk, is compared

against the constraint function  . If the constraint is violated ( (xk) > 0), a separating plane

passing through xk for the region fx :  (x) �  (xk)g is computed. Otherwise, a separating

plane passing through xk for the region fx : �(x) � �(xk)g is computed. Clearly, one side of the

resulting plane contains the entirety of K in the �rst case, and contains the minimizer x� in the

other. In both cases the (k + 1)th ellipsoid is computed as the minimum-volume ellipsoid that

contain the intersection of the kth ellipsoid with the half space determined by the separating

plane. A closed-form formula for such an ellipsoid is known:

Ek+1 = fx : (x� xk+1)TX�1k+1(x� xk+1) � 1g;

where

xk+1 = xk �
1

n + 1
Xk~g and Xk+1 =

n2

n2 � 1

�
Xk �

2

n+ 1
Xk~g~g

TXk

�
;

and ~g is the normal to the separating plane. The algorithm stops when j�(xk)� �(x�)j � �

and  (xk) � 0. An upper bound on j�(xk)� �(x�)j is easily obtained from knowledge of a

subgradient gk to � at xk as follows,

�(x�) � �(xk) + gTk (x
� � xk);

therefore

�(xk)� �(x�) � �gTk (x� xk) � max
x2Ek

f�gTk (x� xk)g =
q
gTkXkgk;

using the formula for the extrema attained by a linear functional over an ellipsoid.

At each step the volume of the new ellipsoid is less than the volume of the previous one:

volume (Ek+1) � e�1=2nvolume (Ek);
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by a factor that depends only on the dimension n of the ambient space. This a�ords in turn a

conclusion that the number of steps K required to achieve �-accuracy solution satis�es,

K � 2n2 log(
c

�
);

where c is constant. Note that this number grows slowly with both dimension n and accuracy �

(n = 2 or 3 and is constant in our case). Note, as well, that each step of the algorithm requires

an evaluation of  (xk), an operation that is typically linear in the number of constraints used

to describe K. A more complete description can be found in [4, Chap. 14].

B Some Details Concerning the Optimal Ellipsoid

B.1 �log(detX) is Convex In the Region X > 0

Let X 2 IRn�n be a symmetric matrix, and let M be the number of distinct entries in X

(M = 1
2
n(n+ 1)). An alternative proof of the following theorem can be found in [2, proposition

11.8.9.5].

Theorem 4 The function �log(detX) is convex in the region of positive-de�nite matrices.

Proof: A smooth function f : IRM ! IR is convex if and only if its Hessian matrix,

D2f , is positive semide�nite [24]. In our case, let V 2 IRM be a symmetric n � n matrix,

and let �(t) : IR! IRM be a line passing through Z and having the direction V ,

�(t) = Z + tV:

Then we have to show that

d2

dt2

�����
t=0

(� log det(Z + tV )) � 0 for all V :

To evaluate this derivative we will need the stack notation introduced in Section 2. Using

this notation, the �rst derivative is

d

dt
(� log det(Z + tV )) = � 1

det(Z + tV )
(� � � ; [Z + tV ]ij ; � � �)V s;

where (� � � ; [Z + tV ]ij ; � � �) is a row vector and [Z + tV ]ij is the ij
th cofactor of Z + tV .

Using the identity (As)TBs = tr(ATB) [11], the last equation can be written as

d

dt
(� log det(Z + tV )) = � 1

det(Z + tV )
tr(([Z + tV ]ij)

TV ) = �tr([Z + tV ]�1V );

where we have used the linearity of tr(�), and the identity ([Aij ])
T = det(A)A�1.
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Taking the second derivative yields,

d2

dt2
(� log det(Z + tV )) = tr([Z + tV ]�1V [Z + tV ]�1V );

where we have used again the linearity of tr(�), and the fact that _A�1 = �A�1 _AA�1.

Substituting t = 0 in the last equation yields

d2

dt2

�����
t=0

(� log det(Z + tV )) = tr((Z�1V )2) � 0;

since, using the identity tr(AB) = tr(BA),

tr((Z�1V )2) = tr(Z�1V Z�1V ) = tr

�
(Z�

1
2V Z�

1
2 )T (Z�

1
2V Z�

1
2 )

�
� 0;

being the trace of a positive semi-de�nite matrix.

2

B.2 The Optimal n-Ellipsoid is Determined By an (n+ 1)-Ellipsoid

The following theorem asserts that the minimum-volume (n+1)-ellipsoid centered at the origin

of IRn+1 and containing P embedded at height xn+1 = 1 determines the minimum-volume n-

ellipsoid containing P by simply intersecting the (n+ 1)-ellipsoid with the plane xn+1 = 1 [20,

pp 229]. We will need the following lemma.

Let En+1(0; P ) be an (n+ 1)-ellipsoid centered at the origin of IRn+1. Its matrix P can be

written as

P =

"
P11 P12
PT
12 P22

#
;

where P11 is n � n, P12 is n � 1, and P22 is a scalar. The following lemma gives a formula for

the n-ellipsoid obtained by intersecting En+1(0; P ) with the plane xn+1 = 1.

Lemma B.1 The n-ellipsoid obtained by intersecting En+1(0; P ) with the plane xn+1 = 1, de-

noted by En(y; Y ), is given by

y = �P�111 P12 and Y =
1

1� �(P )P11;

where �(P ) is a scalar in the interval (0; 1) de�ned by

�(P ) = P22 � PT
12P

�1
11 P12: (15)

Thus, En(y; Y ) is described by the inequality

En(y; Y ) = fx 2 IRn : (x� y)TY (x� y) � 1g:
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Proof: All points (x1; : : :xn+1) inside En+1(0; P ) at height xn+1 = 1 must satisfy,

�
xT 1

�" P11 P12
PT
12 P22

# 
x

1

!
� 1 where x = (x1; : : :xn):

Expanding this inequality yields the inequality,

�
xT 1

� " P11 P12
PT
12 P22

# 
x

1

!
= kP 1=2

11 xk
2
+ 2(P

1=2
11 x)TP

�1=2
11 P12 + P22

= (x+ P�111 P12)
TP11(x+ P�111 P12) + P22 � PT

12P
�1
11 P12

� 1;

or, equivalently,

(x+ P�111 P12)
T

"
1

1� (P22 � PT
12P

�1
11 P12)

P11

#
(x+ P�111 P12) � 1:

Let us verify that 0 < �(P ) < 1. We will need the fact that a symmetric matrix is positive

de�nite if and only if all its principal minors are positive. In particular, this implies that

P11, all of whose principal minors being also principal minors of P , is positive de�nite.

Let us �rst verify that �(P ) > 0. Using the identity

detP = detP11 det

�(P )z }| {
(P22 � PT

12P
�1
11 P12); (16)

it must be that �(P ) > 0, since P and P11 are positive de�nite. To see that �(P ) < 1,

note that all points (x1; : : :xn; 1) inside En+1(0; P ) satisfy

�
xT 1

�" P11 P12
PT
12 P22

# 
x

1

!
= (x+ P�111 P12)

TP11(x+ P�111 P12)| {z }
�

+�(P ) � 1:

But the term (�) is positive since P11 is positive de�nite. Thus 1� �(P ) > 0.

2

We are now ready to prove that if En+1(0; P �) is the minimum-volume (n + 1)-ellipsoid

containing the embedded polyhedron P, then the n-ellipsoid obtained by intersecting En+1(0; P �)
with the plane xn+1 = 1 is the minimum-volume n-ellipsoid containing P. We shall also prove

the following related fact. Let E(0; P ) be an �-optimal (n+ 1)-ellipsoid, that is,

0 � (� log detP )� (� log detP �) � �;

or, equivalently,

1 � detP

detP �
� e��:

Then the n-ellipsoid obtained by intersecting En+1(0; P ) with the plane xn+1 = 1 is also �-

optimal.
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Theorem 5 Let En+1(0; P �) be the minimum-volume (n+ 1)-ellipsoid centered at the origin of

IRn+1 and containing the embedded P. Then En(y�; Y �), obtained by intersecting En+1(0; P �)
with the plane xn+1 = 1, is the minimum-volume n-ellipsoid containing P.

Moreover, if E(0; P ) is an �-optimal (n + 1)-ellipsoid containing the embedded P, then

En(y; Y ), obtained by intersecting En+1(0; P ) with the plane xn+1 = 1, is also �-optimal.

Proof: According to Lemma B.1 each (n+1)-ellipsoid E(0; P ) determines an n-ellipsoid

E(y(P ); Y (P )) at height xn+1 = 1, as well as a real number 0 < �(P ) < 1. It turns out

that every E(y; Y ) and 0 < � < 1 determine an (n + 1)-ellipsoid E(0; P ) that coincides
with E(y; Y ) in the plane at height xn+1 = 1. In fact, the resulting P (y; Y; �) is given by

the formula

P (y; Y; �) =

"
(1� �)Y �(1� �)Y y

�(1� �)(Y y)T �+ (1� �)yTY y

#
: (17)

Let us compute the determinant of P (y; Y; �),

detP (y; Y; �) = (1� �)n � det Y �
n
�+ (1� �)yTY y � (1� �)yTY y

o
= �(1� �)n detY;

(18)

where we have used the identity det(

"
A B

C D

#
) = det(A) det(D � CA�1B). Since

max
�;Y
f�(1� �)n det Y g = max

�
f�(1� �)ngmax

Y
fdet Y g;

it follows that detP (y; Y; �) attains its maximum exactly when det Y attains its maximum.

Equivalently, the (n + 1)-ellipsoid E(0; P ) attains its minimal volume exactly when the

volume of the corresponding n-ellipsoid E(y; Y ) attains its minimum. In fact, �(1 � �)n
for 0 < � < 1 attains its maximum at � = 1

n+1
and therefore

detP � =
1

n+ 1
(1 +

1

n
)�n detY �: (19)

Let us show that �-optimality of E(0; P ) implies �-optimality of E(y(P ); Y (P )). Given that

1 � detP

detP �
� e��;

we have to show that

1 � detY

det Y �
� e��;

where E(y�; Y �) is determined by E(0; P �). Using (18) and (19),

1 � detY

det Y �
=

1
n+1

(1 + 1
n
)�n

�(P )(1� �(P ))n
detP

detP �
�

1
n+1

(1 + 1
n
)�n

�(P )(1� �(P ))ne
��;

according to the theorem's hypothesis. But 0 < �(P ) < 1 according to Lemma B.1 , hence

the denominator attains its maximum at �(P ) = 1
n+1

, which implies in turn that

1
n+1(1 +

1
n)
�n

�(P )(1� �(P ))n � 1;

and the desired result is obtained.
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2

C Some Details Concerning the Distance Computation

This section contains a proof that the minimal eigenvalue of the matrix

M =

"
C �I
�bbT C

#
;

is isolated. We will need the following Lemma.

Lemma C.1 Let R 2 IRN�N be the rotation matrix that diagonalizes the block C in M ,

� = diag(�1; : : :�n) = RTCR:

Then the characteristic polynomial of M is

p(�) = p1(�)p2(�);

where

p1(�) =
NY
i=1

(�i � �)2 and p2(�) =
NX
i=1

�b2i
(�i � �)2

� 1;

where �b = RT b.

Proof: First note that"
RT 0

0 RT

# "
C � �I �I
�bbT C � �I

# "
R 0

0 R

#
=

"
�� �I �I
��b�bT �� �I

#
;

hence

det(M � �I) = (�1)N det

"
��b�bT �� �I
�� �I �I

#
:

Using the identity det(

"
A B

C D

#
) = det(D) det(A�BD�1C),

det(M � �I) = det(��b�bT + [�� �I ]2)
= det([�� �I ]2) det(�[�� �I ]�1�b�bT [�� �I ]�1 + I):

But, in general, det(uvT + I) = u � v + 1. Thus,

det(M � �I) = det([�� �I ]2)(�bT [�� �I ]�2�b� 1):

2
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We are now ready to prove that �� is isolated. Recall that after the coordinate transforma-

tion of equation (6) is applied, the objective function to be minimized becomes the quadratic

polynomial associated with the ellipsoid E(c; C), and the constraint becomes the unit ball.

Theorem 3 The minimal eigenvalue of M , ��, is negative real whenever the center c of

the ellipsoid E(c; C) is outside the unit ball. Moreover, all the other eigenvalues of M

satisfy

Ref�(M)g � �1 > 0;

where �1 is the minimal eigenvalue of C (C > 0).

Proof: First let us establish that det(M) < 0. This would imply thatM has at least one

negative real eigenvalue. Using the identities det(

"
A B

C D

#
) = det(D) det(A � BD�1C)

and det(uvT + I) = u � v + 1, we have that

detM = (�1)N det

"
�bbT C

C �I

#

= det(�bbT + C2)

= det2(C) det(1� bTC�2b):

Substituting b = Cc obtains,

detM = det2(C) det(1� kck2):

It follows that detM < 0 as long as kck2 > 1 i.e., when the center c is outside the unit

ball.

Next let us show that �� is isolated in the complex plane. The characteristic polynomial

of M , given in Lemma C.1, is a function of a complex variable z,

p(z) = p1(z)p2(z) =
NY
i=1

(�i � z)2
 

NX
i=1

�b2i
(�i � z)2

� 1

!
:

Consider the region of the complex plane de�ned by

Refzg < �1

(�1 > 0 is the minimal eigenvalue of C). Then, since �i � Refzg > 0 for i = 1; : : :N , the

polynomial p1(z) cannot vanish, and only p2(z) may become zero in this region.

The ith summand in p2(z) can be written as

�b2i
(�i � z)2

= �b2i
(�i � �z)2

(�2i + jzj2)2
= �b2i

(�i � Refzg)2 � Imfzg2 + 2j(�i � Refzg)Imfzg
(�2i + jzj2)2

:

It follows that the imaginary part of p2(z) is

Imfp2(z)g = 2Imfzg
NX
i=1

�b2i
�i � Refzg
(�2i + jzj

2)2
:
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But �i � Refzg > 0 for i = 1; : : :N . So the roots of p2(z) must occur when Imfzg= 0.

The polynomial p2(�) for � real has exactly one root in the interval (�1; �1). This

observation is made in [8] and is a consequence of the following two facts. The �rst,

lim
�!�1

p2(�) = �1 and lim
�!�

�

1

p2(�) = +1;

implies that p2(�) has at least one root in (�1; �1). The second,

d

d�
p2(�) = 2

NX
i=1

�b2i
(�i � �)3

> 0

(since �i � � > 0 for all � 2 (�1; �1) and i = 1; : : :N); implies that p2(�) is strictly

monotonic. This, together with the fact that detM < 0 imply that p2(�) has exactly one

root, �� < 0, in (�1; �1).

2
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