
A Decomposition Approach to Distributed Analysis of Networked
Systems

Cédric Langbort Lin Xiao Raffaello D’Andrea Stephen Boyd

Abstract— We present a simple distributed algorithm for
analyzing well-posedness and stability of a system composed
of different sub-units, interconnected over an arbitrary graph.
The procedure consists in solving a set of coupled linear
matrix inequalities via a subgradient method, with primal
decomposition. The proposed algorithm can be implemented in
parallel on the system’s graph and should prove more efficient
than conventional semidefinite programming solvers, for very
large systems with a high number of states and interconnection
variables.

I. INTRODUCTION

As modern systems are getting more and more complex
and modular, there is an increasing need for methods that
can assess stability of large-scale interconnections. An even
more challenging task is to design controllers for such
systems. For example, the US power grid is composed
of over 14,000 substations coupled over a dense network
[1]. Likewise, it is expected that smart structures used to
control turbulence on an airplane’s wing will consist of
hundred of thousands of distributed sensors and actuators,
[6]. In both cases, we thus have to deal with a very large
number of state, input and output variables; a situation
where current optimal control design methods, based on
semidefinite programming (SDP), are known to perform
poorly.
A very natural idea, then, is to try to find local conditions
which, when satisfied separately by the subsystems, guaran-
tee that the global system performs as desired. This allows
to replace the original large problem by a family of smaller,
tractable ones that can be solved independently (see e.g.
[9], [10], [12]). However, these decentralized conditions are
often conservative or do not allow to formulate dynamic
controller design as a convex program, when applied to the
closed-loop.
In [7], we showed that, for a particular class of systems
and interconnection relations, both these issues could be
resolved when looking for distributed rather than decentral-
ized conditions. The price to pay is that the obtained linear
matrix inequalities (LMIs) are not uncoupled. Indeed, as
we will review in Section 2, each edge of the system’s

C. Langbort is with the Department of Theoretical & Applied Mechan-
ics, Cornell University, 212 Kimball Hall, Ithaca NY 14853-1503, email:
cl263@cornell.edu

L. Xiao is with the Department of Aeronautics and Astronautics, Stan-
ford University, Stanford, CA 94305, email: lxiao@stanford.edu

Prof. D’Andrea is with the Department of Mechanical & Aerospace
Engineering, Cornell University, 101 Rhodes Hall, Ithaca, NY 14850,
email: rd28@cornell.edu

Prof. Boyd is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305, email: boyd@stanford.edu

interconnection graph contributes complicating variables to
the LMIs of the adjacent subsystems. However, it is still
possible to reduce the time needed to solve these coupled
LMIs by using a primal decomposition method. This clas-
sical method, which we describe in Section 3, solves an
optimization problem by holding the complicating variables
fixed and optimizing on the remaining ones. The resulting
subproblems can then also be solved independently.
In turn, we obtain an algorithm that not only allows us to
tackle stability analysis of very large networked systems
numerically, but can also be distributed directly over the
system’s network, using computing units localized at every
node and the preexisting communication channels.
We believe that the present application of primal decompo-
sition to distributed analysis is also of theoretical interest
as, to the best of our knowledge, this is the first practical
example where the resulting subproblems are semidefinite
program themselves.

Notation. Most of the notation is standard. We will
use the following shorthand: Given elements e1,...,eL in
some sets E1,...,EL cat

k≤i≤l
ei will designate the element

(ek, ..., el) ∈ Ek × ...×El when 1 ≤ k < l ≤ L. Likewise,
given matrices A1,...,AL, we let

diag
k≤i≤l

Ai :=

⎡
⎢⎢⎢⎣

Ak 0 . . . 0
0 Ak+1 . . . 0
...

...
. . .

...
0 0 . . . Al

⎤
⎥⎥⎥⎦ .

We will denote the n×m zero matrix by 0n×m and, when
A and B are matrices, write A < B (respectively A ≤
B) to mean that B − A is symmetric, positive-definite
(respectively positive semidefinite). Finally, we define the
following scalar product (that induces Frobenius norm):
A • B := trace(A∗B).

II. PRELIMINARIES

A. Interconnected systems

In this section, we review the framework and basic results
of [7], that will be used throughout the paper.

An interconnected system, as depicted in Figure 1, is
composed of L possibly different linear time-invariant sub-
systems. The graph G = (V, E) of an interconnected system
is the complete undirected graph on L vertices G1, ..., GL.
Each vertex Gi ∈ V represents a linear time-invariant
finite dimensional subsystem. To every edge (Gi, Gj), i �=
j, we associate its size, an integer nij ≥ 0, with the
convention that nij = nji for all i, j. By allowing nij = 0,

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

ThC10.1

3980

we also capture the case where subsystems Gi and Gj

are not interconnected. For our purposes, all the relevant
information regarding the topology of the interconnection
can be summarized by a symmetric L by L matrix N , with
entries nij , the so-called (weighted) adjacency matrix of
graph G, [5]. We will denote by R

N the vector space of
partitioned vectors v = (v1, · · · , vL), where each vi can
itself be further partitioned as vi = (vi1, · · · , viL), each
vij being of size nij . When v ∈ R

N , each vi is of size
ni :=

∑L
j=1 nij , for all i = 1...L. Each subsystem Gi is

2

1 3

1 0

2

Fig. 1. An example of interconnected system with L = 3 subsystems. The
integers indicated on the graph are the size nij of the edges. For example
n12 = 1 and n23 = 0. i.e. subsystem 2 and 3 cannot communicate.

captured by the following state-space equations:

[
ẋi(t)
wi(t)

]
=

[
Ai

TT Ai
TS

Ai
ST Ai

SS

] [
xi(t)
vi(t)

]
for all t ≥ 0

xi(0) = x0
i

(1)

where xi(t) ∈ R
mi and vi(t), wi(t) ∈ R

ni for all t ≥ 0. The
latter signals are the overall interconnection signals used by
subsystem Gi. For each given i, we partition these signals
further into vij and wij— the interconnection signals Gi

shares with Gj . By adding zero-components to the signals
of smaller size and modifying the state-space matrices of
Equation 1 if this is not the case, we can always assume that
vij(t), vji(t), wij(t) and wji(t) all belong to R

nij for all
t ≥ 0. This, in turn, naturally defines two signals v and w
such that v(t), w(t) ∈ R

N for all t ≥ 0. Note that vij and v
designate a R

nij and R
N -valued signal, respectively while

vij is a component of the vector v ∈ R
N . This construction

allows us to think of Ai
SS as a square, ni by ni, matrix

without loss of generality.
Finally, we can get a description of the whole system by

closing all loops and relating wij to vji, for all i, j. The
simplest way this can be done is by imposing the so-called
ideal interconnection relation

(w(t), v(t)) ∈ SI for all t ≥ 0, (2)

where the interconnection subspace SI is defined as

SI :=
{
(w, v) ∈ R

N × R
N : wji = vij, ∀i, j = 1...L

}
.
(3)

We refer to [7] for the study of systems with more gen-
eral interconnection relations, defined by integral quadratic
constraints.

B. Sufficient conditions for well-posedness and stability

We say that an interconnected system, defined by adja-
cency matrix N ∈ R

L×L and state-space matrices as per
Equation 1 is well-posed if the two subspaces SI and SB
satisfy

SI ∩ SB = {0},
where

SB :=
{

(w, v) ∈ R
N × R

N :
[

wi

vi

]
∈ Si

B ∀i = 1...L
}

(4)

Si
B := Im

[
Ai

SS

I

]
.

Well-posedness guarantees that all signals circulating
in the loops of the interconnected system are uniquely
determined and belong to L2 for any initial conditions x0

i .
We will say that a well-posed interconnected system is
stable if for any set {x0

i , i = 1...L} of initial conditions, xi

is a smooth function of time that approaches zero as time
goes to infinity, for all i. The main analysis result of [7] is
the following

Theorem 1: An interconnected system is well-posed and
stable if there exist symmetric matrices X i

T ∈ R
mi×mi and

X11
ij ∈ R

nij×nij for all i, j = 1...L, and X12
ij ∈ R

nij×nij

for all i ≥ j, with X12
ii skew-symmetric, such that X i

T > 0
and⎡

⎢⎢⎣
I 0

Ai
TT Ai

TS

Ai
ST Ai

SS

0 I

⎤
⎥⎥⎦
∗ ⎡
⎢⎢⎣

0 Xi
T 0 0

Xi
T 0 0 0

0 0 Z11
i Z12

i

0 0 (Z12
i)∗ Z22

i

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

I 0
Ai

TT Ai
TS

Ai
ST Ai

SS

0 I

⎤
⎥⎥⎦ < 0

(5)

for all i = 1...L, where

Z11
i := − diag

1≤j≤L
X11

ij ,

Z22
i := diag

1≤j≤L
X11

ji ,

Z12
i := diag(−diag

1≤j≤i
X12

ij , diag
i<j≤L

(X12
ji)∗).

Theorem 1 follows from simple dissipativity arguments,
each LMI meaning that the corresponding subsystem is
dissipative with respect to supply rate

L∑
j=1

[
wij

vij

]∗ [
X11

ij X12
ij

X12
ij

∗ −X11
ji

] [
wij

vij

]
,

with storage function x∗
i X

i
Txi. Once again, we refer to [7]

for more details on this and related results. Our goal, in
the remainder of the paper, is to introduce an efficient
distributed algorithm for checking feasibility of LMI (5),
using the particular structure of these inequalities. For easy
later reference, we rewrite each one as

Li(Xi
T,Xi) < 0 (6)

3981

where, for all i = 1...L, Li is an affine mapping and variable
Xi is defined as

Xi :=
(

cat
1≤j≤L

X11
ij , cat

1≤j≤L
X11

ji , cat
1≤j≤i

X12
ij , cat

i<j≤i
X12

ji

)
.

We also let X := cat
1≤i≤L

Xi.

III. A DISTRIBUTED ALGORITHM

In this section, we explain how to use a simple decompo-
sition method to solve analysis conditions of Theorem 1 in a
distributed fashion. We emphasize that the same technique
is equally applicable to control design and that we only
restricted ourselves to analysis for the sake of simplicity.
For similar reasons, we purposely focused on a conceptually
simple approach. We are more interested in pointing out
the connection between distributed optimization algorithms
and distributed control than in getting into the specifics and
fine-tuning of a particular algorithm.

A. Subgradient methods and primal decomposition

We start by recalling the main features of the method of
primal decomposition. In order to keep with the spirit of the
rest of the paper, we do so in the context of optimization
over graphs.
Let a graph G be given and assume that each vertex i
has a set of “private variables” xi that no other node
can access, while another set of variables, y, is accessible
to all vertices. We want to solve the following convex
optimization problem

min
∑

i

fi(xi, y)

subject to xi ∈ Ci for all i

(7)

where, for each i, fi is a convex function and Ci is a convex
set. More precisely, we want to design an optimization
algorithm that respects the partition between variables,
i.e. that any operation requiring knowledge of xi should
be performed by vertex i. Such an algorithm is easily
parallelized, since all these operations can be executed at the
same time, provided each vertex has computational power.

The first step of the primal decomposition method hinges
on the fact that, since (7) is a convex problem, it can
be solved by optimizing with respect to each variable
separately. In other words, if we define

φi(y) := min
xi∈Ci

fi(xi, y) and φ(y) :=
L∑

i=1

φi(y)

for all y, then (x̄1, ..., x̄L, ȳ) is an optimal point for problem
(7) if and only if

ȳ = argmin φ(y) (8a)

x̄i = argmin
xi∈Ci

fi(xi, ȳ), (8b)

and the optimal value is given by φ(ȳ). Thus, solving
problem (7) is equivalent to minimizing function φ. This
new optimization problem is often referred to as the master

problem.
Solving (8a) requires some care, as function φ is typically
not differentiable and classical algorithms from smooth
optimization theory, such as Newton’s method, cannot be
readily applied. However, each φi is convex because we
assumed fi to be jointly convex in xi and y. As a result,
φ is also a convex function of y and has a non-empty
(convex, compact) subdifferential ∂φ(y) at each point in
the interior of its domain, [2], [4]. It is thus possible to
replace gradients by subgradients and use them as search
directions to determine the minimum of φ. More precisely,
we have the following result from [3]:

Theorem 2 (Subgradient Method): Let {αk}k∈N be a
nonsummable diminishing sequence of nonnegative num-
bers i.e.

lim
k→∞

αk = 0 ;
∞∑

k=1

αk = ∞ ,

and let the sequence {y(k)} be defined by

y(k) = y(k−1) − αk−1g(y(k−1)) (9)

where, for each k, g(y(k)) is a subgradient of φ at y(k).
Assume further that there exists G > 0 such that |g(yk)| ≤
G for all k ≥ 0. Then, the sequence {φ(k)

best} defined by

φ
(k)
best := min

{
φ

(k−1)
best , φ(y(k))

}

converges to the optimal value of master problem (8a).
Note that while there is some similarity between New-

ton’s and the subgradient method, the latter is not a descent
method. This is why one has to keep track of the best point
found so far when defining φ

(k)
best.

The great advantage of solving optimization problem (7) by
resorting to a master problem and using subgradient itera-
tions is that these subgradients can be calculated separately
by each node, at each step of the algorithm, and that the
whole procedure can thus be parallelized. Indeed, using the
rules of subgradient calculus (see, e.g. [4]), we can write

∂φ(y) =
L∑

i=1

∂φi(y) for all y,

which means that a subgradient of φ at point y can be
computed by letting node i find a subgradient gi(y) of
φi, for each i. Combining this observation with Theorem
2 yields the following distributed algorithm for solving
problem (7):

Algorithm 1 Primal Decomposition

Initialize y to y(0)

for k = 1 to # of steps do
1. (distributed calculation) Each vertex computes
gi(y(k)) and broadcasts the value
2. Update y(k+1) according to (9) and broadcast the
value

end for.

3982

At this stage, it is still unclear how broadcasting should
be performed. It might also appear as though step 2 has to
be executed by a central unit accessing all subgradients or
through flooding. We will soon see that this basic algorithm
can in fact be completely distributed when applied to
stability analysis of networked systems.

B. Application to distributed analysis

In order to use primal decomposition for networked sys-
tem analysis, we should first reformulate the LMI conditions
of Theorem 1 as an optimization problem of the form (7).
This is the content of the following

Proposition 1: LMI (5) are strictly feasible if and only if
there exists ε > 0 such that the optimal value ϕ of convex
program

min

L∑
i=1

ti

subject to Li(Xi
T,Xi) ≤ tiI

Xi
T > 0 ; ti ≥ −ε

(10)

is strictly negative and, at optimum, ti < 0 for all i.
Proof: The necessity part is clear. For sufficiency,

assume LMI (5) are strictly feasible. Then there exists X̄ ,
ε0 > 0 and X̄i

T for all i such that Li(X̄i
T, X̄i) ≤ −ε0I for all

i. Hence, if 0 < ε < ε0, the point Xi
T = X̄i

T, Xi = X̄i, ti =
−ε (i = 1...L) is feasible for problem (10). Hence

−Lε ≤ ϕ ≤ −Lε,

which implies ϕ = −Lε < 0 and ti < 0 for all i at
optimum.

According to Proposition 1, we can thus deduce feasibil-
ity of LMI (5) by solving convex program (10) for a fixed,
sufficiently small, value of ε and checking the corresponding
optimal value. We can perform this minimization via the
decomposition method outlined above, provided we know
how to compute a subgradient of function φi(Xi), defined
as the optimal value of convex program P (Xi):

min ti (11a)

subject to Li(Xi
T,Xi) ≤ tiI (11b)

Xi
T > 0 ; ti ≥ −ε. (11c)

A subgradient of φi at Xi will be denoted g(Xi). If we
decompose Xi into its components, we can define partial
subgradients gX11

ij
(Xi) for all j = 1...L, by considering

φi as a function of X11
ij , all other components being held

fixed. Of course, this definition generalizes to all other
components of Xi.
With the notation of the preceding section, we see that, for
our problem, the private variable xi of each vertex i is the
pair (ti,Xi

T), while X corresponds to the shared variable
y. Note that, in contrast with the situation of section III-A,
vertex i does not need to access all the components of X but
only Xi. More precisely, neighboring vertices i and j (i ≥ j)
share variables X11

ij , X11
ji and X12

ij but non-communicating

vertices do not share any variables. As a result, X never
needs to be updated as a whole when taking a step in the
subgradient direction. Each vertex can update the relevant
components independently according to
(
X11

ij

)(k+1)
=

(
X11

ij

)(k) − αk

(
gX11

ij
(X (k)

i) + gX11
ij

(X (k)
j)

)
(12a)(

X11
ji

)(k+1)
=

(
X11

ji

)(k) − αk

(
gX11

ji
(X (k)

i) + gX11
ji

(X (k)
j)

)
(12b)(

X12
ij

)(k+1)
=

(
X12

ij

)(k) − αk

(
gX12

ij
(X (k)

i) + gX12
ij

(X (k)
j)

)
,

(12c)

when it receives the current value of the subgradients from
its neighbors. Hence, we see that when using Algorithm
1 for networked systems analysis, we can not only run the
calculations of step 1 in parallel, each subsystem computing
its own subgradient, but also restrict broadcasting of step
1 and 2 to direct neighbor-to-neighbor communication.
However, some kind of global communication (or flooding)
is still needed to determine when the algorithm terminates,
because every node has to know whether φi(y(k)) < 0 for
all i.
We now explain how to calculate the subgradients.

Proposition 2: Let 1 ≤ i ≤ L. Let Si be the dual variable
associated with constraint (11b) in minimization problem
P (Xi) and S̄i its value at optimum. Then, the components
of a subgradient of φi are given by

gX11
ij

(Xi) = −E∗
j MiS̄iM

∗
i Ej , (13a)

gX11
ji

(Xi) = F ∗
j MiS̄iM

∗
i Fj , (13b)

gX12
ij

(Xi) = −E∗
j MiS̄iM

∗
i Fj − F ∗

j MiS̄iM
∗
i Ej if j ≤ i,

(13c)

gX12
ji

(Xi) = E∗
j MiS̄iM

∗
i Fj + F ∗

j MiS̄iM
∗
i Ej if j > i,

(13d)

where

Mi =
[

Ai
ST Ai

SS

0 I

]
Ej =

[
Tj

0ni×nij

]
,

and

Fj =
[

0ni×nij

Tj

]
, Tj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0ni1×nij

...
0ni(j−1)×nij

Inij

0ni(j+1)×nij

...
0niL×nij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is thus very easy to obtain a subgradient of φi if we
use a primal-dual algorithm, such as SeDuMi [11], to solve
semidefinite program (11a).

Proof: The proof is an adaptation of results of [2],
that we give for completeness. Let Xi be fixed. Consider

3983

the Lagrangian function of problem P (Xi),

L(Xi
T, ti, Si, Yi, λi) :=ti + Si •

(Li(Xi
T,Xi) − tiI

)
− Yi • Xi

T − λi(ti + ε)
(14)

and its Lagrange dual function, defined for Si > 0, Yi > 0
and λi ≥ 0 by

K(Si, Yi, λi) := inf
Xi

T ,ti

L(Xi
T, ti, Si, Yi, λi).

Since P (Xi) is clearly strictly feasible (just choose ti large
enough), strong duality holds for this problem and its dual,
which means that both the primal and dual optimal values
are attained and that they are equal. In other words, there
exists S̄i > 0, Ȳi > 0 and λ̄i ≥ 0 such that

φi(Xi) = K(S̄i, Ȳi, λ̄i).

Using the definition of K, we then get that

φi(Xi) ≤ ti + S̄i •
(Li(Xi

T,Xi) − tiI
)− Ȳi •Xi

T − λ̄i(ti +ε)

for all ti and Xi
T. In particular, if (ti,Xi

T) is feasible for
P (Xi + ∆Xi), then

φi(Xi) ≤ ti − S̄i • Li(0,∆Xi) − Ȳi • Xi
T − λ̄i(ti + ε)

≤ ti − S̄i • Li(0,∆Xi),
(15)

where, in the first inequality, we have used that Li is affine
and, in the second, that ti + ε ≥ 0, Xi

T > 0. Taking the
infimum over such feasible pairs, we deduce

φi(Xi) + S̄i • Li(0,∆Xi) ≤ φi(Xi + ∆Xi).

The result then follows from expressing Li(0,∆Xi) in
terms of the components of Xi.

IV. EXAMPLE

In this section, we give preliminary results comparing the
performance of the proposed distributed algorithm to that of
a centralized scheme, which does not exploit the structure of
LMIs (5) and solves them directly with SeDuMi. Our test-
system is depicted in Figure 2. Each subsystem has mi = 10
states and the dimension nij of each interconnection signal
is as indicated on the system’s graph. Subsystems have been
chosen at random, with the constraint that they all be stable
and contractive, i.e.

‖wi‖ < ‖vi‖ for all i = 1...L,

where ‖.‖ denotes the L2 norm of a signal. While it is
shown in [7] that LMIs (5) can be used to prove stability
of an interconnection of unstable or non-contractive subsys-
tems, these two conditions ensure that the LMIs are always
strictly feasible (just take X11

ij = Inij
, X12

ij = 0 for all
i, j and, for Xi

T, any solution to the Kalman-Yakubovich-
Popov LMI condition ensuring that subsystem i has small
gain). According to Proposition 1, we thus know that
both algorithms converge in theory and we can evaluate
performance by focusing solely on speed of convergence.

1

4

2

3

5

50

25

25

50

2550

Fig. 2. ‘Large’ interconnected system with L = 5 subsystems. The
integers indicated on the graph are the size nij of the edges.

When applied to the interconnected system of Figure
2, the centralized method simply fails. The program runs
out of memory before it can complete a single iteration of
the interior-point algorithm. This is due to the very large
dimension of the interconnection signals and corresponding
variables X11

ij and X12
ij . On the other hand, the size of

these scales should not affect the running time of the primal
decomposition method, since they are held constant during
every iteration. We thus expect our algorithm to perform
well on this example and, more generally, for systems with
dense networks and high communication rates.
This is indeed the case, as can be seen on Figure 3. Starting
with a random value of X (0), the subgradient algorithm con-
verges and stops at a negative value of φbest. Note that we
stopped the iterations as soon as φ

(k)
best < 0 and φi(y(k)) < 0

for all i, which is all we need to establish feasibility of LMI
(5), and did not wait to attain the minimum of problem (10).
The whole process took approximately 30 minutes on a 1.6
GHz workstation, when calculating all subgradients on the
same machine, one after the other, at each step. Provided
transmission delays and idle time are negligible, we can
thus expect that a fully distributed implementation of the
algorithm, where the subgradients are computed in parallel,
can certify well-posedness and stability of the system in
about 6 minutes.

V. CONCLUDING REMARKS

In this paper, we have set the stage for the use of
distributed optimization methods for analysis of large-scale
networked systems. In particular, we have developed a
simple distributed algorithm based on primal decomposition
and subgradient methods.
There are many ways in which this basic algorithm can be
improved. First, while it can handle systems with a large
number of interconnection signals, which are completely out
of reach for conventional methods, our algorithm converges
rather slowly. The main reason for this is that one has
to solve L semidefinite programs at each step, which
requires an important computational effort. As explained
before, parallelizing calculations should help reduce wall-
clock time but only provided synchronization issues and
communication delays between subsystems are properly
addressed. An encouraging result in this direction can be

3984

20 40 60 80 100 120
-0.005

0

0.005

0.01

0.015

0.02

0.025

k

φ
be
st
(k
)

ε=0.001

0

Fig. 3. Best value for problem (10) versus iteration number k, in
the subgradient method with nonsummable diminishing step αk = 1√

k
.

The algorithm stopped before reaching optimum, for the smallest value
of k such that φi(y

(k)) < 0 for all i. The corresponding values are:
φ1(y(k)) = −0.00027853, φ2(y(k)) = −5.7078 × 10−6, φ3(y(k)) =
−0.00023152 and φ4(y(k)) = φ5(y(k)) = −0.001.

found in [8], where it is shown that updates (9) can be
performed asynchronously, as new subgradients become
available, as long as all partial subgradients are used with
the same long-time frequency. We plan to investigate the
role of synchronization in more details in future work.
Another drawback of our method is that it is difficult to
discriminate between slow convergence of the algorithm
and infeasibility of the original LMI (5). This is because
the theoretical upper-bounds on the number of iterations
needed to approximate the optimal value of problem (10)
with a prescribed tolerance are hard to use in practice. We
are currently exploring primal-dual subgradient methods,
which should provide a better convergence criterion than
the present method.

ACKNOWLEDGMENTS

This work was funded in part by a NSF grant for “Design
of Robust, Networked Control Systems via Convex Opti-
mization” and AFOSR grant F49620-01-1-0119. C.L. would
like to thank Ramu Chandra for many helpful discussions.

REFERENCES

[1] R. Albert, I. Albert and G. L. Nakarado. Structural Vulnerabil-
ity of the North American Power Grid. To appear in Physical
Review E, available at http://xxx.lanl.gov/abs/cond-
mat/0401084(2004).

[2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2003.

[3] S. Boyd, L.Xiao and A. Mutapcic, Lecture Notes for EE392o,
Stanford University, Autumn 2003.

[4] F. H. Clarke, Nonsmooth Analysis and Optimization, Wiley-
Interscience, 1983.

[5] R. Diestel. Graph Theory. Second edition, Graduate Texts in Math-
ematics, Springer Verlag.

[6] J. Kim, Control of turbulent boundary layers. Physics of Fluids, vol.
15 no. 5, May 2003.

[7] C. Langbort and R. D’Andrea, Distributed Control of Heterogeneous
Systems Interconnected over an Arbitrary Graph. In Proc. IEEE
Conference on Decision and Control, 2003.

[8] A. Nedic, D. Bertsekas and V. Borkar. Distributed Asynchronous
Incremental Subgradient Methods. In Proceedings of the March 2000
Haifa Workshop on “Inherently Parallel Algorithms in Feasibility and
Optimization and their Applications”, D. Butnariu, Y. Censor, and S.
Reich (Eds.), Elsevier, Amsterdam, 2001.

[9] M. Rotkowitz and S. Lall. Decentralized control information struc-
tures preserved under feedback. In Proc. IEEE Conference on
Decision and Control, 2002.

[10] G. Scorletti and G. Duc. An LMI approach to decentralized control.
International Journal of Control, vol. 74, no. 3, pp. 211-224, 2001.

[11] J. F. Sturm. Using SeDuMi, a Matlab Toolbox for Optimization over
Symmetric Cones. Optimization Methods and Sofwares, vol. 11-12,
pp.625-653, 1999.

[12] P. Voulgaris. A convex characterization of classes of problems in
control with specifi c interaction and communication structures. UIUC
Technical Report, AAE 01 06 UILU ENG 01-05-06, 2001.

3985

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

