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Abstract— The focus of this paper is to develop a frame-

work for distributed estimation via convex optimization.

We deal with a network of complex sensor subsystems with

local estimation and signal processing. More specifically,

the sensor subsystems locally solve a maximum likelihood

(or maximum a posteriori probability) estimation problem

by maximizing a (strictly) concave log-likelihood function

subject to convex constraints. These local implementations

are not revealed outside the subsystem. The subsystems

interact with one another via convex coupling constraints.

We discuss a distributed estimation scheme to fuse the

local subsystem estimates into a globally optimal estimate

that satisfies the coupling constraints. The approach uses

dual decomposition techniques in combination with the

subgradient method to develop a simple distributed es-

timation algorithm. Many existing methods of data fu-

sion are suboptimal, i.e., they do not maximize the log-

likelihood exactly but rather ‘fuse’ partial results from

many processors. For linear gaussian formulation, least

mean square (LMS) consensus provides optimal (maximum

likelihood) solution. The main contribution of this work is

to provide a new approach for data fusion which is based

on distributed convex optimization. It applies to a class of

problems, described by concave log-likelihood functions,

which is much broader than the LMS consensus setup.

I. INTRODUCTION

This paper is about data fusion, which is estimation

with the help of distributed sensors and distributed pro-

cessors. We consider a system consisting of a collection

of sensor subsystems, each receiving noisy measure-

ments pertaining to its unknown parameters. The sensor

subsystems have their own local estimation routines,
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which we assume involve maximization of a concave

log-likelihood function subject to convex constraints.

The subsystems interact with one another via cou-

pling (consistency) constraints. The goal is to fuse

the individual subsystem estimates to obtain a globally

maximal likelihood estimate, subject to the consistency

constraints.

There is a large relevant body of prior literature on

the general theory of distributed algorithms [Lyn96],

[Tel94], distributed and parallel computation [BT97],

and distributed optimization [Sim91], [HK00]. The dis-

tributed estimation framework lends itself to the use

of decomposition methods. Decomposition is a standard

method used to solve a large-scale problem by breaking

it up into smaller subproblems, and solving the sub-

problems independently (locally) [GSV01]. The chal-

lenge is to coordinate the solution of the subproblems

to achieve globally optimal and consistent estimates.

Decomposition methods have a long history in optimiza-

tion, going back to the Dantzig-Wolfe decomposition

[DW60] and Benders decomposition [Ben62]. A more

recent reference on decomposition methods is [Ber99].

For decomposition applications applied to networking

problems see [KMT97], [CLCD07]. These methods

were originally developed to exploit problem structure

in order to achieve significant gains in computational

efficiency and reductions in computer memory require-

ments. Decomposition methods support the isolation of

the subsystems except through a small interface, which

is of great interest in distributed implementation.

We combine the dual decomposition approach with

the subgradient method, which is a simple algorithm for

minimizing a nondifferentiable convex function. Mini-

mizing the dual function using the subgradient method
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preserves the distributed architecture of the estimation

problem. Subgradient methods were developed in the

1970s by Shor in the Soviet Union. The main reference

is his book [Sho85]. Other useful books on this topic

include [NY83], [Akg84], [Pol87], [CZ97], [Sho98],

[Ber99], [Nes04], [Rus06]. Some interesting recent re-

search papers on subgradient methods are [NB01] and

[Nes05].

This paper is organized as follows: Section II de-

scribes the general framework for the distributed es-

timation problem. In Section III we give a simple

conceptual example to explain the general framework.

Section IV describes the solution approach based on

dual decomposition and subgradient method. A large

scale target tracking example is presented in Section V

to illustrate the proposed approach. Some concluding

remarks are given in Section VI.

II. FRAMEWORK FOR DISTRIBUTED ESTIMATION

We describe a general framework for distributed esti-

mation where we have K subsystems. The subsystems

are complex groups of sensors with local estimation and

signal processing. We let xi ∈ Rni and yi ∈ Rpi denote

the unknown private and public variables of subsystem

i. Each subsystem has a local (strictly) concave log-

likelihood function li : Rni × Rpi . The overall log-

likelihood function of the system is given by

l(x, y) = l1(x1, y1) + . . . + lK(xK , yK).

If the subsystem variables are a priori known to lie in a

constraint set Ci ⊆ Rni ×Rpi , we have local constraints

(xi, yi) ∈ Ci.

Here Ci is a feasible set for subsystem i, presumably

described by linear equalities and convex inequalities.

Additionally, we allow interaction between the sub-

systems. We assume the K subsystems are coupled

through constraints that require various subsets of com-

ponents of the public variables to be equal. These con-

straints are called consistency constraints. In order to de-

scribe these constraints we collect all the public variables

together into one vector variable y = (y1, . . . , yK) ∈
Rp, where p = p1 + · · · + pK is the total number of

(scalar) public variables. We use the notation (y)i to

denote the ith (scalar) component of y, for i = 1, . . . , p

(in order to distinguish it from yi, which refers to the

portion of y associated with subsystem i).
We suppose there are N consistency constraints, and

introduce a vector z ∈ RN that gives the common values

of the public variables in each consistency constraint. We

can express the constraints as

y = Ez,

where E ∈ Rp×N is the matrix with

Eij =

{

1 (y)i is in constraint j

0 otherwise.

The matrix E specifies the set of consistency constraints

for the given subsystem interaction. We will let Ei ∈
Rpi×N denote the partitioning of the rows of E into

blocks associated with the different subsystems, so that

yi = Eiz.

The maximum likelihood estimation problem in the

presence of subsystem interactions is given by

maximize l1(x1, y1) + · · · + lK(xK , yK)

subject to (xi, yi) ∈ Ci, i = 1, . . . , K

yi = Eiz, i = 1, . . . , K,

(1)

with variables xi, yi, and z. Note that the problem

is completely separable in the absence of consistency

constraints.

A. Hypergraph Representation

We can represent this distributed estimation frame-

work as a hypergraph. The nodes in the hypergraph

are associated with individual subsystems which have

local log-likelihood functions and local constraints. The

hyperedges (or nets) are associated with consistency

constraints. A link is a hyperedge between two nodes

and corresponds to a constraint between the two sub-

systems represented by the nodes. z is a vector of

net variables that specifies the common values of the

public variables on the N nets. The matrix E specifies

the complete netlist, or set of hyperedges, for all the

subsystem interactions. The matrix Ei in (1) is a 0-1

matrix that maps the vector of net variables into the

public variables of subsystem i.

B. Applications

Estimation problems with an inherently distributed

architecture arise naturally in many applications in di-

agnostics, networks, image processing, and target track-

ing. In distributed diagnostics, we have a collection of
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sensor subsystems estimating damage at various points

on a particular surface. The local constraints in a dam-

age estimation problem may represent monotonicity of

damage parameters, i.e., damage can only get worse.

The consistency constraints can be used to specify

the requirement that damage estimates at a (common)

point obtained by different subsystems should agree.

In some image processing problems, pixels are only

coupled to some of their neighbors. In this case, any

strip with a width exceeding the interaction distance

between pixels, and which disconnects the image plane,

represents the coupling constraints between partitioned

image problems.

III. SIMPLE CLASS EXAMPLE: THREE SUBSYSTEMS

We describe the general framework of Section II by

a simple conceptual example. Figure 1 shows a system

with three subsystems labeled 1, 2, and 3. Subsystem

1 has private variables x1 ∈ Rn1 and a public variable

y1 ∈ R. Subsystem 2 has private variables x2 ∈ Rn2

and a public variable y2 ∈ R2. Subsystem 3 has private

variables x3 ∈ Rn3 and a public variable y3 ∈ R.

This system has a chain structure with two edges:

the first edge corresponds to the consistency constraint

y1 = y2(1), and the second edge corresponds to the

consistency constraint y2(2) = y3.

In order to describe these constraints in the desired

form, we collect the three public variables into one vec-

tor variable y = (y1, y2, y3) ∈ R4. The two constraints

in terms of the components of y are (y)1 = (y)2 and

(y)3 = (y)4. We introduce a vector z = (z1, z2) ∈ R2

that gives the common values of the public variables

on each link. The rows of matrix E ∈ R4×2 that

specifies the two links can be partitioned into three

blocks associated with the three subsystems where

E1 =
[

1 0
]

, E2 =

[

1 0

0 1

]

, E3 =
[

0 1
]

.

The maximum likelihood estimation problem of this

system with the consistency constraints is

maximize l1(x1, y1) + l2(x2, y2) + l3(x3, y3)

subject to (xi, yi) ∈ Ci, i = 1, 2, 3

yi = Eiz, i = 1, 2, 3.

1 2 3

Fig. 1. Chain structure, with three subsystems and two coupling

constraints.

IV. DUAL DECOMPOSITION

We use dual decomposition to solve the maximum

likelihood estimation problem (1) in a distributed setting.

The first step is to form the partial Lagrangian, by

introducing Lagrange multipliers only for the coupling

constraint

L(x, y, z, ν) =
K

∑

i=1

li(xi, yi) − νT (y − Ez)

=
K

∑

i=1

(

li(xi, yi) − νT
i yi

)

+ νT Ez,

where ν ∈ Rp is the Lagrange multiplier associated with

y = Ez, and νi is the subvector of ν associated with

the ith subsystem. We let q denote the dual function.

To find the dual function we first maximize over z,

which results in the condition ET ν = 0 for q(ν) < ∞.

This condition states that for each net, the sum of the

Lagrange multipliers over the net is zero.

We can now solve the following subproblems inde-

pendently for each subsystem i give ν

maximize
xi,yi

li(xi, yi) − νT
i yi

subject to (xi, yi) ∈ Ci.
(2)

We assume that the local log-likelihood functions

li(xi, yi) are strictly concave. The solution (x∗
i , y

∗
i ) to

each subproblem is therefore unique. If we use qi(ν) to

denote the optimal value of each subproblem, then the

dual of the original problem (1) with variable ν is

minimize
ν

q(ν) =
∑K

i=1 qi(νi)

subject to ET ν = 0.
(3)

We refer to (3) as the dual decomposition master

problem. We assume that strong duality holds, i.e., the

duality gap reduces to zero. This implies that the primal

problem (1) can be equivalently solved by solving the

dual problem (3).
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A. Solution via subgradient method

In this paper, we use a projected subgradient method

to develop a simple decentralized algorithm to solve the

dual master problem. The basic subgradient method for

an unconstrained problem uses the iteration

ν(k+1) = ν(k) − αkg(k),

where ν(k) is the kth iterate, g(k) is any subgradient of

q(ν) at the ν(k), and αk > 0 is the kth step size. At

each iteration of the subgradient method, we take a step

in the direction of negative subgradient. A subgradient

of qi at νi is simply −y∗
i , which is the optimal value

of yi in the subproblem (2). The projected subgradient

method is given by

ν(k+1) = P
(

ν(k) − αkg(k)
)

,

where P is the (Euclidean) projection on the feasible

set for ν. Since the feasible set in problem (3) is affine,

i.e., {ν | ET ν = 0} where ET is fat and full rank, the

projection operator is affine, and given by

P (z) = z − E(ET E)−1ET z.

In this case, we can simplify the subgradient update to

ν(k+1) = ν(k) − αk(I − E(ET E)−1ET )g(k)

= ν(k) − αkPN (ET )g
(k).

Thus, we simply project the current subgradient onto the

nullspace of ET , and then update as usual. Note that

this update is not the same as the projected subgradient

update when the feasible set is not affine, because in this

case the projection operator is not affine. The projection

onto the feasible set {ν | ET ν = 0}, simply consists

of vectors whose sum over each net is zero. This is

particularly easy to work out since

ET E = diag(d1, . . . , dN ),

where di is the degree of net i, i.e., the number of sub-

systems adjacent to net i. For u ∈ Rp, (ET E)−1ET u

gives the average, over each net, of the entries in the

vector u. Thus, (ET E)−1ET u is the vector obtained

by replacing each entry of u with its average over

its associated net. Finally, projection of u onto the

feasible set is obtained by subtracting from each entry

the average of other values in the associated net. Dual

decomposition, with a subgradient method for the master

problem, gives the following algorithm.

given initial price vector ν that satisfies ET ν = 0 (e.g.,

ν = 0).

repeat

Optimize subsystems (separately).

Solve subproblems (2) to obtain x∗
i , y∗

i .

Compute average of public variables over each net.

ẑ := (ET E)−1ET y∗.

Update the dual variables.

ν := ν − αk(−y∗ + Eẑ).

The norm of the vector computer in the last step, i.e.,

‖y∗ −Eẑ‖, gives a measure of the inconsistency of the

current values of the public variables and is called the

consistency constraint residual.

This algorithm is decentralized: Each subsystem has

its own private copy of the public variables on the

nets it is adjacent to, as well as an associated dual

variable. Using these dual variables, the subsystems first

optimize independently by solving a (local) concave

maximization problem. At the second step, the nets, also

acting independently of each other, update the value of

the net variable using the optimal values of the public

variables of the subsystems adjacent to that net. The dual

variables are then updated, in a way that brings the local

copies of public variables into consistency (and therefore

also optimality).

B. Economic Interpretation of Dual Decomposition

Dual decomposition has an interesting economic in-

terpretation. Consider for example the system shown in

Figure 1. We can imagine the three subsystems as sep-

arate economic units, each with its own utility function,

private variables and public variables. We can think of

y1 as the amount of some resources generated by the

first unit, and y2(1) as the amount of some resources

consumed by the second unit. Then, the consistency

constraint y1 = y2(1) means that supply of the first unit

equals demand of the second unit. Similarly, we can

think of the constraint y2(2) = y3 as a supply demand

equilibrium between the second and third units. We

interpret the dual variables ν as prices for the resources.

At each iteration of the algorithm, we set the prices for

the resources. Then, each unit operates independently in

such a way that its utility for the given price is max-

imized. The dual decomposition algorithm adjusts the

prices in order to bring the supply into consistency with
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Fig. 2. Unknown Target locations in R3

the demand at each link. This is achieved by increasing

the prices in over-subscribed resources and reducing the

prices on under-subscribed resources. In economics, this

is also called the price adjustment algorithm.

V. NUMERICAL EXAMPLE: TARGET TRACKING

In this section, we apply the distributed estimation

framework to a large-scale target tracking example.

We consider 10, 000 unknown target locations in R3.

The goal is to estimate the target locations using 100

subsystems (navigation satellites), each with 6 sensors.

This means that a subsystem has 6 measurements for

every target that it estimates. Since each target location

is specified by three co-ordinates, we roughly have a

2 : 1 measurement redundancy ratio.

Figure 2 shows 10, 000 target locations generated

from a uniform distribution on the interval [−50, 50].

Since typical navigation satellites are about 12, 000

miles from the earth, the subsystems are randomly

placed on the surface of a sphere of radius 12000; see

Figure 3. Due to the close proximity of the targets to

the origin and the distant location of the subsystems,

the linearization around zero is (say) nearly exact.

In practice, the subsystems will only estimate the

targets within their range. The private variables in this

example correspond to those target locations that are

only estimated by one subsystem. We consider a hypo-

thetical scenario where each subsystem estimates a total

of 110 targets in R3, i.e., ni + pi = 330 parameters.

Thus, there is an overlap of about 10% unknown target

locations, i.e., roughly 1, 000 targets are estimated by

−10,000  

0   

10,000   

−10,000  

0   

10,000   

−10,000  

0   

10,000   

XY

Z

Fig. 3. Subsystems on the surface of sphere of radius 12000

multiple subsystems. The consistency constraints require

that estimates of a particular target location computed

by multiple subsystems should agree. We collect all the

public and private variables of each subsystem into one

vector θi = (xi, yi) ∈ R330. With the linear mea-

surement model assumption, the maximum likelihood

estimation problem is

minimize

100
∑

i=1

‖bi − Aiθi‖2
2

subject to li ≤ θi ≤ ui, i = 1, . . . , 100

yi = Eiz,

where we minimize the negative log-likelihood function.

Each row of the matrix Ai ∈ R660×330 is a unit vector

from zero to a sensor location of subsystem i. The

measurement vector bi ∈ R660 is obtained by adding

a 5% uniform noise to Aiθi. The subsystems compute

their estimates of the unknown targets in the presence

of (local) box constraints [li, ui].

We solve the problem using the dual decomposition

approach of the previous section. A subgradient method

with a diminishing step size αk = 0.02/
√

k was used

for this particular example. The algorithm was run for

50 iterations. For the diminishing step size rule, the

subgradient method is guaranteed to converge to the

optimal value, i.e., limk→∞q(νk) = q∗. The strong

duality implies q∗ = p∗, where p∗ ≈ 7.7 is the optimal

primal objective value. Figure 4 shows the duality gap in

the first 50 iterations. The flat regions in the plot indicate

that the dual function value actually decreased during

those iterations. When using the subgradient method, it
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Fig. 4. Duality gap p∗ − q∗, versus iteration number k.

k
10 30 5010−1

100

101

102

Fig. 5. Norm of the consistency constraint residual ‖y−Ez‖, versus

iteration number k.

is therefore customary to keep track of the best dual

function value. The duality gap approaches zero with

increasing number of iterations. Figure 5 shows the norm

of the consistency constraint residual versus the iteration

number.

VI. CONCLUSION

In this paper, we present a distributed estimation ap-

proach using convex optimization algorithms. The pre-

sented approach extends the current distributed average

consensus problems that limit the subsystems to solving

linear unconstrained Gaussian estimation problems. We

use a dual decomposition approach and subgradient

method to provide a tractable solution for large-scale

convex distributed estimation problems. The approach

is illustrated through an example from target tracking.
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