Disciplined Saddle Programming

Philipp Schiele, Eric Luxenberg, Stephen Boyd

July 12-2023
SciPy Conference, Austin, TX

Disciplined Saddle Programming (DSP)

» Domain specific language for saddle programming.
» Implemented as an extension to CVXPY.

» Method based on recent work by Juditsky and
Nemirovski [JN22].

» Natural use case is robust optimization.

CVXPY

» CVXPY is a Python-embedded modeling language for
convex optimization.

Convex optimization problem

Formally, a convex optimization problem is can be written as

minimize fo(x)
subject to fi(x) <0, i=1,....m
Ax=0b

» variable x € R"”
» equality constraints are linear

> fo,...,Im are convex: for 6 € [0,1],
fi(fx 4+ (1 —0)y) < 0fi(x) + (1 — 6)fi(y)

i.e., f; have nonnegative (upward) curvature

Solving convex problems with CVXPY

» CVXPY allows to solve convex optimization problems in a
natural way.

import cvxpy as cp

x = cp.Variable(2)

objective = cp.sum _squares(x)

constraints = [—4 <= x, x <= 4]

problem = cp.Problem(cp.Minimize(objective), constraints)
opt_val = problem.solve() # 0.0

solution = x.value # array([0., 0.])

o N o U A W N =

Linear programming

» Let us consider the simple linear program

maximize 2x3; + 3xp
subject to xy <5
xp <4
x1 + x» <7

Finding an upper bound

» Can we combine the constraints to find an upper bound?

maximize 2xq
subjectto xy

+ 3x
<5 [(+1)
x2 <4 |(x2)
x1 + x2 <7 |[(x1)
2x1 + 3x <20

Finding the smallest upper bound

» Can we combine the constraints to find an upper bound?

maximize 2x3 + 3xo
subject to x1 <5 |(x»1)
2 <4 |[(xy2)
x1 + x2 <7 |[(xy3)

This means, we can write the problem as

minimize 5y1 + 4y, + Ty3

subjectto y1 + + y3 >2
+ y» + y3 >3
yi,y2,y3 =20

» This is again a linear program.
» |t is the so-called dual of the original problem.

Saddle function
» Convex optimization deals with functions that have a joint
curvature in all their arguments.
» A (convex-concave) saddle function f : X x Y — Ris
convex in f(-,y) for any fixed y €), concave in f(x,-) for
any fixed x € X.

A saddle point problem

» A saddle point problem is to find a saddle point of a saddle
function.

» A saddle point (x*,y*) € X x) is any point that satisfies

f(x*,y) < f(x*,y") < f(x,y*) forall xe X, y e Y.

» In other words, x* minimizes f(x, y*) over x € X, and y*
maximizes f(x*,y) over y €).

10

A simple example

» A matrix game is a game where two players choose
strategies x € R" and y € R", respectively.

» For a given payoff matrix C, the resulting payment is
f(x,y) =x"Cy.

» The player choosing x wants to minimize the payment, and
the player choosing y wants to maximize the payment.

11

A simple example ctd.

» Let us consider the following matrix game with variable
x € R? and y € R2.

yi y
X1 1 2
x| 3 1

We restrict x1,x0, 1,2 > 0and x1 +x0 =1, y1 + yo = 1.

Recall that x tries to minimize x” Cy, and y tries to maximize.

12

A simple example ctd.

» Matrix games can be solved as a convex optimization
problem by dualizing the problem.

» This solution method goes back to Von Neumann and
Morgenstern [MVN53].

» However, dualizing the problem requires working knowledge
of duality, and is error prone.

» DSP allows formulating this problem explicitly as a saddle
point problem.

13

The matrix game in DSP

© © N o o » W N =

10
11
12
13
14
15
16

import dsp

x = cp.Variable(2, nonneg=True)

y = cp.Variable(2, nonneg=True)

C = np.array([[1, 2], [3, 1]])

f = dsp.inner(x, C @ y)

obj = dsp.MinimizeMaximize(f)

constraints = [cp.sum(x) == 1, cp.sum(y) == 1]

prob = dsp.SaddlePointProblem(obj, constraints)
prob.solve()

prob.value # 1.6666666666666667
x.value # array([0.66666667, 0.33333333])
y.value # array([0.33333333, 0.66666667])

14

Conic standard form as an API

» Many convex optimization problems can be written in the

following form:
minimize c¢x
subjectto Ax=b
xek

» This allows for a separation of concerns between

» Modeling languages
» Solvers
» Research about algorithms

15

Conic standard form as an API ctd.

» Use CVXPY as a tool to obtain conic representation of

saddle functions.

» Apply automated dualization to obtain single minimization

problem.

» Use CVXPY to solve the resulting problem.

O ()

sup o(z, y)
yey

sup inf {ny+t | Pf+tp+ Qu+ Rr <k s}
yey i

inf {sup (fTy+1t) ‘ Pf+tp+Qu+ Rr < s}
ftu (yey

inf {sup (ny) +t| Pf+tp+ Qu+ Rr <k s}

ftu yey

inf {inf {)\Te
Ftu | A

CTA=f, DTA=0
A=k 0

} ‘PerthrQquszKs}

16

Example: Rocket landing

» We showed how to solve a rocket landing problem using
CVXPY on Monday.

» The objective was to minimize the fuel used to land a
rocket.

1 V = cp.Variable((K + 1, 3)) # velocity

2 P = cp.Variable((K + 1, 3)) # position

s F = cp.Variable((K, 3)) # thrust

4

s constraints = [...]

6

7 fuel_consumption = gamma * cp.sum(cp.norm(F, axis=1))
8
9

problem = cp.Problem(cp.Minimize(fuel_consumption), constraints)
problem.solve()

=
o

17

Example: Rocket landing ctd.

/
N/ L[]
1 ||
W ||
L ||
100
60 80
i 60
x 20 40 *
:BOTI] | 1 1 I 1 I 20
-10 0

60 50 40 30 20 10 O -10
y

This trajectory uses 150t of fuel. 18

Example: Robust rocket landing

» We now assume is the average fuel consumption.
» In each period, 9% can be within v & 30%.
» We want to find the best trajectory for the worst case 4.

gamma_hat = cp.Variable(K)

constraints += |

cp.sum(gamma_hat) /K == gamma,

0.7 * gamma <= gamma_hat, gamma_hat <= gamma % 1.3

1
2
3
4
5]
6
7 fuel_consumption_saddle = dsp.saddle_inner(cp.norm(F, axis=1), gamma_hat)
8
o problem = dsp.SaddlePointProblem(

10 dsp.MinimizeMaximize(fuel_consumption_saddle),

11 constraints

13 problem.solve()
19

Example: Robust rocket landing ctd.

60 50 40 30 20 10 O -10
y

This trajectory uses 170t of fuel.

20

Saddle extremum functions

» A saddle extremum (SE) function is a partial supremum or
infimum of a saddle function.

» The partial supremum is referred to as a saddle max

G(x) =sup f(x,y), x€ZX,
yey

with the partial infimum referred to as a saddle min.

» When only the objective is a SE, the problem we have a
saddle point problem.

» A saddle problem more generally can include SE functions
in its constraints.

» Since SE functions are convex (concave) expressions, they
can be used in any CVXPY problem.

21

Example: Rocket landing with robust constraint

» Use the average fuel consumption v as the objective.
» Want the worst case fuel consumption to be manageable.

1 gamma_hat = dsp.LocalVariable(K, nonneg=True)
2 local_constraints += [
3 cp.sum(gamma_hat)/K == gamma,
4 0.7 x gamma <= gamma_hat, gamma_hat <= gamma % 1.3
5
]
6 fuel_consumption_saddle = dsp.saddle_inner(cp.norm(F, axis=1), gamma_var)
7 fuel_consumption_wc = dsp.saddle_max(
8 fuel_consumption_dsp,
9 local_constraints
10)

N
=

constraints += [fuel_consumption_wc <= 175]
fuel_consumption = gamma * cp.sum(cp.norm(F, axis=1))
problem = cp.Problem(cp.Minimize(fuel_consumption), constraints)

=R e
B W N

22

Example: Rocket landing with robust constraint ctd.

100
| 80
60
40 *
20

0

60 50 40 30 20 10 O -10
y

This trajectory uses 152t of fuel.

23

Model comparison

» Robust constraint gives us a tradeoff between average and
worst case fuel consumption.

Model Nominal objective Worst case objective
Nominal 150.2t 195.3t
Worst case 152.8t 170.2t
Robust constraint 151.7t 175.0t

24

Applications

» DSP can be used in many applications, including game
theory, control, machine learning, and finance.
» Examples include
» Matrix games.
» Robust rocket control.
» Robust Markowitz portfolio optimization.
» Robust bond portfolio optimization.
>

Robust regression model fitting.
> ...

» Where else can DSP be used? Let us know!

Getting started

» DSP is available on GitHub cvxgrp/dsp.
» The paper is on arxiv arXiv:2301.13427.
» Try it out now: pip install dsp-cvxpy.

26

https://github.com/cvxgrp/dsp
https://arxiv.org/abs/2301.13427

Resources

Convex Optimization (book)

EE364a (course slides, videos, code, homework, . ..)
software CVXPY, CVX, Convex.jl, CVXR

convex optimization short course

» The Art of Linear Programming [on YouTube]

all available online

27

https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/class/ee364a/
https://cvxpy.org
http://cvxr.com/
https://convexjl.readthedocs.io/en/latest/
https://cvxr.rbind.io/
https://www.cvxgrp.org/cvx_short_course/docs/index.html
https://www.youtube.com/watch?v=E72DWgKP_1Y

References |

[d A. Juditsky and A. Nemirovski.
On well-structured convex—concave saddle point problems
and variational inequalities with monotone operators.
Optimization Methods and Software, 37(5):1567-1602,
2022.

[O. Morgenstern and J. Von Neumann.
Theory of games and economic behavior.
Princeton University Press, 1953.

28

Backup slides

29

Composition rules

» Every DCP function is convex, but not every convex
function is DCP.

» Likewise, every DSP function is a saddle function, but not
every saddle function is DSP.

» To construct a DSP function, we start from DSP atoms,
which includes all DCP atoms.

» Saddle functions can be be scaled and composed by
addition.

» When adding two saddle functions, a variable may not
appear as a convex variable in one expression and as a
concave variable in the other expression.

30

Manual dualization in CVXPY

>

>
>

[I O N

Some atoms in CVXPY are implemented as manual
dualizations.

As an example, take the sum of k largest entries atom.

This atom can be represented as a partial supremum of the
saddle function f(x,y) = x"y, with

Y={yl0<y<1 1Ty =k}

DSP automates the dualization, such that sum of k largest
entries can be written as

x = cp.Variable(n)

y = dsp.LocalVariable(n, nonneg=True)

f = dsp.inner(x, y)

constraints = [y <=1, cp.sum(y) == K]
sum_k_largest = dsp.saddle_max(f, constraints)

31

Thrust, velocity, and position for robust rocket landing

=

o

o
L

Position
w
o

Velocity
1
w

|
[
o

— X

- Y
4
- X \
-y \
4
— X
Yy
—_—Z
0 5 10 15 20 25 30 35

32

Thrust, velocity, and position for robust constrained
rocket landing

100 A

- X

I

Position
w
o
N

Thrust
T
J
x
~

0
B — /
oy
3 -5
g
4
10 T T T T T T T T

