
Disciplined Saddle Programming

Philipp Schiele, Eric Luxenberg, Stephen Boyd

July 12–2023
SciPy Conference, Austin, TX

1



Disciplined Saddle Programming (DSP)

I Domain specific language for saddle programming.

I Implemented as an extension to CVXPY.

I Method based on recent work by Juditsky and
Nemirovski [JN22].

I Natural use case is robust optimization.

2



CVXPY

I CVXPY is a Python-embedded modeling language for
convex optimization.

3



Convex optimization problem

Formally, a convex optimization problem is can be written as

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

I variable x ∈ Rn

I equality constraints are linear

I f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature

4



Solving convex problems with CVXPY

I CVXPY allows to solve convex optimization problems in a
natural way.

1 import cvxpy as cp
2

3 x = cp.Variable(2)
4 objective = cp.sum squares(x)
5 constraints = [−4 <= x, x <= 4]
6 problem = cp.Problem(cp.Minimize(objective), constraints)
7 opt val = problem.solve() # 0.0
8 solution = x.value # array([0., 0.])

5



Linear programming

I Let us consider the simple linear program

maximize 2x1 + 3x2
subject to x1 ≤ 5

x2 ≤ 4
x1 + x2 ≤ 7

6



Finding an upper bound

I Can we combine the constraints to find an upper bound?

maximize 2x1 + 3x2
subject to x1 ≤ 5 |(∗1)

x2 ≤ 4 |(∗2)
x1 + x2 ≤ 7 |(∗1)

2x1 + 3x2 ≤ 20

7



Finding the smallest upper bound

I Can we combine the constraints to find an upper bound?

maximize 2x1 + 3x2
subject to x1 ≤ 5 |(∗y1)

x2 ≤ 4 |(∗y2)
x1 + x2 ≤ 7 |(∗y3)

This means, we can write the problem as

minimize 5y1 + 4y2 + 7y3
subject to y1 + + y3 ≥ 2

+ y2 + y3 ≥ 3
y1, y2, y3 ≥ 0

I This is again a linear program.

I It is the so-called dual of the original problem.

8



Saddle function

I Convex optimization deals with functions that have a joint
curvature in all their arguments.

I A (convex-concave) saddle function f : X × Y → R is
convex in f (·, y) for any fixed y ∈ Y, concave in f (x , ·) for
any fixed x ∈ X .

9



A saddle point problem

I A saddle point problem is to find a saddle point of a saddle
function.

I A saddle point (x?, y?) ∈ X × Y is any point that satisfies

f (x?, y) ≤ f (x?, y?) ≤ f (x , y?) for all x ∈ X , y ∈ Y.

I In other words, x? minimizes f (x , y?) over x ∈ X , and y?

maximizes f (x?, y) over y ∈ Y.

10



A simple example

I A matrix game is a game where two players choose
strategies x ∈ Rn and y ∈ Rn, respectively.

I For a given payoff matrix C , the resulting payment is
f (x , y) = xTCy .

I The player choosing x wants to minimize the payment, and
the player choosing y wants to maximize the payment.

11



A simple example ctd.

I Let us consider the following matrix game with variable
x ∈ R2 and y ∈ R2.

y1 y2
x1 1 2
x2 3 1

We restrict x1, x2, y1, y2 ≥ 0 and x1 + x2 = 1, y1 + y2 = 1.
Recall that x tries to minimize xTCy , and y tries to maximize.

12



A simple example ctd.

I Matrix games can be solved as a convex optimization
problem by dualizing the problem.

I This solution method goes back to Von Neumann and
Morgenstern [MVN53].

I However, dualizing the problem requires working knowledge
of duality, and is error prone.

I DSP allows formulating this problem explicitly as a saddle
point problem.

13



The matrix game in DSP

1 import dsp
2

3 x = cp.Variable(2, nonneg=True)
4 y = cp.Variable(2, nonneg=True)
5 C = np.array([[1, 2], [3, 1]])
6

7 f = dsp.inner(x, C @ y)
8 obj = dsp.MinimizeMaximize(f)
9

10 constraints = [cp.sum(x) == 1, cp.sum(y) == 1]
11 prob = dsp.SaddlePointProblem(obj, constraints)
12 prob.solve()
13

14 prob.value # 1.6666666666666667
15 x.value # array([0.66666667, 0.33333333])
16 y.value # array([0.33333333, 0.66666667])

14



Conic standard form as an API

I Many convex optimization problems can be written in the
following form:

minimize cT x
subject to Ax = b

x ∈ K

I This allows for a separation of concerns between
I Modeling languages
I Solvers
I Research about algorithms

15



Conic standard form as an API ctd.

I Use CVXPY as a tool to obtain conic representation of
saddle functions.

I Apply automated dualization to obtain single minimization
problem.

I Use CVXPY to solve the resulting problem.

16



Example: Rocket landing

I We showed how to solve a rocket landing problem using
CVXPY on Monday.

I The objective was to minimize the fuel used to land a
rocket.

1 V = cp.Variable((K + 1, 3)) # velocity
2 P = cp.Variable((K + 1, 3)) # position
3 F = cp.Variable((K, 3)) # thrust
4

5 constraints = [...]
6

7 fuel consumption = gamma ∗ cp.sum(cp.norm(F, axis=1))
8

9 problem = cp.Problem(cp.Minimize(fuel consumption), constraints)
10 problem.solve()

17



Example: Rocket landing ctd.

This trajectory uses 150t of fuel. 18



Example: Robust rocket landing

I We now assume γ is the average fuel consumption.
I In each period, γ̂k can be within γ ± 30%.
I We want to find the best trajectory for the worst case γ̂.

1 gamma hat = cp.Variable(K)
2 constraints += [
3 cp.sum(gamma hat)/K == gamma,
4 0.7 ∗ gamma <= gamma hat, gamma hat <= gamma ∗ 1.3
5 ]
6

7 fuel consumption saddle = dsp.saddle inner(cp.norm(F, axis=1), gamma hat)
8

9 problem = dsp.SaddlePointProblem(
10 dsp.MinimizeMaximize(fuel consumption saddle),
11 constraints
12 )
13 problem.solve()

19



Example: Robust rocket landing ctd.

This trajectory uses 170t of fuel. 20



Saddle extremum functions

I A saddle extremum (SE) function is a partial supremum or
infimum of a saddle function.

I The partial supremum is referred to as a saddle max

G (x) = sup
y∈Y

f (x , y), x ∈ X ,

with the partial infimum referred to as a saddle min.

I When only the objective is a SE, the problem we have a
saddle point problem.

I A saddle problem more generally can include SE functions
in its constraints.

I Since SE functions are convex (concave) expressions, they
can be used in any CVXPY problem.

21



Example: Rocket landing with robust constraint

I Use the average fuel consumption γ as the objective.
I Want the worst case fuel consumption to be manageable.

1 gamma hat = dsp.LocalVariable(K, nonneg=True)
2 local constraints += [
3 cp.sum(gamma hat)/K == gamma,
4 0.7 ∗ gamma <= gamma hat, gamma hat <= gamma ∗ 1.3
5 ]
6 fuel consumption saddle = dsp.saddle inner(cp.norm(F, axis=1), gamma var)
7 fuel consumption wc = dsp.saddle max(
8 fuel consumption dsp,
9 local constraints

10 )
11

12 constraints += [fuel consumption wc <= 175]
13 fuel consumption = gamma ∗ cp.sum(cp.norm(F, axis=1))
14 problem = cp.Problem(cp.Minimize(fuel consumption), constraints)

22



Example: Rocket landing with robust constraint ctd.

This trajectory uses 152t of fuel. 23



Model comparison

I Robust constraint gives us a tradeoff between average and
worst case fuel consumption.

Model Nominal objective Worst case objective

Nominal 150.2t 195.3t
Worst case 152.8t 170.2t
Robust constraint 151.7t 175.0t

24



Applications

I DSP can be used in many applications, including game
theory, control, machine learning, and finance.

I Examples include
I Matrix games.
I Robust rocket control.
I Robust Markowitz portfolio optimization.
I Robust bond portfolio optimization.
I Robust regression model fitting.
I . . .

I Where else can DSP be used? Let us know!

25



Getting started

I DSP is available on GitHub cvxgrp/dsp.

I The paper is on arxiv arXiv:2301.13427.

I Try it out now: pip install dsp-cvxpy.

26

https://github.com/cvxgrp/dsp
https://arxiv.org/abs/2301.13427


Resources

I Convex Optimization (book)

I EE364a (course slides, videos, code, homework, . . . )

I software CVXPY, CVX, Convex.jl, CVXR

I convex optimization short course

I The Art of Linear Programming [on YouTube]

all available online

27

https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/class/ee364a/
https://cvxpy.org
http://cvxr.com/
https://convexjl.readthedocs.io/en/latest/
https://cvxr.rbind.io/
https://www.cvxgrp.org/cvx_short_course/docs/index.html
https://www.youtube.com/watch?v=E72DWgKP_1Y


References I

A. Juditsky and A. Nemirovski.
On well-structured convex–concave saddle point problems
and variational inequalities with monotone operators.
Optimization Methods and Software, 37(5):1567–1602,
2022.

O. Morgenstern and J. Von Neumann.
Theory of games and economic behavior.
Princeton University Press, 1953.

28



Backup slides

29



Composition rules

I Every DCP function is convex, but not every convex
function is DCP.

I Likewise, every DSP function is a saddle function, but not
every saddle function is DSP.

I To construct a DSP function, we start from DSP atoms,
which includes all DCP atoms.

I Saddle functions can be be scaled and composed by
addition.

I When adding two saddle functions, a variable may not
appear as a convex variable in one expression and as a
concave variable in the other expression.

30



Manual dualization in CVXPY

I Some atoms in CVXPY are implemented as manual
dualizations.

I As an example, take the sum of k largest entries atom.

I This atom can be represented as a partial supremum of the
saddle function f (x , y) = xT y , with
Y = {y | 0 ≤ y ≤ 1, 1T y = k}.

I DSP automates the dualization, such that sum of k largest
entries can be written as

1 x = cp.Variable(n)
2 y = dsp.LocalVariable(n, nonneg=True)
3 f = dsp.inner(x, y)
4 constraints = [y <= 1, cp.sum(y) == k]
5 sum k largest = dsp.saddle max(f, constraints)

31



Thrust, velocity, and position for robust rocket landing

32



Thrust, velocity, and position for robust constrained
rocket landing

33


