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Abstract Weconsider the problem ofminimizing a sumof non-convex functions over
a compact domain, subject to linear inequality and equality constraints. Approximate
solutions can be found by solving a convexified version of the problem, in which each
function in the objective is replaced by its convex envelope. We propose a randomized
algorithm to solve the convexified problem which finds an ϵ-suboptimal solution to
the original problem. With probability one, ϵ is bounded by a term proportional to
the maximal number of active constraints in the problem. The bound does not depend
on the number of variables in the problem or the number of terms in the objective. In
contrast to previous related work, our proof is constructive, self-contained, and gives
a bound that is tight.
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1 Problem and results

1.1 The problem

We consider the optimization problem
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minimize f (x) = ∑n
i=1 fi (xi )

subject to Ax ≤ b
Gx = h,

(P)

with variable x = (x1, . . . , xn) ∈ RN , where xi ∈ Rni , with
∑n

i=1 ni = N . There are
m1 linear inequality constraints, so A ∈ Rm1×N , and m2 linear equality constraints,
so G ∈ Rm2×N . The optimal value of P is denoted p⋆. The objective function terms
are lower semi-continuous on their domains: fi : Si → R, where Si ⊂ Rni is a
compact set. We say that a point x is feasible (for P) if Ax ≤ b, Gx = h, and xi ∈ Si ,
i = 1, . . . , n. We say that P is feasible if there is at least one feasible point. In what
follows, we assume that P is feasible.

Linear inequality or equality constraints that pertain only to a single block of vari-
ables xi can be expressed implicitly by modifying Si , so that xi /∈ Si when the
constraint is violated. Without loss of generality, we assume that this transforma-
tion has been carried out, so that each of the remaining linear equality or inequality
constraints involves at least two blocks of variables. This reduces the total number of
constraintsm = m1+m2; we will see later why this is advantageous. Since each of the
linear equality or inequality constraints involves at least two blocks of variables, they
are called complicating constraints. Thus m represents the number of complicating
constraints, and can be interpreted as a measure of difficulty for the problem.

We will state our results in terms of a (possibly) smaller quantity m̃ ≤ m, which
provides a (sometimes) tighter estimate of the number of complicating constraints
in the problem. Define the active set of inequality constraints at x to be J (x) =
{ j : (Ax − b) j = 0}, let m̃1 = maxx |J (x)| be the maximal number of inequality
constraints that can be simultaneously active, and let m̃ = m̃1 +m2 be the number of
(equality and inequality) constraints that can be simultaneously active.

We make no assumptions about the convexity of the functions fi or the convexity
of their domains Si , so that in general the problem is hard to solve (and even NP-hard
to approximate [52]).

1.2 Convex envelope

For each fi ,we let f̂i denote its convex envelope. The convex envelope f̂i : conv(Si ) →
R is the largest closed convex functionmajorized by fi , i.e., fi (x) ≥ f̂i (x) for all x [47,
Theorem 17.2]. When fi is lower semi-continuous and Si is compact and nonempty,
then conv(Si ) is compact and convex, and f̂i is closed, proper, and convex [47]. In
Sect. 5, we give a number of examples in which we compute f̂i explicitly.

1.3 Nonconvexity of a function

Define the nonconvexity ρ( f ) of a function f : S → R to be

ρ( f ) = sup
x
( f (x) − f̂ (x)),
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where for convenience we define a function to be infinite outside of its domain and
interpret ∞ − ∞ as 0. Evidently ρ( f ) ≥ 0, and ρ( f ) = 0 if and only if f is convex
and closed. The nonconvexity ρ is finite if f is bounded and lower semi-continuous
and S is compact and convex. For convenience, we assume that the functions fi are
sorted in order of decreasing nonconvexity, so ρ( f1) ≥ · · · ≥ ρ( fn).

1.4 Convexified problem

Now, consider replacing each fi by f̂i to form a convex problem,

minimize f̂ (x) = ∑n
i=1 f̂i (xi )

subject to Ax ≤ b
Gx = h,

(P̂)

with optimal value p̂. This problem is convex; if we can efficiently evaluate f̂ and
a subgradient (or derivative, if f̂ is differentiable), then the problem is easily solved
using standard methods for nonlinear convex optimization. Furthermore, P̂ is feasible
as long asP is feasible. Evidently p̂ ≤ p⋆; that is, the optimal value of the convexified
problem is a lower bound on the optimal value of the original problem. We would like
to know when a solution to P̂ approximately solves P .

Our first result is the following:

Theorem 1 There exists a solution x⋆ of P̂ such that

p̂ = f̂ (x⋆) ≤ f (x⋆) ≤ p̂ +
min(m̃,n)∑

i=1

ρ( fi ).

Since p⋆ ≤ f (x⋆) and p̂ ≤ p⋆, Theorem 1 implies that

p⋆ ≤ f (x⋆) ≤ p⋆ +
min(m̃,n)∑

i=1

ρ( fi ).

In other words, there is a solution of the convexified problem that is ϵ-suboptimal for
the original problem, with ϵ = ∑min(m̃,n)

i=1 ρ( fi ). It is not true (as we show in Sect. 2)
that all solutions of the convexified problem are ϵ-suboptimal.

Theorem 1 shows that if the objective function terms are not too nonconvex, and
the number of (active) constraints is not too large, then the convexified problem has a
solution that is not too suboptimal for the original problem. This theorem is similar to
a number of results previously in the literature; for example, it can be derived from the
well-known Shapley–Folkman theorem [49]. A looser version of this theorem may be
obtained from the bound on the duality gap given in [2].

Theorem 1 also implies a bound on the duality gap for problems with separable
objectives. Let
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L(x, λ, µ) =
n∑

i=1

fi (xi )+ λT (Ax − b)+ µT (Gx − h)

be the Lagrangian of P with dual variables λ and µ, and define the (Lagrange) dual
problem to P ,

maximize infx L(x, λ, µ)
subject to λ ≥ 0,

(D)

with optimal value g⋆. The convexified problem P̂ is the dual ofD. (See Appendix 1
for a derivation.) Since P̂ is convex and feasible, with only linear constraints, strong
duality holds by the refined Slater’s constraint qualification [14, Sect. 5.2.3]. (For a
proof, see [47, p. 277].) Hence the maximum of the dual problem is attained, i.e.,
g⋆ = p̂ and infx L(x, λ⋆) = g⋆ for some λ⋆ ≥ 0 . The bound from Theorem 1 thus
implies

p⋆ − g⋆ ≤
min(m̃,n)∑

i=1

ρ( fi ).

What is not clear in other related work is how to construct a feasible solution that
satisfies this bound. This observation leads us to the main contribution of this paper:
a constructive version of Theorem 1.

Theorem 2 Let w ∈ RN be a random variable with uniform distribution on the unit
sphere. Now consider the feasible convex problem

minimize wT x
subject to Ax ≤ b

Gx = h
f̂ (x) ≤ p̂.

(R)

Then with probability one,R has a unique solution x⋆ which satisfies the inequality
of Theorem 1,

f (x⋆) ≤ p̂ +
min(m,n)∑

i=1

ρ( fi ),

i.e., x⋆ is ϵ-suboptimal for the original problem P .

The randomized problem R has a simple interpretation. Any feasible point x for
R is feasible for P̂ , and the constraint f̂ (x) ≤ p̂ is satisfied with equality. That is,R
minimizes a random linear function over the optimal set of P̂ . Theorem 2 tells us that
this construction yields (almost surely) an ϵ-suboptimal solution of P .

We give a self-contained proof of both of these theorems in Sect. 6.2.
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2 Discussion

In this section we show that the bound in Theorem 1 is tight, and that finding extreme
points of the optimal set is essential to achieving the bound. In these examples, m̃ = m.

Example 1 (The bound is tight) Consider the problem

minimize
n∑

i=1
g(xi )

subject to
n∑

i=1
xi ≤ B,

(1)

with g : [0, 1] → R defined as

g(x) =
{
1 0 ≤ x < 1
0 x = 1.

The convex envelope ĝ : [0, 1] → R of g is given by ĝ(x) = 1− x , with ρ(g) = 1.
The convexified problem P̂ corresponding to (1) is

minimize
n∑

i=1
ĝ(xi )

subject to
n∑

i=1
xi ≤ B

0 ≤ x .

(2)

Any x⋆ satisfying 0 ≤ x⋆ ≤ 1 and
∑n

i=1 x
⋆
i = B is optimal for the convexified

problem (2), with value p̂ = n− B. If B < 1, then the optimal value of (1) is p⋆ = n.
Since (1) has only one constraint, the bound from Theorem 1 applied to this problem
gives

n = p⋆ ≤
n∑

i=1

g(x⋆
i ) ≤ p̂ + ρ(g) = n − B + 1.

Letting B → 1, we see that the bound is tight.

Example 2 (Find the extreme points) Not all solutions to the convexified problem
satisfy the bound from Theorem 1. As we show in Sect. 6, the value of the convex
envelope at the extreme points of the optimal set for the convexified problem will be
provably close to the value of the original function, whereas the difference between
these values on the interior of the optimal set may be arbitrarily large.

For example, suppose n− 1 < B < n in the problem defined above. As before, the
optimal set for the convexified problem (2) is

M =
{
x :

n∑
i=1

xi = B, xi ≥ 0, i = 1, . . . , n
}
.

Consider x̂ ∈ M with x̂i = B/n, i = 1, . . . , n, which is optimal for the convexified
problem (2). This x̂ does not obey the bound in Theorem 1; indeed, the suboptimality
of x̂ grows linearly with n. With this x̂ , the left hand side of the inequality in Theorem
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1 is
∑n

i=1 g(x̂i ) = n, while the right hand side p̂ + ρ(g) = n − B + 1 < 2 is much
smaller.

On the other hand, x⋆ ∈ M defined by

x⋆
i =

{
1 i = 1, . . . , n − 1
B − (n − 1) i = n,

which is an extreme point of the optimal set for the convexified problem, is optimal
for the original problem as well. That is, x⋆ is an extreme point of M that satisfies
Theorem 1 with equality.

Example 3 (Nonconvex feasible set) For an even simpler example, consider the fol-
lowing univariate problem with no constraints. Let S = {0} ∪ {1} with f (x) = 0 for
x ∈ S. Then f̂ : [0, 1] → {0}, so the optimal set for the convexified problem consists
of the entire interval [0, 1]. But x̂ = 1/2 ∈ M is not feasible for the original problem;
its value according to the original objective is thus infinitely worse than the value
guaranteed by Theorem 1. On the other hand, x = 0 and x = 1, the extreme points
of the optimal set for the convexified problem, are indeed optimal for the original
problem.

3 Related work

Our proof is very closely related to the Shapley–Folkman theorem [49], which states,
roughly, that the nonconvexity of the average of a number of nonconvex sets decreases
with the number of sets. In optimization, the analogous statement is that optimizing the
average of a number of functions is not too different from optimizing the average of the
convex envelopes of those functions, and the difference decreases with the number of
functions. However, we note that using the Shapley–Folkman theorem directly, rather
than its optimization analogue, results in a bound that is slightly worse. For example,
the Shapley–Folkman theorem has previously been used by Aubin and Ekeland in [2]
to prove a bound on the duality gap. The bound they present,

p⋆ − d⋆ ≤ min(m + 1, n)ρ( f1),

is not tight; our bound, which is tight, is smaller by a factor of m̃/(m + 1).
The Shapley–Folkman theorem has found uses in a number of applications within

optimization. For example, Bertsekas et al. [8] used the theorem to solve a unit com-
mitment problem in electrical power system scheduling, in which case the terms in
the objective are univariate. The Shapley–Folkman theorem and its relation to a bound
on the duality gap also have found applications in integer programming [54]. While
we restrict ourselves here only to nonconvex objectives, many authors [6,9,37] have
studied convexifications of separable constraints as well. A more modern treatment,
in the case of linear programs, is given in [7].

The use of randomization to find approximate solutions to nonconvex problems is
widespread, and often startlingly successful [31,40]. The usual approach is to solve
a convex problem to find an optimal probability distribution over possible solutions;
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sampling from the distribution and rounding yields the desired result. By contrast,
our approach uses randomization only to explore the geometry of the optimal set
[48]. We rely on the insight that extremal points of the epigraph of the convex enve-
lope are likely to be closer in value to the original function, and use randomization
simply to reach these points. Randomization allows us to find “simplex-style” cor-
ner points of the optimal set as solutions, rather than accepting interior points of the
set.

Our procedure for finding an extreme point is closely related to the idea of purifying
a solution returned by, e.g., an interior point solver to obtain an extremal solution. One
fixes an active set of inequality constraints that hold with equality at a given point,
and solves (R) subject to the additional constraint that all inequality constraints in
the active set continue to hold with equality, and then iterates this procedure until the
set of active constraints completely determines the solution. It is easy to see that at
each iteration at least one constraint is added to the active set. Hence the procedure
converges to an extreme point in no more than m̃ iterations. In contrast, our proof
shows that the method finds an extreme point with probability 1 in a single iteration,
without fixing an active set beforehand.

The notion that extreme points of the solution set of a convex problem have par-
ticularly nice properties is pervasive in the literature. The extreme points produced
by solving R are simply basic feasible solutions, familiar from the analysis of the
simplex method, whenever the functions fi are univariate, i.e., ni = 1, i = 1, . . . , n.
Other uses of extreme points abound: for example, Anderson and Lewis [1] propose a
simplex-style method for semi-infinite programming that proceeds by finding extreme
points of the feasible set; and Barvinok [3,4] and Pataki [43,44] examine the extreme
points of an affine section of the semidefinite cone to provide bounds on the rank of
solutions to semidefinite programs.

4 Constructing the convex envelope

In general, the convex envelope of a function can be hard to compute. But in many
special cases,we can efficiently construct the convex envelopeor a close approximation
to it. The problem of computing convex lower bounds on general nonconvex functions
has been extensively studied in the global optimization community: see, eg, [35] for
a general introduction and [50] for a more sophisticated treatment. In this section, we
give a few examples illustrating how to construct the convex envelope for a number
of interesting functions and classes of functions.

4.1 Sigmoidal functions

A continuous function f : [l, u] → R is defined to be sigmoidal if it is either convex,
concave, or convex for x ≤ z ∈ [l, u] and concave for x ≥ z. For a sigmoidal
function, the convex envelope is particularly easy to calculate [52]. We can write f̂ of
f piecewise as
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Table 1 Examples of convex envelopes

S f (x) f̂ (x) ρ( f )

[0, 1]2 min(x, y) (x + y − 1)+ 1/2

[0, 1]2 xy (x + y − 1)+ 1/4

[0, 1]n min(x) (
∑n

i=1 xi − (n − 1))+ n−1
n

[0, 1]n ∏n
i=1 xi (

∑n
i=1 xi − (n − 1))+ ( n−1

n )n

[−1, 1]n card(x) ∥x∥1 n

{M ∈ Rk×n : ∥M∥ ≤ 1} Rank(M) ∥M∥∗ n

f̂ (x) =
{
f (x) l ≤ x ≤ w

f (w)+ f (u)− f (w)
u−w (x − w) w ≤ x ≤ u

for some appropriatew ≤ z. If f is differentiable, then f ′(w) = f (u)− f (w)
u−w ; in general,

f (u)− f (w)
u−w is a subgradient of f at w. The point w can easily be found by bisection:

if x > w, then the line from (x, f (x)) to (u, f (u)) crosses the graph of f at x ; if
x < w, it crosses in the opposite direction.

4.2 Univariate functions

If the inflection points of the univariate function are known, then the convex envelope
may be calculated by iterating the construction given above for the case of sigmoidal
functions.

4.3 Analytically

Occasionally the convex envelopemay be calculated analytically. For example, convex
envelopes of multilinear functions on the unit cube are polyhedral (piecewise linear),
and can be calculated using an analytical formula given in [46]. A few examples
of analytically tractable convex envelopes are presented in Table 1. In the table, f̂ :
conv(S) → R is the convex envelope of f : S → R, and ρ( f ) gives the nonconvexity
of f . We employ the following standard notation: card(x) denotes the cardinality
(number of nonzeros) of the vector x ; the spectral norm (maximum singular value) is
written as ∥M∥, and its dual, the nuclear norm (sum of singular values) is written as
∥M∥∗.

4.4 Via differential equations

The convex envelope of a function can also be written as the solution to a certain
nonlinear partial differential equation [41], and hence may be calculated numerically
using the standard machinery of numerical partial differential equations [42].
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5 Examples

5.1 Resource allocation

An agent wishes to allocate resources to a collection of projects i = 1, . . . , n. For
example, the agent might be bidding on a number of different auctions, or allocating
human and capital resources to a number of risky projects. There are m different
resources to be allocated to the projects, with each project i receiving a non-negative
quantity xi j of resource j . The probability that project i will succeed is modeled as
fi (xi ), and its value to the agent, if the project is successful, is given by vi . The agent
has access to a quantity c j of resource j , j = 1, . . . ,m. An allocation is feasible if∑n

i=1 xi j ≤ c j , j = 1, . . . ,m. The agent seeks to maximize the expected value of the
successful projects by solving

maximize
n∑

i=1
vi fi (xi )

subject to
n∑

i=1
xi j ≤ c j , j = 1, . . . ,m

x ≥ 0.

To conform to our notation in the rest of this paper, we write this as a minimization
problem,

minimize
n∑

i=1
−vi fi (xi )

subject to
n∑

i=1
xi j ≤ c j , j = 1, . . . ,m

x ≥ 0.

Here, there are m complicating constraint connecting the variables. Hence the bound
from Theorem 1 guarantees that | p̂ − p⋆| ≤ ∑min(m,n)

i=1 ρ( fi ). If pi : R → [0, 1] is a
probability, then ρ(−vi pi ) ≤ vi . For example, if there is only one resource (m = 1),
the bound tells us that we can find a solution x by solving the convex problem R
whose value differs from the true optimum p⋆ by no more than maxi vi , regardless of
the number of projects n.

5.2 Flow and admission control

A set of flows pass through a network over given paths of links or edges; the goal is
to maximize the total utility while respecting the capacity of the links. Let xi denote
the level of each flow i = 1, . . . , n and ui (xi ) the utility derived from that flow. Each
link j , j = 1, . . . ,m, is shared by the flows i ∈ S j , and can accomodate up to a total
of c j units of flow. The flow routes are defined by a matrix A ∈ Rm×n mapping flows
onto links, with entries a ji , i = 1, . . . , n, j = 1, . . . ,m. When flows are not split, i.e.,
they follow simple paths, we have ai j = 1 when flow i pass over link j , and ai j = 0
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otherwise. But it is also possible to split a flow across multiple edges, in which case
the entries ai j can take other values. The goal is to maximize the total utility of the
flows, subject to the resource constraint,

maximize
n∑

i=1
ui (xi )

subject to Ax ≤ c
x ≥ 0.

(3)

The utility function is often modelled by a bounded function, such as a sigmoidal
function [21,52]. As an extreme case, we can consider utilities of the form

u(x) =
{
0 x < 1
1 x ≥ 1.

Thus each flow has value 1 when its level is at least 1, and no value otherwise. In this
case, the problem is to determine choose the subset of flows, of maximum cardinality,
that the network can handle. (This problem is also called admission control, since we
are deciding which flows to admit to the network.)

We can replace this problem with an equivalent minimization problem to facilitate
the use of Theorem 1. Let fi (x) = −ui (x). Then we minimize the negative utility of
the flows by solving

minimize
n∑

i=1
ui (xi )

subject to Ax ≤ c
x ≥ 0.

Suppose fi is bounded for every i , so that maxi ρ( fi ) ≤ R. Then the bound from
Theorem 1 guarantees that we can quickly find a solution p⋆ − p̂ ≤ mR. In a situation
with many flows but only a modest number of links, the solution given by solving R
may be very close to optimal.

6 Proofs

To simplify the proofs in this section, we suppose without loss of generality that
the problem has only inequality constraints; the mathematical argument with equality
constraints is exactly the same.Merely note below inLemma3 that equality constraints
are always active. We let A = [A1 · · · An] with Ai ∈ Rm×ni , so Ax = ∑

i Ai xi . As
before, N = ∑n

i=1 ni .

6.1 Definitions

First, we review some basic definitions from convex analysis (see [37,47] for more
details).

The epigraph of a function f is the set of points lying above the graph of f ,

epi( f ) = {(x, t) : t ≥ f (x)}.
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The convex hull of a set S is the set of points that can bewritten as a convex combination
of other points in the set,

conv(S) =
{∑

j θ j x j : θ j ≥ 0, x j ∈ S,
∑

j θ j = 1
}
.

An exposed face F of a convex setC is a set of points optimizing a linear functional
over that set,

F = argmin
x∈C

cT x,

for some c ∈ Rn . The vector c is called a normal vector to the face. We will use the
fact that every exposed face is a face: a convex set F ⊂ C for which every (closed)
line segment in C with a relative interior point in F has both endpoints in F . Not all
faces are exposed; but our analysis will not make use of this distinction.

An extreme point of a convex set is a point that cannot be written as a convex
combination of other points in the set. It is easy to see that a zero-dimensional exposed
face of a convex set is an extreme point, and that any extreme point defines a zero-
dimensional exposed face of a convex set [47].

6.2 Main lemmas

Our analysis relies on two main lemmas. Lemma 1 tells us that at the extreme points
of an exposed face of epi( f̂ ), the values of f and f̂ are the same. Lemma 2 tells us
that (with probability one) we can find a point that is extreme in epi( f̂i ) for most i ,
and feasible, by solving a randomized convex program. We then combine these two
lemmas to prove Theorem 2 and, as a consequence, Theorem 1.

We use two other technical lemmas as ingredients in the proofs of the two main
lemmas. Lemma 4 gives conditions under which the convex hull of the epigraph of
a function is closed, and Corollary 1 states that the maximum of a random linear
functional over a compact set is unique with probability one. Their statements and
proofs can be found in Appendices 2 and 3 respectively.

We begin by finding a set of points where f and f̂ agree.

Lemma 1 Let S ⊂ Rn be a compact set, and let f : S → R be lower semi-continuous
on S, with convex envelope f̂ : conv(S) → R. Let c ∈ Rn be a given vector. If x is
extreme in the set argmin( f̂ (x)+ cT x), then x ∈ S and f (x) = f̂ (x).

Proof The vector c defines an (exposed) face {(y, f̂ (y)) | y ∈ argmin( f̂ (x)+ cT x)}
of epi( f̂ ). If x is extreme in argmin( f̂ (x)+ cT x), then (x, f̂ (x)) is extreme in epi( f̂ )
[47, p. 163].

It is easy to see geometrically that every extreme point of epi( f̂ ) is a point in epi( f ).
Formally, recall that the convex envelope satisfies epi( f̂ ) = cl(conv(epi( f ))) [47, cor.
12.1.1]. Then use Lemma 4 (see Appendix 3), which states that the conv(epi( f )) is
closed if S is compact and f is lower semi-continuous, to see that cl(conv(epi( f ))) =
conv(epi( f )). Thus every extreme point of epi( f̂ ) is a point in epi( f ) [47, cor. 18.3.1].
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So (x, f̂ (x)) ∈ epi( f ), and hence x ∈ S and f̂ (x) ≥ f (x). But f̂ is the convex
envelope of f , so f̂ (x) ≤ f (x). Thus f̂ (x) = f (x). ⊓.

Now we show that a solution to a randomized convex program finds a point that is
extreme for most subvectors xi of x .

Lemma 2 Let Mi ∈ Rni , i = 1, . . . , n, be given compact convex sets, and let A ∈
Rm×N with N = ∑n

i=1 ni . Choose w ∈ RN uniformly at random on the unit sphere,
and consider the convex program

minimize wT x
subject to Ax ≤ b

xi ∈ Mi , i = 1, . . . , n.
(4)

Almost surely, the solution x to problem (4) is unique. For all but at most m̃ indices i ,
xi is an extreme point of Mi .

To prove Lemma 2, we will prove the following stronger lemma. Lemma 2 follows
as a corollary, since m̃ bounds the number of simultaneously active constraints.

Lemma 3 Let Mi ∈ Rni , i = 1, . . . , n, be given compact convex sets, and let A ∈
Rm×N with N = ∑n

i=1 ni . Choose w ∈ RN uniformly at random on the unit sphere,
and consider the convex program

minimize wT x
subject to Ax ≤ b

xi ∈ Mi , i = 1, . . . , n.
(5)

Almost surely, the solution x to problem (5) is unique. Let J = { j : (Ax − b) j = 0}
be the set of active constraints at x. For all but at most |J | indices i , xi is an extreme
point of Mi .

Proof (Lemma 3) By Corollary 1 (see Appendix 2), the minimum of a random linear
functional over a compact set is unique with probability one. Hence we may suppose
problem (4) has a unique solution, which we call x , with probability one. Define
M = M1 × · · · × Mn to be the Cartesian product of the sets Mi . Let F be a minimal
face of M containing x , and let B ⊂ F ⊆ M be a ball in its relative interior. If x is on
the boundary of M , then dim(B) < N .

Let AJ be a matrix consisting of those rows of A with indices in J , and define the
minimal distance to any non-active constraint

δ = inf
j∈JC

inf
y:(Ay−b) j=0

∥x − y∥.

Let D = (x + nullspace(AJ ))∩B(x, δ) where B(x, δ) is an open ball around x with
radius δ. With this definition, any y ∈ D satisfies the constraints Ay−b with the same
active set J : (Ay − b) j = 0 for every j ∈ J , and (Ay − b) j > 0 for every j ∈ JC .
Note that dim(D) = dim(nullspace(AJ )) = N − |J |.
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Now we will show B ∩ D = {x}. By way of contradiction, consider y ∈ B ∩ D,
y ̸= x . Every such y is feasible for problem (4). The random vector w must be
orthogonal to y − x , for otherwise the solution to problem (4) could not occur at the
center x of the feasible ball B. On the other hand, ifw is orthogonal to y− x , then y is
a solution to problem (4). But the solution x is unique, so it must be that B∩ D = {x}.
That is, B intersects the (N − |J |)-dimensional set D at a single point. This bounds
the dimension of B: dim(B)+ dim(D) ≤ N , so dim(B) ≤ |J |.

Furthermore, dim(B) bounds the number of subvectors xi of x that are not extreme
in Mi . Let

' = {i ∈ {1, . . . , n} : xi is not extreme in Mi } .

For i ∈ ', xi lies on a face of Mi with dimension greater than zero. Hence B contains
a point yi that differs from x only on the i th coordinate block. Consider the set
Y = {yi : i ∈ '} ⊂ B. The vectors yi − x for i ∈ ' are mutually orthogonal,
so |'| = dim(conv(Y )) ≤ dim(B). The argument in the last paragraph showed
dim(B) ≤ |J |, and so we can bound the number of subvectors that are not extreme
|'| ≤ |J |.

Thus almost surely, the solution to problem (4) is unique, and no more than |J |
subvectors xi of the solution x are not at extreme points. ⊓.

6.3 Main theorems

We are now ready to prove the main theorems, using the previous lemmas.

Proof (Theorem 2) By Lemma 2, the solution x⋆ to R is unique with probability 1.
Every point in the feasible set for R is optimal for P̂ , so in particular, x⋆ solves P̂ .
Pick λ⋆ ≥ 0 so that (x⋆, λ⋆) form an optimal primal-dual pair for the primal-dual pair
(P̂ ,D). Note that by complementary slackness, any optimal point x for P̂ (and so any
feasible point forR) satisfies λ⋆T (Ax − b) = 0.

Now consider the problem
minimize wT x
subject to Ax ≤ b

f̂ (x) − λ
⋆T Ax ≤ p̂ − λ

⋆T Ax⋆,

(6)

where, compared toR, we have subtracted λ⋆T Ax and λ⋆T Ax⋆ from the two sides of
the inequality f̂ (x) ≤ p̂.

In fact, the feasible set ofR is the same as that of problem (6). By complementary
slackness, λ⋆T Ax⋆ = λ⋆T b, so the last inequality constraint in problem (6) can be
rewritten as

f̂ (x) − λ
⋆T (Ax − b) ≤ p̂.

Since λ⋆ ≥ 0, and Ax − b ≤ 0 on the feasible set of problem (6), we have
−λ

⋆T (Ax − b) ≥ 0. Hence any x feasible for problem (6) satisfies

f̂ (x) ≤ p̂,
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and so satisfies the constraints ofR. Conversely, any feasible point forR hasλ
⋆T (Ax−

b) = 0 by complementary slackness, so it is also feasible for problem (6). Since the
feasible sets are the same and the objectives are the same, the solution toRmust also
be the same as that of problem (6).

Define

M = argmin
x

(
n∑

i=1
f̂i (xi ) − λ⋆T (Ax − b)

)

= argmin
x

n∑
i=1

(
f̂i (xi ) − λ⋆T Ai xi

)
− λ⋆T b.

The function defining the set M is separable. Hence M = M1 × · · · × Mn , where

Mi = argmin
xi

(
f̂i (xi ) − λ⋆T Ai xi

)
.

The set Mi is compact and convex: it is bounded, since the domain of f̂i , conv(Si ), is
bounded; it is closed, since epi( f̂i ) is closed; and it is convex, since epi( f̂i ) is convex.
So the Mi satisfy the conditions for Lemma 2.

By Lemma 2, the solution x⋆ to problem (6) is unique and lies at an extreme point
of Mi for all but (at most) m̃ of the coordinate blocks i (with probability one). By
Lemma 1, extreme points xi of Mi satisfy fi (xi ) = f̂i (xi ), so fi (x̂i ) > f̂i (x̂i ) for no
more than m̃ of the coordinate blocks i . On those blocks i where x̂i is not extreme, it
is still true that fi (x̂i ) − f̂i (x̂i ) ≤ ρ( fi ). Hence

0 ≤
n∑

i=1

fi (x⋆
i ) − p⋆ =

n∑

i=1

(
fi (x⋆

i ) − f̂i (x⋆
i )

)
≤

min(m̃,n)∑

i=1

ρ( fi ).

⊓.

Proof (Theorem 1) Since a point satisfying the bound in Theorem 1 can be found
almost surely by minimizing a random linear function over M , it follows that such a
point exists. ⊓.

7 Numerical example

We now present a numerical example to demonstrate the performance of the algorithm
implied by the proof; namely, of finding an extreme point of the convexified problem
to serve as an approximate solution to the original problem. This problem is not large,
and is easy to solve using many methods. Our purpose in presenting the example is
merely to give some intuition for the utility of finding an extreme point of the solution
set of the convexified problem, rather than an arbitrary solution.

Investment problem Consider the following investment problem.Each variable xi ∈ R
represents the allocation of capital to project i . The probability that a project will fail
is given by f (xi ).
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Table 2 Investment problem f (x⋆) f (x̂) p⋆ p̂ % improved

43.01 23.01 22.00 20.25 0.95

29.02 26.00 22.00 20.36 0.43

30.09 24.00 21.00 19.92 0.67

26.32 25.00 22.00 20.27 0.31

24.68 24.00 22.00 20.33 0.25

26.01 25.00 21.00 19.26 0.20

26.46 24.00 20.00 19.40 0.38

28.24 25.00 23.00 20.65 0.62

29.04 24.00 21.00 20.21 0.63

27.01 23.01 21.00 19.70 0.67

Entry ai j of the matrix A ∈ Rm×n represents the exposure of project i to sector j
of the economy. The budget for projects in each sector is given by the vector b ∈ Rm .
The constraint Ax ≤ b then prevents overexposure to any given sector.

The problem of minimizing the expected number of failed projects subject to these
constraints can be written as

minimize
n∑

i=1
f (xi )

subject to Ax ≤ b
0 ≤ x .

(7)

We let

f (x) =
{
1 0 ≤ x < 1
0 x ≥ 1.

Random instances of the investment problem are generated with n variables and m
constraints. Random sector constraints are generated by choosing entries of A to be
0 or 1 uniformly at random with probability 1/2, and let b = 1/2A1, where 1 is the
vector of all ones, in order to ensure the constraints are binding.

The results of our numerical experiments are presented in Table 2 and Fig. 1. In the
table, we choose n = 50, m = 10, let x̂ be the solution to the problem

minimize
n∑

i=1
f̂ (xi )

subject to Ax ≤ b
0 ≤ x

(8)

returned by an interior point solver, and let x⋆ be the solution to the random LP R.
The observed difference between f (x⋆) and p⋆ is always substantially smaller than
the theoretical bound of mρ( f ) = 10.

Figure 1 shows the improvement from solving R, calculated as f (x⋆)− f (x̂)
f (x⋆)−p⋆ , as a

function of the number of variables n and constraints m, averaged over 10 random
instances of the problem. Solving the random LP R gives a substantial improvement
when m < n.
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Fig. 1 Improvement f (x⋆)− f (x̂)
f (x⋆)−p⋆ on investment problem

8 Solution via ADMM

Here we demonstrate how to use ADMM, a framework for distributed optimization,
to find x̂ satisfying the bound on the duality gap. This shows that a solution satisfying
the bound may be found even for very large scale problems, so long as the proximal
operators of the functions fi can be evaluated efficiently.

ADMM The Alternating Directions Method of Multipliers (ADMM) was introduced
in 1975 by Glowinski and Marocco [29] and Gabay and Mercier [26], and is closely
related to a number of classical operator-splitting methods such as Douglas-Rachford
and Peaceman-Rachford [25,28,38,45]. ADMM has recently received renewed inter-
est as a method for solving distributed optimization problems due both to its ease
of implementation and its robust convergence in practice and in theory on convex
problems [17,19,20,22–25,30,32,34,51]. For an introduction to ADMM, we refer
the reader to the survey [13] and references therein.

ADMM is not guaranteed to converge to the global solution when applied to a non-
convex problem [39,55]. However, its computational advantages still make ADMM
a popular method for nonconvex optimization [12,15,16,18,27,36,39] even in the
absence of convergence guarantees. In contrast to this previous work, here we use
ADMM to find a feasible point for the nonconvex problem which obeys the global
error bound of Theorem 1.

ADMM for the convexified problem A generalized consensus ADMM iteration can be
used to solve the convexified problem. (See [13] for details.) We rewrite the problem
as

minimize
∑n

i=1 f̂i (xi )+ 1Ax≤b,Gx=h(z)
subject to x = z,

(9)

where 1C denotes the indicator function of the set C. An ADMM iteration solving the
above problem is given by
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xki = argmin f̂i (x)+ ρ/2∥x − zk−1
i + yk−1

i ∥22
zk = (Ax≤b,Gx=h(xk)

yki = yk−1
i + 1/ρ(xki − zki ).

Here, (C denotes projection onto the set C, and ρ > 0 is a parameter. Under some
mild conditions [34], the iterates zk and xk both converge linearly to a primal optimal
solution x⋆ for the convexified problem; yk converges to a dual optimal solution λ⋆

for the convexified problem.
This iteration requires very little communication between nodes in a distributed

system. This property may be very useful if it is expensive to compute or to optimize
the convex envelopes f̂i . Each processor in the distributed architecturemayperform the
x update for one block i in parallel, with no need to communicatewith other processors.
The only centralized computation is the projection of xk onto the constraints.

However, we have already seen in Sect. 2 that projecting a solution to the dual prob-
lem onto the constraint set can work very poorly for nonconvex separable problems.
To understand this phenomenon better, consider a symmetric problem, which has the
same fi for every i = 1, . . . , n, and constraint matrices A and G whose columns are
identical. ADMM will not break the symmetry between different coordinate blocks,
since the iteration above is completely symmetric, resulting in a symmetric solution
to the convexified problem. But we have seen in Sect. 2 that a symmetric solution is
the worst sort of solution; it can have an error that grows linearly with n.

ADMM for the randomized problem We want a solution at an extreme point of the
optimal set for the convexified problem. Fortunately, it is also easy to compute the
solution to the randomized problem R using distributed optimization, which allows
us to find a point x̂ satisfying the bound in Theorem 1.

Taking the primal and dual optimal pair (x⋆, λ⋆) for (9) computed by the first round
of ADMM iterations, we can rewrite problem (6) in ADMM consensus form. Let

M =
{
x : f̂ (x)+ λ

⋆T Ax ≤ f̂ (x⋆)+ λ
⋆T Ax⋆

}
.

We saw in Sect. 6 that M is separable, and can be written as M = M1 × · · · × Mn .
Hence we can rewriteR as

minimize
n∑

i=1
(wT

i xi + 1Mi (xi ))+ 1Ax≤b,Gx=h(z)

subject to x = z,

which gives rise to the ADMM consensus iteration

xki = argmin
x∈Mi

wT
i x + ρ/2∥x − zk−1

i + yk−1
i ∥22

zk = (Ax≤b,Gx=h(xk)

yki = yk−1
i + 1/ρ(xki − zki ).

The solution z produced by this distributed iteration will satisfy Theorem 1.
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Appendix 1: The dual of the dual is the convexified problem

In this appendix, we prove that the dual of the dual of P is the convexified problem
P̂ .

Before we begin, note that the convex envelope has a close connection to duality.
Let f ∗(y) = sup(yT x − f (x)) = − inf( f (x) − yT x) be the (Fenchel) conjugate of
f . Then f̂ (x) = f ∗∗(x) is the biconjugate of f [47]. The conjugate function arises
naturally when taking the dual of a problem, as we show below. Hence it should come
as no suprise that the biconjugate appears upon taking the dual twice.

Below, we refer to the dual of the dual problem as the dual dual problem, the dual
function of the dual problem as the dual dual function, and the variables in the dual
dual problem as the dual dual variables.

Recall the primal problem, which we write as

minimize f (x) =
n∑

i=1
fi (xi )

subject to Ax ≤ b
Gx = h.

We can write the Lagrangian of the primal problem as

L(x, λ, µ) =
n∑

i=1

fi (xi )+ λT (Ax − b)+ µT (Gx − h),

with dual variables λ ≥ 0 and µ. The dual function g(λ, µ) is the minimum of the
Lagrangian over x ,

g(λ, µ) = inf
x

L(x, λ, µ)

= inf
x

n∑

i=1

fi (xi )+ λT (Ax − b)+ µT (Gx − h)

=
n∑

i=1

inf
xi
( fi (xi ) − γi xi ) − λT b − µT h

=
n∑

i=1

− f ∗
i (γi ) − λT b − µT h,
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where we have defined γ = −AT λ −GTµ in the second to last equality and used the
relation f ∗(y) = − inf( f (x) − yT x) in the last.

The dual problem is to maximize the dual function over µ and λ with λ ≥ 0:

maximize
n∑

i=1
− f ∗

i (γi ) − λT b − µT h

subject to γ = −AT λ − GTµ

λ ≥ 0.

The conjugate function f ∗
i is a pointwise supremum of affine functions, and so is

always convex even if fi is not. Hence the dual problem is a concave maximization
problem.

To take the dual of the dual, we perform exactly the same computations again on
the dual problem now instead of the primal. The dual Lagrangian is

LD(λ, µ, γ , x, y) =
n∑

i=1

− f ∗
i (γi ) − λT b − µT h + xT (γ + AT λ + GT )+ sT λ,

with dual dual variables s ≥ 0 and x . We maximize the dual Lagrangian over the dual
variables λ, µ, and γ to form the dual dual function

gD(x, s) = sup
λ≥0,µ,γ

LD(λ, µ, γ , x, y)

= sup
λ≥0,µ,γ

n∑

i=1

− f ∗
i (γi ) − λT b − µT h + xT (γ + AT λ + GT )+ sT λ

= sup
λ≥0,µ

n∑

i=1

f ∗∗
i (xi )+ λT (Ax + s − b)+ µT (Gx − h),

using now the relation f ∗(y) = sup(yT x− f (x)). This is finite only if Ax+s−b ≤ 0
and Gx − h = 0. So we see

gD(x, s) =
n∑

i=1

f ∗∗
i (xi )

so long as these equalities are satisfied.
To form the dual dual problem, we minimize the dual dual function over x and

s ≥ 0:

minimize
n∑

i=1
f ∗∗
i (xi )

subject to Ax ≤ b
Gx = h,

where we have solved for s = b − Ax . Hence we see that we have recovered the
convexified problem by dualizing the primal twice.
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Appendix 2: Well-posedness

The following theorem characterizes the set of vectors in the dual space for which
linear optimization over a compact set S is well-posed.

Theorem 3 (Well-posedness of linear optimization) Suppose S is a compact set in
Rn. Then the set of w ∈ Rn for which the maximizer of wT x over S is not unique has
(Lebesgue) measure zero.

This result is well-known; for example, it follows from [10, Sect. 2], taking into
account that if S ⊆ Rn is compact, then so is its convex hull K = conv(S) and the set
of extreme points of S and K coincide. In fact, one can derive much stronger results
using, for example, Alexandrov’s theorem for convex functions to show quadratic
decay, or finite identifiability in the case of semialgebraic functions. However, our
purpose here is more modest; we merely prove the weaker result stated as Theorem 3
so that this paper may be self-contained.

Before proceeding to a proof, however, let us make sense of the statement of the
theorem. By definition, the maximizer of a linear functional over a set S is a face R
of S. The maximizer is unique if and only if R is a zero-dimensional face (i.e., an
extreme point). Only an outward normal to a face will be maximized on that face.

It is easy to see that the theorem is true for polyhedral sets S. For each face of the
polyhedron that is not extreme, the set of vectors maximized by that face (the set of
outward normals to the face, i.e., the normal cone) will have dimension smaller than
n. A polyhedron has only a bounded number of faces, so the union of these sets still
has measure zero.

On the opposite extreme, consider the unit sphere. A sphere has an infinite number
of faces. But every face is extreme, and every vector w has a unique maximizer.

The difficulty comes when we consider cylindrical sets: those constructed as the
Cartesian product of a sphere and a cube. Here, every outward normal to the “sides”
of the cylinder is a vector whose maximum over the set is not extreme. That is, we find
an uncountably infinite number of faces (parametrized by the boundary of the sphere)
that are not extreme points.

Proof Let IS : Rn → R be the indicator function of S. S is compact, so the convex
conjugate I ∗

S (y) = supx y
T x − IS(x) of IS is finite for every y ∈ Rn . Rachemacher’s

Theorem [11, Theorem 2.5.1] states that a convex function g : Rn → R is differen-
tiable almost everywhere with respect to Lebesgue measure onRn . Furthermore, if I ∗

S
is differentiable at y with ∇ I ∗

S (y) = x , then yT x − IS(x) attains a strong maximum
at x [11, Theorem 5.2.3]; that is, there is a unique maximizer of yT x over S. ⊓.

Clearly, the statement also holds for the minimizers, rather than maximizers, of
wT x .

The following corollary will be used in the proof of the main theorem of this paper.

Corollary 1 Suppose S is a compact set in Rn, and w is a uniform random variable
on the unit sphere in Rn. Then with probability one, there is a unique minimizer of
wT x over S.
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Proof The property of having a unique minimizer exhibits a symmetry along radial
lines: there is a unique minimizer of wT x over S if and only if there is a unique
minimizer of (w/∥w∥2)T x over S. A uniform random vector on the unit sphere may
be generated by taking a uniform random vector on the unit ball, and normalizing it
to lie on the unit sphere. Since the set of directions whose maximizers are not unique
has Lebesgue measure zero, the vectors on the unit sphere generated in this manner
have maximizers that are unique with probability one.

We give one last corollary, which may be of mathematical interest, but is not used
elsewhere in this paper.

Corollary 2 Suppose S is a compact set in Rn. The union of the normal cones N (x)
of all points x ∈ S that are not extreme has measure zero.

Proof A point x minimizes yT x over S if and only if y ∈ N (x). A point x is the only
minimizer of yT x over S if and only if x is exposed, and hence extreme. Hence no y
with a unique minimizer over S lies in the normal cone of a point that is not extreme.
Thus the union of the normal cones N (x) of all points x ∈ S that are not extreme is
a subset of the vectors which do not have a unique maximizer over S, and hence has
measure zero.

Appendix 3: Closure

The following lemma technical lemma will be useful in the main body of the paper.

Lemma 4 Let S ⊂ Rn be a nonempty compact set, and let f : S → R be lower
semi-continuous on S. Then conv(epi f ) is closed.

This result follows from [5, Thm. 4.6], since every function defined on a compact
set is in particular 1-coercive. The earliest proof known to the authors can be found
in [53, p. 69]; for a simpler exposition, see [33, Ch. X, Sect. 1.5]. Here, we provide a
self-contained elementary proof for the curious reader.

Proof Every point (x, t) ∈ cl(conv(epi f )) is a limit of points (xk, tk) in conv(epi f ).
These points can be written as

(xk, tk) =
n+2∑

i=1

λki (a
k
i , b

k
i )

with
∑n+2

i=1 λki = 1, 0 ≤ λki ≤ 1, and (aki , b
k
i ) ∈ epi( f ). Since [0, 1] and S are

compact, we can find a subsequence along which each sequence aki converges to a
limit ai ∈ S, and each sequence λki converges to a limit λi ∈ [0, 1].

Let P = {i : λi > 0}. Note that P is not empty, since
∑n+2

i=1 λki = 1 for every
k. If l ∈ P , then because the limit t exists, lim supk b

k
i is bounded above. Recall

that a lower semi-continuous function is bounded below on a compact domain, so bki
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is also bounded below. This shows that for i ∈ P , every subsequence of bki has a
subsequence that converges to a limit bi . In particular, we can pick a subsequence k j
such that simultaneously, for i = 1, . . . , n + 2, a

k j
i , b

k j
i , and λ

k j
i converge along the

subsequence k j to ai , bi , and λi , respectively.

Define SP = ∑
i∈P λi bi . Then along the subsequence k j , lim j→∞

∑
i /∈P λ

k j
i b

k j
i =

t − SP also exists. Since f is bounded below, bki are all bounded below, and for i /∈ P ,
λki → 0, so t−SP ≥ 0. Therefore (x, t) can bewritten as

∑
i∈P λi (ai , bi )+(0, t−SP ).

Recall that a function is lower semi-continuous if and only if its epigraph is closed.
Hence (ai , bi ) ∈ epi f for i ∈ P . Without loss of generality, suppose 1 ∈ P , and note
that (a1, b1 + t − SP ) ∈ epi f , since t − SP is non-negative.

Armed with these facts, we see we can write (x, t) as a convex combination of
points in epi f ,

(x, t) = λ1(a1, b1 + t − SP )+
∑

i∈S,i ̸=1

λi (ai , bi ).

Thus every (x, t) ∈ cl(conv(epi f )) can be written as a convex combination of points
in epi f , so conv(epi f ) is closed. ⊓.

Corollary 3 Let S ⊂ Rn be a compact set, and let f : S → R be lower semi-
continuous on S. Then epi( f̂ ) = cl(conv(epi f )) = conv(epi f ).
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