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Abstract— We present a simple, practical method for manag-
ing the energy produced and consumed by a network of devices.
Our method is based on (convex) model predictive control.
We handle uncertainty using a robust model predictive control
formulation that considers a finite number of possible scenarios.
A key attribute of our formulation is the encapsulation of
device details, an idea naturally implemented with object-
oriented programming. We introduce an open-source Python
library implementing our method and demonstrate its use in
planning and control at various scales in the electrical grid:
managing a smart home, shared charging of electric vehicles,
and integrating a wind farm into the transmission network.

I. INTRODUCTION

Optimization has long been central to the management
of the electrical grid, in the form of the economic dispatch
of generation in the transmission network [1], [2]. As the
generation mix shifts to renewable resources, there is a
greater need for more extensive planning extending down to
the distribution network and behind the meter of individual
consumers. In addition, networked devices are now enabling
greater coordination and control of loads than has previously
been feasible. As with dispatch of generators in the transmis-
sion network, optimization provides a disciplined mechanism
for formulating and minimizing total system cost in these
new scenarios, scheduling how devices should produce or
consume power while respecting physical system constraints.

At the same time, planning in energy problems often
involves intrinsic uncertainty around future supply and de-
mand, which is increasing with greater renewable integration
and a focus on more granular domains. In these situations,
model predictive control (MPC) [3] provides a natural frame-
work for planning under uncertainty, leveraging optimization.
Many sophisticated methods for robust MPC have been
proposed, using a variety of models and approaches; see e.g.,
[4], [5], [6], [7], [8]. In the context of energy management,
it is often the case that there are several plausible scenarios
(e.g., generator or transmission outage, uncertain renewable
generation, etc.). Our approach to robust MPC is to optimize
the worst-case performance over scenarios that are explicitly
provided as inputs to the optimization problem.

Our method, which we refer to as dynamic energy man-
agement (DEM), provides a general framework for optimiza-
tion problems involving a network of devices exchanging
energy. The basis of the framework is an extensible set
of devices, which are themselves defined by small opti-
mization problems. It encompasses the standard static and
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dynamic power flow problems, as well as new scenarios
involving storage, and indeed any scenario involving devices
that can be represented with a cost or utility function and
constraints. This framework is a natural fit for object-oriented
programming, with objects encapsulating the device-specific
implementation details. For the purposes of this work, we
restrict our attention to devices implemented with convex
functions which allows robust and efficient algorithms from
convex optimization to be applied.

There already exists several popular software packages
for computing optimal power flow and analyzing electrical
grid operations at various levels. Packages such as MAT-
POWER [9] and PSAT [10] compute optimal power flow and
provide other tools for analyzing the transmission network.
GridLAB-D [11] and GridSpice [12] extend into modeling
the distribution network, with a focus on producing accu-
rate simulations using detailed physical models of devices.
These tools are open source; commercial software packages
with similar features, such as PSS from Siemens [13], also
exist. In general, the focus of these software packages is
on highly accurate physical device simulation, rather than
optimization. To the extent optimization is supported, it is
typically restricted to a standard problem formulations, such
as optimal power flow, with limited support for extension to
new scenarios. In contrast, this work focuses on developing
an extensible device model for the purposes of optimization
and a general framework for handling uncertainty.

This paper is organized as follows. In §II, we describe
the general optimization framework for devices exchanging
power over a network and describe how generators, loads,
and other common devices fit into this model. In §III, we
extend the framework to handle uncertainty using model
predictive control with robust optimization and multiple
plausible scenarios. In §IV, we provide numerical examples
demonstrating how the dynamic energy management frame-
work can be applied to a variety of problems.

II. NETWORK MODEL

The network model consists of three abstractions: devices,
nets and terminals. Devices are defined by mathematical
functions that map power flow into and out of the device
to operating cost. Nets are connection points at which power
is exchanged among devices; each device has one or more
terminals which connects that Device to one or more nets.
At each net, power balance is enforced and a price assigned,
allowing any number of devices to exchange power at
a single point. Specifying the device cost functions, nets
and the connectivity between devices and nets defines the
complete specification of the network.
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The DEM optimal power flow (OPF) problem is

minimize f(p)
subject to Ap = 0

(1)

with the decision variable p representing the power flow
across all terminals. We may consider the static OPF problem
in which case p is indexed by terminal (i.e., p is vector) or
the dynamic OPF problem in which case p is indexed by
terminal and time (i.e., p is a matrix). In either case, the
constraint Ap = 0 ensures power conservation across nets
at each time point, with A being the net-terminal adjacency
matrix. The objective function f(p) is the sum of device cost
functions and thus is separable across devices. We define f
to be extended valued, with an infinite cost corresponding to
an infeasible power flow.

In addition to power schedules, solving the DEM op-
timization problem produces prices at each net and time.
In particular, the dual variables associated with the power
balance constraints are locational marginal prices (LMPs),
representing the cost of additional power at a particular time
and place in the network [14]. These prices may form the
basis of an energy payment scheme, with devices paying or
receiving compensation for power produced or consumed.
For example, in the economic dispatch of generation in the
transmission network, LMPs determine the price that load
pays to generators. When congestion occurs, the price differs
across the network, resulting in surpluses associated with
individual transmission lines. Financial transmission rights
(FTRs) securitize these surplus payments and are sold at
auction or simply given to load serving entities in order to
hedge congestion costs [15].

In the remainder of this section, we give brief, high-level
descriptions of how devices of various types fit into this
model. The complete specification and implementation of
a common set of devices is provided as part of the open-
source library, which is presented in §IV. In addition, more
complete mathematical descriptions and discussion of many
device models, including convex relaxations for nonconvex
costs and constraints, can be found in [16].

Generation. Generators are single-terminal devices with
negative power flow, representing generation. Conventional
generators, which produce energy from fossil fuels (e.g.,
natural gas, coal), tend to have marginal costs dominated by
fuel costs. In addition, conventional generators have operat-
ing constraints determined by maximum capacity, ramping
considerations, and a minimum operating level.

Renewable generators (e.g., wind, solar) have a variable
maximum capacity determined by resource availability and
typically have zero marginal cost. As these generators are
built with power electronics, they can ramp up and down
quickly and can typically curtail in periods of overgeneration.

Generation can also be represented abstractly with a grid
connection which is appropriate certain scenarios, such as
modeling a single home or neighborhood. In this case, power
is provided by the utility which typically provides a flat rate
in $/kWh, represented with a linear cost. Incorporating more
sophisticated utility rate plans is also possible, including

tiered rate structures, time-of-use rates, demand charges and
demand response incentives.

Load. Loads are single-terminal devices with positive
power flow, representing consumption. In conventional power
flow problems, loads are treated as fixed which is represented
in this framework with a device containing a single equality
constraint.

Flexible loads (e.g., electric vehicle chargers, curtailable
lighting, etc.) provide a utility function specifying the value
of power, along with constraints on their consumption. For
example, an electric vehicle charger specifies the value of
energy stored in the EV battery, and will typically prefer
faster charging in order to ensure departure flexibility. In ad-
dition, an EV charging device limits the maximum charging
rate and the total amount of energy consumed, in accordance
with available storage capacity in the battery.

Thermal loads (e.g., HVAC, refrigerator, water heater, etc.)
include additional state in the form of internal temperatures
and a model of how energy consumption affects these
temperatures. The model can specify hard constraints on
temperatures, or a utility function that allows for temperature
targets to be relaxed in periods of high energy prices.

Interface devices. Transmission lines and other interface
devices have two or more terminals and flow power from dif-
ferent points or convert electricity to different forms. These
devices have a maximum capacity and may include models
of the losses associated with conversion or transmission.
For example, in the standard optimal power flow problem,
transmission lines connect variable generation to fixed load,
specifying the capacity limits in the transmission network.
In the distribution network, transformers impose limits on
power as well as losses as they step down voltage from
distribution lines for consumption by customers.

III. CONTROL AND UNCERTAINTY

A. Model predictive control

In this section, we discuss how the DEM framework can
be used for planning and control. Model predictive control,
also known as receding-horizon control, is a feedback control
technique that naturally incorporates optimization [3]. The
simplest version is certainty-equivalent MPC: at each time
step, we replace unknown quantities with predictions and
solve the optimization problem to produce a power flow
schedule. We then execute the first action in the schedule.
At the next time step, we repeat this process, incorporating
the latest information available into our prediction models.

We perform the following steps to construct power flow
schedule covering time intervals t, . . . , t+ T :

1) Predict. Predict unknown quantities to form an esti-
mate of the device objective functions.

2) Optimize. Solve problem (1) over time horizon
t, . . . , t+ T to obtain an optimal power schedule p?.

3) Execute. Instruct all devices to follow the first step of
the power flow schedule, p?t .

We then repeat this procedure, incorporating new informa-
tion, at time t+ 1.
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Fig. 1. Example of historical actions (solid line) and schedule (dashed
lines) at time t, under multiple scenarios. At time t, the schedule for each
scenario is constrained to be equal, but may diverge at time t+1, . . ., t+T .

B. Scenario-based robust MPC

Due to feedback, certainty-equivalent MPC often per-
forms surprisingly well even with simple prediction models.
However, in many energy management applications, there
exist several plausible scenarios which we would like to
explicitly incorporate. This is accomplished by introducing
a scenario generator, which generates multiple scenarios in
place of single predictions used by certainty-equivalent MPC.
The architecture is agnostic to the nature of the scenario
generator, possibilities include sampling from a statistical
model or a rule incorporating domain-specific knowledge,
e.g., adding redundancy to transmission line or generator
outages. Given multiple scenarios as input, s = 1, . . . , S,
we formulate the robust OPF problem by minimizing the
the cost in the worst case,

minimize maxs f
(s)(p(s))

subject to Ap(s) = 0, ∀s
p(s) is equal at time t, ∀s.

(2)

The decision variables are p(1), . . . , p(S), power flow sched-
ules for each scenario. The second constraint ensures that
that the first step (time t) is equal across the schedules for
all scenarios, an example is shown in Fig. 1. We note that
minimizing worst case cost is only one possible formulation,
see e.g., [17] §7.5.

The outer loop of the robust MPC procedure proceeds sim-
ilarly to certainty-equivalent MPC with small modification.
In the prediction step, we now employ the scenario generator
to provide a set of objective functions, one for each scenario.
In the optimization step, we solve problem (2), resulting in a
single instruction for time t, which is provided for execution.

IV. NUMERICAL EXAMPLES

In this section, we present examples demonstrating the
application of the DEM framework to various energy man-
agement problems. In the first example, we manage net-
worked devices in a smart home supplied only by solar
generation and storage, demonstrating planning with several
devices including HVAC load, which must regulate the home
temperature despite limited solar power. In the shared EV
charging example, we demonstrate the sharing of distribution
resources and discuss payment schemes that arise fro2m

prices associated with nets in the DEM framework. The
wind farm integration example demonstrates planning under
uncertainty using robust MPC, with a statistical model for
future wind power production generating wind power scenar-
ios which are used to co-optimize storage and gas generation
to provide a firm power output.

The dynamic energy management framework is imple-
mented in an open-source library available at

http://github.com/cvxgrp/dem

along with the complete code and data for the examples. The
library is an extension to CVXPY [18], providing device
models for generators, loads (fixed, deferrable, curtailable,
etc.), storage systems (e.g., battery, pumped hydro), ther-
mal devices (e.g., HVAC, refrigerator, water heater) and
transmission lines. In addition, the library provides tools
for forming and solving the dynamic energy management
problem, supporting both certainty-equivalent and robust
MPC formulations.

A. Smart home

Our first example demonstrates a number of devices jointly
scheduled by a smart home energy system. In this example,
the home is self-sufficient, drawing power only from solar
generation and a small storage system. In order to accommo-
date load in the home, tradeoffs must be made and energy
consumption optimized for limited generation. In addition,
solar power is most prevalent during the middle of the day,
whereas peak consumption occurs in the evening.

The home contains the following devices:
• Solar. Power is provided by solar generation, which

follows a typical diurnal profile and has a maximum
output of 10 kW.

• Battery. A small amount of storage is provided by
a battery with capacity of 6.4 kWh and a maximum
charge/discharge rate of 3.3 kW.

• Lights. Lighting consumes a maximum of 100 W from
6-9am and 500 W from 6-10pm and is curtailable.

• EV. An electric vehicle arrives at 5pm and desires 10
kWh of charge, with maximum charging rate of 9.6 kW.

• HVAC. The HVAC system must maintain the internal
temperature of the house at or below 78◦ F on a day
that reaches 98.6◦ F externally. The maximum power
consumption of the system is 10 kW.

The smart home example is constructed with the following
Python code.

solar = Generator(power_max=p_solar)
battery = Storage(
charge_max=3.3, energy_init=3.2*4,
energy_max=6.4*4)

lights = FlexibleLoad(
power_max=p_lights, gamma=0.1)

ev = FlexibleLoad(
power_max=p_ev, energy_max=10*4,
alpha=0.1)

hvac = ThermalLoad(
power_max=10, temp_amb=temp,
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Fig. 2. Network for smart home example (top); power schedules along
with ambient and internal temperature (bottom).

temp_init=74, temp_max=78,
efficiency=0.95, capacity=5,
amb_conduct_coeff=0.3)

net = Net([solar.terminals[0],
battery.terminals[0],
lights.terminals[0]
ev.terminals[0],
hvac.terminals[0]])

network = Group(
[solar, battery, lights, ev, hvac],
[net])

network.optimize()

In the code above, p solar, p lights, and p ev contain
the time-varying maximum power output or consumption of
the devices and temp contains the external temperature.

The results of optimizing a single day of energy usage
in the smart home in 15 minute intervals are shown in
Fig. 2. The HVAC system is able to maintain the internal
temperature at or below 78◦ F, largely through pre-cooling
the house when solar energy is prevalent in the middle of

the day. During this period, the battery is also charged to
full capacity. When the EV arrives at 5pm, energy from
solar generation as well as battery storage is shifted to EV
charging. Later in the evening, a small amount of energy
is provided to the HVAC system in order to maintain the
internal temperature. The lights remaining on and operating
at full power, but the EV receives only about 5 kWh of
the desired 10 kWh. The tradeoff between lights, EV and
HVAC are represented in the utility functions associated with
these devices and can be modified to accommodate user
preferences, as desired.

B. Shared EV charging

The next example considers sharing oversubscribed EV
charging resources. Due to flexibility in schedules and high
maximum demand, it is natural to employ optimization to
accommodate EV charging needs rather than over build
physical infrastructure to accommodate peak demand. The
model described here could be applied to a residential
neighborhood or in a commercial setting in which a business
provides charging to employees or customers.

In this scenario, Alice (A), Bob (B) and Carol (C) all
would like to charge their EVs at the maximum rate of 9.6
kW for 3 hours, but the aggregate charging rate is limited to
a maximum of 12 kW. In order to determine priority, each
user specifies their personal value of charging via a utility
function parameterized by γ ≥ 0,

t+T∑
τ=t

γq(τ), (3)

where q(τ) is the total charge received by time τ ; i.e., for
power schedule pt, . . . , pt+T ,

q(τ) =

τ∑
s=t

ps. (4)

The network representing this scenario is shown in Fig. 3
(top) and consists of two nets connected by a transformer
with limited capacity. The EVs are connected on one side of
the transformer and the grid, which provides power at a rate
of $0.1/kWh, is connected to the other.

The shared EV charging example is constructed with the
following Python code.

p = 9.6 # 240A * 40V = 9.6 kW
e = p*3*12 # 3 hours of full charging
ev_a = FlexibleLoad(
power_max=p_ev_a, energy_max=e,
alpha=0.1/12)

ev_b = FlexibleLoad(
power_max=p_ev_b, energy_max=e,
alpha=1./12)

ev_c = FlexibleLoad(
power_max=p_ev_c, energy_max=e,
alpha=10./12)

trans = Transformer(power_max=12)
grid = Generator(beta=0.1, power_max=1000)
nets = [Net([ev_a.terminals[0],
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Fig. 3. Network for shared EV charging example (top); power schedules
and price for leftmost net (bottom).

ev_b.terminals[0],
ev_c.terminals[0],
trans.terminals[0]]),

Net([grid.terminals[0],
trans.terminals[1]])]

network = Group(
[ev_a, ev_b, ev_c, trans, grid], nets)

network.optimize()

In the code above, p ev a, p ev b, and p ev c contain
the maximum charging rates for each EV, which effectively
encode the arrival time of each participant.

Fig. 3 (bottom) shows the resulting power schedules for
the shared EV charging example. The utility functions are
such that γa ≤ γb ≤ γc and thus although Alice arrives first,
her charging is reduced when Bob arrives. Carol, who places
a much higher value on charging than the others, arrives last
but immediately receives a full charge. During this period,
the price at the net to which the EVs are connected is
significantly higher than the utility price of $0.1/kWh. This
reflects the higher contention for the charging resource and
specifically the marginal increase in utility that would result
from greater charging capacity during this time. When Carol
completes charging, Bob is able to resume at full speed,
resulting in drop in price.

Applying the standard locational marginal pricing scheme
to this scenario results in the participants paying more than
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Fig. 4. Wind power over one month (top); daily contract for wind farm
output (bottom).

the utility price. This is due to contention at the transformer;
these surplus payments could naturally be assigned to the
asset owner to be used toward infrastructure upgrades to re-
solve future contention. Or, they could be divided among the
participants whose charging was curtailed as compensation
for delay.

C. Wind farm integration

We consider wind farm integration with data from the
Wind Integration National Data Set [19]. The wind farm
owner would like to provide a firm contract for energy
production by augmenting the wind resource with storage
and gas generation. We construct this contract using the
average wind power output during each interval of the day,
shown in Fig. 4, which also includes the actual wind power
output for the wind farm.

The wind farm integration example is constructed with the
following Python code.

load = FixedLoad(power=Parameter(T,K))
wind = Generator(
alpha=0, beta=0,
power_min=0, power_max=Parameter(T,K))

gas = Generator(
alpha=0.02, beta=1,
power_min=0.01, power_max=1)

battery = Storage(
discharge_max=1, charge_max=1,
energy_max=12, energy_init=Parameter(1))

net = Net([
wind.terminals[0],
gas.terminals[0],
storage.terminals[0],
output.terminals[0]])

In the code above, T represents the time horizon and K
represents the number of scenarios, which we will use to
handle uncertainty over future wind power production.

We generate S scenarios by using a simple autoregressive
model to predict the wind power. More specifically, the
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Fig. 6. Network for wind farm integration example (top); Robust MPC
results showing executed actions and energy stored in battery (bottom).

predicted wind power p̂wind
t at time t is generated recursively

according to

p̂wind
t =

24∑
i=1

αip̂
wind
t−i + βp̄t + εt, (5)

where p̄t is the historical average of wind power production
for the daily interval corresponding to t and εt is sampled
according to a zero-mean normal distribution with standard
deviation σ. The parameters σ, α and β are estimated
from historical data. The recursion is initialized so that
past predictions correspond to the known, measured values.
Example wind power scenarios generated from this model
are shown in Fig. 5.

Fig. 6 shows the executed actions produced by robust
MPC for a period of 7 days. At each time step, we generate

S = 10 scenarios and plan with 15 minute intervals and a
time horizon of 48 hours (T = 192). The augmented wind
farm is able to meet the firm contract with the majority of
wind variability handled by the battery, which charges during
periods of excess capacity. The gas generator provides power
at a sustained low level, which is desirable since running
the gas generator at a higher level incurs higher marginal
cost. Uncertainty causes robust MPC to produce a sustained
small amount of energy from gas without fully charging or
discharging the battery at any time, retaining flexibility in
the system.
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