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Control system description

Consider a discrete-time linear time-invariant control system, with plant

r,(t+1) = Apx,(t) + Biw(t) + Bau(t)
Z(t) — Clﬂjp(t) -+ Dllw(t) + DlQU(t)
y(t) = Caxp(t) + Darw(t)

and controller

xc(t + 1) — Acxc(t) T ch(t)
u(t) = Cexc(t) + Dey(l)
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Nominal and acceptable controllers

e design parameters or coefficients in controller 8 € R (typically entries
of A., B¢, C. and D)
® given:

— set of acceptable controller designs C C R™ (controllers that achieve
given performance specifications)
— nominal controller design 6"°™ € C
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Controller (coefficient) complexity

e ®(0) is complexity of controller described by 6

N
®(0) = Z ¢i(0;),

where ¢;(60;) gives the complexity of the ith coefficient of

e #(z) is number of bits needed to express the fractional part of the
binary expansion of z
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The controller coefficient truncation problem

e controller coefficient truncation problem (CCTP): find lowest
complexity controller among acceptable designs

minimize  ®(0)
subjectto 6 € C

e very difficult to solve
e can be cast as combinatiorial optimization problem

e global optimization techniques (e.g., branch-and-bound) can only solve
small CCTP

e need an efficient method that can handle large problems
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The algorithm

e initialize algorihm with nominal design

e at each step, choose an index ¢ randomly and fix all parameters except
0;

e use subroutine interv to find an interval [l, u] of acceptable values for
0;

e use subroutine trunc to find a value of 6; in [I, u] with lower complexity
e repeat until there is no change in 6

e run the algorithm several times, with the best controller coefficient
vector found taken as the final choice
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e interv(#,:) takes as input coefficient vector 6 € C, and coefficient
index 1

e it returns an interval [I, u] with 6; € [l, u] and

((91, . .,(97;_1,2,(92'4_1,. : .,(9]\[) e C for z € [Z,U]

e simplest choice, always valid: return [ = u = 0,
e other extreme: return largest valid interval that contains 6,

e typical implementation of interv: return reasonably large interval in C,
using linear matrix inequalities (LMlIs)
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Interval computation via Lyapunov performance
certificate

given 0 € C, find a convex set C such that 0 € C CcC
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o take .
[ = mf{z | (91, c ,82'4_1,2’,9@'4_1, c 79N) S C},

w=sup{z | (01,...,0i41,2,0i11,...,0n) €C}.
e since C is convex,

(01,...,0541,2,0i41,...,0N8) € C CC for z € [l,u].

e use a Lyapunov performance certificate to find C

feC < T ILO,v) =0

e [ is a bi-affine function in v and 6

N
L(Q, V) = LO -+ Z HZLZ
1=1

European Control Conference, Kos, Greece, July 2007



e given A € C, compute v such that L(6,v) = 0

(typically by maximizing minimum eigenvalue of L(f,v) or maximizing
det L(0,v))

o fix v and take )
¢ =1{0] L(8,v) = 0}
(C is convex because described by an LMl in 6)

e need to minimize or maximize scalar variable over an LMI to find [ and u

e can be reduced to an eigenvalue computation, carried out efficiently

u = Qz—max{l/)\z\)\z<0}

where ); are the eigenvalues of L(6,v)" V2L, L(0,v)~1/?
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State feedback controller with LQR cost specification
e plant is given by: z(t + 1) = Az(t) + Bu(t), x(0)=xg
e controlled by a state feedback gain controller: u(t) = Kx(t)
e design variables are entries of the matrix K

e performance measure is LQR cost

E | x(t)"Qx(t) + u(t)" Ru(t)| = Tr(XP)

t=0

where P is unique solution to

(A+ BK)Y'P(A+ BK)—-P+Q+ K"RK =0
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e nominal design K"°™ is the optimal state feedback controller

e set of acceptable controller designs is set of e-suboptimal designs

C={K|J(K)<(1+¢eJ"™}

e Lyapunov performance certificate:

P—(A+BK)'P(A+BK) = Q+K'RK
Tr(XP) < (14 ¢)Jmom
P = 0
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e given K € C, take P to be the solution of

maximize  Apin(L(K, P))
subject to L(K,P) = 0.

e for a particular choice P,

C={K|(A+BK)'P(A+ BK)-P+Q+ K'RK <0}

e easy to show that C C C
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Numerical instance

e AcR"YY and B € R ® randomly generated
e =1, Q=1 R=1

e fractional part of each entry of K™°™ expressed with 40 bits;
¢ (K) = 2000 bits.

o ¢ = 15% i.e., acceptable feedback controllers are up to 15%-suboptimal
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total number of bits required to express K versus iteration number in a
sample run of the algorihm
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algorithm converges to a complexity of 85 bits in 50 iterations
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best design afer 100 random runs of the algorithm achieves
bits (1.5 bits per coefficient)
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very aggressive coefficient truncation!
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Dynamic controller with decay rate specification

e plant is given by

xp(t +1) = Apay(t) + Byu(t), y(t) = Cpap(l)

e controlled by a dynamic controller

r(t+1) = Acx(t) + Bey(t), wu(t) = Cex.(t)

e closed-loop system given by z(t + 1) = Ax(t) where

0= | A=[5g,

Le
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e design variables are entries of the controller matrices A., B. and C.

e performance measure is the decay rate of the closed-loop system:
J(Am Bc: Cc) — IO(A)

e given a nominal design (AZo™, Brem (C'rom)
e set of acceptable controller designs
C={(A., B.C.) | J(A., B.,C.) < a},
where a = (1 4 €)J(ALZ°™, BRom Cnom)
e Lyapunov performance certificate

02P — ATPA 0
0 p |z
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o for (A, B.,C.) € C, take P to be the solution of

maximize  Apin(L(A¢, Be, Ce, P))
subject to L(A., B.,C., P) = 0
Tr(P) = 1.

e for a fixed choice of P,

C ={(As, B.,C,) | ATPA < o*P}

e casy to show that C CcC

European Control Conference, Kos, Greece, July 2007

18



Numerical instance

e plant is given by
xp(t +1) = Apap(t) + Bpult) +w(t), y(t) = Cpap(t) + v(t),

where w(t) ~ N(0, I) is input noise and v(t) ~ N (0, I) is measurement
noise

o ASR5X5, B, € R 2 C, € R**° generated randomly
e plant controlled by an LQG controller with Q =1, R = 1.

e fractional part of each entry of AZ°™, B2°™ and C2°™ is expressed with
40 bits; ®(#™°™) = 1800 bits

e c =5%

European Control Conference, Kos, Greece, July 2007 19



progress of the complexity ®(#) and percentage deterioration in
performance 100(.J — J"°™)/J"°™ during 3 sample runs of the algorithm
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best design complexity versus number of sample runs of the algorithm
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best design after 100 random runs of the algorithm achieves a complexity
of ®(0) = 164 bits and J(#) = 1.0362.J (™)
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