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Abstract— We describe a method for truncating the coeffi- specifications. For example, we can gigein terms of a

cients of a linear controller while guaranteeing that a give  single scalar performance measure RY R, as
set of relaxed performance constraints is met. Our method

sequentially and greedily truncates individual coefficiets, using C=1{0]J(O) < (1+e)JO"™)}
a Lyapunov certificate, typically in linear matrix inequality - ’

(LMI) form, to guarantee performance. Numerical examples —\ynich are the designs that are no more thavorse than the
show that the method is surprisingly effective at finding

controllers with aggressively truncated coefficients, thameet nOMinal design. If the nominal design is the controller that
typical performance constraints. minimizesJ, thenC is the set ofe-suboptimal designs. Our
Index Terms— Coefficient truncation, Lyapunov function, goal is to find# € C that achieves closed-loop performance
linear matrix inequality, state-feedback controller, deay rate. close to nominal, and at the same time has low complexity.
The complexityof a vector of controller coefficient$ is
|. INTRODUCTION measured by the functiof : RY — R,

A. The controller coefficient truncation problem N
_ _ o ®(0) =) 0i(0h),
We consider a discrete-time linear time-invariant control =
system, with plant ) ) o
where ¢;(0;) gives the complexity of théth coefficient of

rp(t+1) = Ayx,(t) + Biw(t) + Bau(t), 6. We can take, for example);(a) to be the number of
_ bits needed to express or the total number ofis in the
t)y = C t D t D
(1) 1p(t) + Duw(t) + Dizult), binary expansion of;, in which case®(f) gives the total
y(t) = Coxp(t) + Daw(t), number of bits (orls) in the controller coefficients, which

is closely related to the Kolmogorov-Chaitin complexity of
the controller [1]. Of course the functiors, and therefore
2ot +1) = Aezo(t) + Bey(t), also®, can b_e disco_ntinuous. .
u(t) = Cue(t) + Dey(t) Our goal is to find the lowest complexity controller
ooTee Y- among the acceptable designs. We can express this as the

Heret = 0,1,2,... is the discrete time indexy,(t) is optimization problem
the plant stateu(t) is the control inputy(t) is the sensor
output, w(t) and z(t) are the exogenous input and output,
respectively, and.(¢) is the controller state.

The vectord € RY will represent the design parameterswith variabled € RY. We call this thecontroller coefficient
or coefficients in the controller. Typically these are (safle truncation problem(CCTP), since we can think of the
the entries in the matrice$., B., C. andD.. We are given a controller coefficien®; as a truncated version of the nominal
nominal controller designdescribed by the coefficient vector controller coefficiengo™.
g™om, and a set of acceptable controller desighs R". The CCTP (1) is in general very difficult to solve. For
The setC gives the (coefficients of the) controllers thatexample, whend measures bit complexity, the CCTP can
achieve acceptable closed-loop performance. We assume tha cast as a combinatorial optimization problem, with the
guem € C, i.e, the nominal controller meets the performanceinary expansions of the coefficients as Booldam, {0, 1})

variables. Branch-and-bound, or other global optimizatio
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minimize ®(0)
subjectto 6 € C,
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optimal, they appear to be quite good. The method tymlgorithm with a numerical instance of the problem.glfl
ically produces aggressively truncated controller designthe controller has constant state-feedback form, the namin
even when the allowed performance degradation over tlentroller is linear quadratic regular (LQR) optimal, ahe t
nominal design is just a few percent. set of acceptable controllers is determined by the LQR cost.
In our method, we greedily truncate individual coefficientdn §IV the controller is dynamic, and the objective is the
sequentially, in random order, using a Lyapunov certificatdecay rate of the closed-loop system.
(which is updated at each step) to guarantee performance,
i.e, # € C. When the algorithm is run multiple times, the
randomness in the truncation order produces designs that ar Our algorithm uses two subroutines or methdagerv,
different, but have very similar total complexity. Runnitigg ~ which finds an interval of acceptable values of a coefficient,
algorithm a few times, and taking the best controller foundand trunc, which truncates a coefficient, given an interval
can give a modest improvement over running it just once. of acceptable choices. We first describe these methods more
Before proceeding we mention a related issue that werecisely, but still abstractly; more concrete descrimiwvill
do not consider: the effects of truncation or saturation obe given later ir§ll-A and §lI-B.
the control signalsu(t), y(t), and z.(t). This makes the = The methodinterv(f,i) takes as input the coefficient
entire control system nonlinear, and can lead to instgpilitvectoré € C, and a coefficient index It returns an interval
large and small limit cycles, and other behavior. Howevef], u] of allowed values fo#;, with the other parameters held
the Lyapunov-based methods described in this paper can fixed, i.e., numbers andwu, with §; € [I,u], with
extended to handle nonlinearities.

Il. THE ALGORITHM

(91,.. .,91'71,2,91'4,1,. .. ,9]\[) e(Cforz e [l,u]

B. Previous and related work Of course the simple choick= u = 0, is always valid.

The subject of coefficient truncation is relatively old. Itat the other extreme, the largest valid interval that can be
was initially discussed in the context of filter design: ther returned byinterv is given by

was an understandable interest in designing finite worditeng L.
filters that would be easily implemented in hardware with a =~ 1" = inf{l [ (01,..,0i-1,2,0i41,...,0n) €C
small degradation in performance (see [2], [3]). The idea of for z & [1,6,]},
c_oefficient truncatior_1 subsequently appeared in otherdfield ~ _ sup{u | (01,....0i-1,2,0i41,...,0N8) €C
like speech processing [4] and control [5]. N for z € [6;, u]}.

Several methods have been proposed for coefficient trun-
cation: exhaustive search over possible truncated caeffici A typical implementation ofnterv falls between these two
[2], successive truncation of coefficients and reoptimize€Xtremes, returning a reasonably large interval guardntee
tion over remaining ones [3], [6], local bivariate searcH© lie in C, with reasonable computational effort. In the
around the scaled and truncated coefficients [7], treeetsay  €xamples we will consider, this can be done using linear
techniques for truncated coefficients organized in a tréBatrix inequalities (LMIs).
according to their complexity [8], [9], coefficient quanti- The methodrunc;(z,!, u) is a truncation method which,
zation using information-theoretic bounds [10], weightediven a numbet: to be truncated, and an intervil u] of
least-squares [11], simulated annealing [12], [13], genetacceptable choices (containing, returns a number in the
algorithms [14], [15], Tabu search [16], design of optimainterval[l,u], with ®;(z) < ®;(x). One valid choice is; =
filter realizations that minimize coefficient complexity7]l ~ *: at the other extreme, the algorithm can return the point
[12] Other approaches have formu'ated the prob'em asvgth smallest Complexity in the intervail.,e., the minimizer
nonlinear discrete optimization problem [18], or have use8f ®i(z) over I, u]. For the complexity measures we use in
integer programming techniques over the Space of powertéle examp|es ShOWﬂ |atel’, we can eaSily Compute the |attel’.
of-two coefficients [19]’ [20] The reference [21] Survey's d The algorithm is initialized with the nominal deSign, which
ferent methods for quantizing lifting coefficients for wiate We assume has finite complexity. At each step an index
filters: mostly uniform bit allocation, exhaustively seiaed IS chosen, and all parameters excéptare fixed. We use
allocation, simulated annealing with lumped scaling and/dnterv to find an interval of acceptable values #; and
gain compensation. In [22], the authors show how to choodBen trunc to find a value off; with (possibly) lower
the optimal realization for an LQG controller to be robus€omplexity. We have experimented with various methods
to finite wordlength effects. The effects of quantization anfor choosing the index in each step, and found the best
finite wordlength on robust stability of digital controler results by organizing the algorithm into passes, each ofhwhi
and performance bounds derived using Lyapunov theory at@/olves updating each parameter once; in each pass, the

presented in [23]. ordering of the indices is random. The algorithm stops when
. the parameter does not change over one pass. A high-level
C. Outline decription of the algorithm is as follows.

In §ll we describe the general algorithm. In the next 6 :=g"o™
three sections we present examples, in each case working repeat
out the details for the general case, and illustrating the grrev .= 0



choose a permutationr of (1,...,N)

fori=1to N
j=n(i)
[, u] := interv (6, j)
6; := trunc;(6;,1,u)

until 8 = grrev C
Since the algorithm is random, it can and does converge to
different points in different runs. It can be run severaldsn

with the best controller coefficient vector found taken as ou . .
Fig. 1. The set of acceptable design parameters need not be convex, as

final choice. shown in this example. The sétis a convex subset af, that containsd.
. . The interval of values of), shown as the vertical line segment, gives an
A. Complexity measures and truncation methods interval of values irC.

In this section we describe various possible complexity
measures, and the associated truncation methodsz Anig

can be written as if 1 =w;, 2i:=1;
0 . else
z2=3s Z b;27", if all bits after [; are 0, break
i=—00 elsezi =1

wheres € {—1,1} is the sign, and, € {0,1} are the bits When the complexity measure i§;ac—nits, the same algo-
of z in a binary expansion. (This representation can be madighm can be used, with; initially set to zero for; > 0 and
unique by ruling out any sequence that ends with all one#))e for loop index modified to run from to R, instead of
i.e, b; =1 for i > k, for somek.) from —L to R.

One possible complexity measure is the number of on

in the binary expansion of ® Interval computation via Lyapunov performance certifi-

cate
Gomes(7) = i b, Our approach to determining an interyalu] for which

e (917 s aei—l7276i+17 e 79]\]) S C fOI’ S [l7u]
which gives the number of adders needed to impleme
multiplication by » using a shift e_md sum method. € C we first find a convex sef that satisfies) € ¢ and

Another complexity measure is the width of the range of;
. C C. We then take
the nonzero bits, more commonly referred to as the number .
of bits in the expansion of, I=inf{z | (61,...,0i11,2,0i41,...,0N8) €C}, @)

- 01y 01,2051, 0 .
bvies(2) = max{i | b; # 0} — min{i | b; # 0} + 1. w=sup{z| (01, b1, 2, b n)€c}

This measure is useful if multiplication by will be carried

out in fixed-point arithmetic. 01,...,0i+1,2,0i11,...,0N) € CCCforze [1,u].
Yet another complexity measure is the number of bit

needed in the fractional part of the binary expansion,of

Will be based on a conservative approximationCofGiven

SinceC is convex, it follows that

?’his is illustrated in figure 1. For more on convex sets, see
[24].
Gtrac—bits(2) = max{0, max{i | b; # 0}}. To find the setC, we use aLyapunov performance cer-
! tificate The details depend on the particular performance
For these complexity measures, it is straightforward to fingheasure or measures, but the common form is as follows. We

the numbe: that minimizes the measure in a given intervalexpress the set of acceptable controllers using linearimatr
i.e. to implement (the most powerfufrunc method. We  jnequalities:

assume that the binary expansions/oand « are finite .
(though possibly long), 0eC <= v L,v) =0,

wherelL is a function that is bi-affing,e., affine ind for fixed

v, and affine inv for fixed 6. The symbol> refers to matrix

respectively. The number will have at mostL bits in its  jnequality, between symmetric matrices, so the condition

integer part and® bits in its fractional part, and we denote apove is thatl.(6, v) is positive semidefinite. The variable

its bits as represents the coefficients in the Lyapunov function used to
SyZ_[ ..-20-21---ZR- certify performance. For more on representing controlesyst

specifications via LMIs, see.q, [25], [26], [27].

sil_p ... 0p.ly ... 1R, SulU_[ .. .Ug.UT ... UR,

With complexity measur , Or ¢pits, 2 Can be found )
as follows e Gones OF Pits For a givend € C, we compute a value of such that

, L(6,v) = 0. We then fixv, and take
z; =0 for all 4 A
fori=—-LtoR C={6]L@,v) =0} (3)



This set depends on the particular choicervpfbut in all matrices and: has the same dimensions Zslf m =n, &

cases, it is convex, indeed, it is described by an LMBin is diagonal. Ifm > n, we have

For a givend € C, v can be typically chosen to maximize ]

the minimum eigenvalue of.(d,v) or to maximize the x| diag(on,...,on)

determinant ofL (6, v). Both of these problems are convex: 0

maximizing the minimum eigenvalue can be reduced t@therwise, we have

solving a semidefinite program (SDP) and maximizing the

determinant can be reduced to solving a MAXDET problem. r= [ diag(o1,...,0m) 0 ] .
To find [ or u in (2), we need to minimize or maximize

. . et
a scalar variable over an LMI. This can be reduced to a

eigenvalue computation [24, Exer. 4.38], and can be carried z=UTy, y=VTw,
out efficiently. SinceL(d,v) is bi-affine in6 andv, it can 7 yT 0yl
be expressed as E_[E 7 ], F—|:IyT 0 ]
L(O,v) = Lo + XN:&Li, Using a block Cholesky factorization, we can write =
= CCOT, where
where we have obscured the fact that the matricgsand - [ I 0 }
L; depend orv. When@ = (0y,...,0,-1,2,0;41,...,0N), Tl (g-xxhy2 |-
we have
L(6,v) = L(O,v) + (= — 6;) L. Note that 1 I
Assuming thatL (6, v) > 0, the rangdl, u] of §; consists of o= { —-AY A ] ’
the values of: for which L(6,v) > 0. It can be shown that
whereA = (I — xx7)~1/2,
I = 6;—min{l/\; [ \; >0}, (4) It is easy to show thak,,i, andAmax are, respectively, the
u = 60; —max{1/)\; | \; <0}, (5) minimum and maximum eigenvalues 6f-! FC~7. Since
where)\; are the eigenvalues di(6,v)~"/2L;L(0,v)" /2. po] 0 y© 0
In the examples we will consider, the LMIs that arise have I | 0o 27 |’

an even more specific form, . : . .
P and since nonzero eigenvalues\dfN and N M are identical

[ zZT for any two matrices\/ € R®*™ and N € R™*", A\,;n and
L(@, I/) = i 07 1
Z I Amax are the eigenvalues of
where N { yT % ]C‘TO_l [ 0y } '
Z:ZQ—I—Z@iiniT. 0 = z 0
=1 These can be found analytically as
Here Z; is a matrix, andv; and w; are vectors, with
dimensions and data that depend on the particular problem. Amin = —a—/3a2+ ByTy + B, (6)
In the general notation used above, this corresponds to Amax = —a+ /3024 8yTy + B. (7)
1 zr 0 wiv! .
Lo = , L, = T i The termsa, 8 and~ can be computed more easily as
ZO I V;w; 0
R min{m,n}
- LiYioi
fori=1,..., N. We can then express as a=z"A’%y = Z 1—02’ (8)
c=A{01lzll <1}, w '
x€xs
where || - || denotes the spectral norm (maximum singular B=a"Az = Z 5, )
1—o:
value). i=1 '
We now give the details of how to find the range of the T 2 "\ yios
coefficientd, in the convex sef, i.e., how to computé and Y=y XTAZy = Z 1— UJQ'. (10)
j=1

uin (2).
Note that the rank ofL; is exactly 2. Assuming that  In summary, to find andu, we start by computing the

L(9,v) = 0 andv; and w; are both nonzero, the matrix SVD of theZ and settingt = U”v;, y = V' w;. We proceed

L(9,v)~Y2L;L(#,v)~'/? has one positive eigenvalug..x, then to compute the 3 terms in (8), (9), (10) and compute

(2n+m — 2) zero eigenvalues and one negative eigenvalug,;, and )., from (6) and (7). Finally] and« are found

Amin- We now proceed to find more explicit expressionsrom (4) and (5):

for Amin @and Aax. Let Z = USVT be the full singular

value decomposition o whereU and V are orthogonal l=10; —1/Amax, u="0; —1/Amin. (11)



I1l. STATE FEEDBACK CONTROLLER WITHLQR CcOST We choose the Lyapunov performance certificéteto

We will demonstrate how to apply the algorithm to abe the block diagonal matrix with the following blocks on
specific problem class where the plant is given by the diagonalP — (A + BK)" P(A+ BK) — Q — K" RK,
(I1+¢)J"™ —Tr(XP) and P. Here K and P correspond,
z(t+1) = Az(t) + Bu(t), x(0) = =0, (12)  respectively, tod and v introduced in§ll-B. The condition

and is controlled by a state feedback gain controller give atL(K, P) = 0'is equivalent to

by P—(A+BK)'P(A+BK) = Q+KT'RK,
U(t) = KI(t), (13) ’I‘I‘(EP) S (1 + 6)Jnom7 (16)
whereA € R™", B € R™™, ¢ € R*", K ¢ R™" P = 0. (17)

is the feedback gain matrix;(t) € R" is the state of the )
system andi(t) € R™ is the input to the system. The designSince (16) and (17) do not depend & and for a particular

variables are the entries of the matiik choice P, (3) becomes
¢ ={K|(A+BK)"P(A+BK)-P+Q+K"RK < 0}.
: L o (18)
nxn mXm

G_|\_/en ég f_e .R h posmfve semidefinite ano]_% € _R b Given K € C, any matrixP that satisfiesL (K, P) = 0 is a
positive definite, the performance measure is given by thg, g chojce. We takeP to be the solution of the following

A. Admissible controllers

LQR cost optimization problem
J(K) = maximize Apin(L(K, P))
subjectto L(K,P) = 0.

E HTQux(t) + u(t)T Ru(t)

Here A min(L(K, P)) is the minimum eigenvalue di( K, P)
E ( and P is the variable we are optimizing over. Recall that
is fixed.

where the expectation is taken ovey ~ N(0,%). If A+ We will now show thatC C C. Let K € C. Consider the
BK is unstableJ(K) is infinite. Otherwise, let” be the Lyapunov functionV : R* — R defined asV/(z) = 27 Pz.
(unigue) solution to the Lyapunov equation For anyT > 0,

(A+ BK)TP(A+ BK) - P+Q+ K"RK =0. (15) AV(T) = V(a(T)) - V(z(0))

The cost in (14) can be expressed/d#’) = Tr(XP). This
holds because

oo

D ()
t=0
D a(t)
t=0

T+ KTRK)x(t)] . (14)

Il
B

Vit +1)) = V(z(t))

~
Il

0

J(K) = E Zx(t)TPx(t) — I(t + I)TP:Z?(t + 1) _ iw(t + 1)TP.”L'(t + 1) . .I'(t)TPCC(t)
t=0 yo
= E [arngo] OT
= Tr(E [zozl] P) < =) () (Q+ K"RE) x(t).
Tr(XP). t=0

) ) ) ) Therefore,
The nominal desigik*°™ is chosen to be the optimal state

feedback controllei,e., the one that minimizes the LQR cost T
Il < —
J. It can be found as follows, ;I(t) (Q K RK) 2(t) < V(@(0) - V((T))
Knom — —(R + ‘BT‘Pnom‘B)71‘BTPnoml47 S V(.CC(O)),

where Pr°m is the solution of the discrete-time algebraicwhere the last inequality follows becaugéx(7")) > 0 from
Riccati equation (17). LettingT tend to infinity and taking expectation over

xo, we obtainJ(K) < Tr(XP). It follows from (16) that
J(K) < (14 ¢€)Jmom.

prom _ Q + ATPnomA

ATPnomA(R 4 BTPnomB)—lBTPnomA.
WhenK = K™, p™°™ js also the solution of the Lyapunov B. Coefficient range calculation o .
equation (15). The LQR cost associated with the optimal Let (/,u) be the range of coefficienk’;;. Given (18),

controller is.J™°™ = Tr(X Prom), problem (2) becomes
We define the set of admissible controller design as | = min{K;; | (A+ BK)"P(A+ BK)— P
C={K|J(K) < (1+e)J"m}, +Q + KTRK <0},

wheree is a given positive number. This means that a con- ¢ = max{Ki; | (A+ BK)"P(A+ BK) — P
troller design is admissible if and only if it issuboptimal. +Q+ KTRK < 0}.
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The inequality in (18) is equivalent to
PY2(A+ BK _
H{ }(21/2K ) } (P-Q)"?
The method outlined igll-B can be used to computeand
u by taking
PY*(A+ BK _
Z:[ ](%1/2[{ )](P_Q) 1/2’

P1/2B —1/2
v:{ R1/2 }ei, w=(P—-Q) /ej,

<1. (19) figure 3, which shows the distribution of th& coefficients
of the nominal design and the coefficients of the best design.

IV. DYNAMIC CONTROLLER WITH DECAY RATE
SPECIFICATION

We demonstrate how to apply the algorithm to the problem
class where the plant is given by

xp(t+1) = Apxp(t) + Bpu(t), y(t) = Cpzp(t), (20)
wheree; ande; are, respectively, théth unit vector inR™ 5.4 is controlled by a dynamic controller given by
andjth unit vector inR™ and K € C is the current admissible
controller design. ze(t+1) = Acwe(t) + Bey(t), u(t) = Cexe(t).  (21)

C. Numerical instance where z,(t) € R"™, u(t) € R™, y(t) € R™, 4, €
R " B, e Rw*™M: (, € R™*" g.(t) € R"™,
A, € R™*™ B, e R"™ ™ andC, € R™e*™,

The closed-loop system is given byt + 1) = Ax(t)

Our example has dimensions = 10 and m = 5. We
generated the plant randomly, ds= T + 0.1X/\/n, where
X,; are independent identically distributed (1IR)(0, 1). We

generated the matri® € R'**5, with B;; 1ID N(0,1). We where

takeX =1, Q=171 andR = I. z(t) = { zp(1) ] , A= [ Ay BpCe } . (22)
The complexity measuresp;(z) are chosen to be we(t) B.Cy A

drrac—bits- The fractional part of each entry ak™°™ is The design variables are the entries of the controller

expressed withd0 bits, requiring a total of2000 bits to  matricesA., B. andC..
expressK™o™, i.e, &("°™) = 2000 bits. We takes = 15%, o
i.e,, admissible feedback controllers are those that are up ‘&J Admissible controllers
15%-suboptimal. A controller (A., B., C.) is admissible if the decay rate
The progress of the complexity(#) during a sample run of the closed-loop system is less than a given rgtevhere
of the algorithm is shown in figure 2. In this sample run thé < a < 1. The decay rate is given by(A), whereA is the
algorithm converges to a complexity 85 bits in one pass Mmatrix specified in (22).
over the variables. During the run of the algorithm the cbst ~ The performance measure is chosen to be the decay rate
is approximately constant and equal to its maximum allowe@f the closed-loop systeng., J(A., B., Cc) = p(A).
value1.15.Jmom We are given a nominal controller design
The best design aftet0 random runs of the algorithm (Ac™, Beo™, C2°™) such that
achieves a complexity of(6) = 81 bits, with a cost of J(Anem puom cmom) _
J(0) = 1.1494J(6™°™). The best design found afteino ©oe e '
random runs of the algorithm achieves a complexity of We define the set of admissible controller designs as
®(0) = 75 bits andJ(6) = 1.1495.J(6™°™). _
This best design gives very aggressive coefficient trunca- € = {(4e Be, Co) [ J(Ae, Be, Ce) < o,
tion, with only 1.5 bits per coefficient. This is illustrated in wherea = (1 + €)p ande is a given positive number.



We choose the Lyapunov performance certificateo be and

a?P - ATPA 0 _ 12| 0 _ 12| 0
L(A.,B.,C.,P) = 0 e v=(1/a)P {ei}, w=P {ej],
whereA is the matrix defined in (22). Hered.., B, C..) and wheree; ande; are, respectively, théh and;th unit vectors
P correspond, respectively, hand v introduced in§ll-B.  in R" and A is the closed-loop matrix associated with
The condition that’.(A., B., C., P) > 0 is equivalent to (A¢, B, Ce) € C.
r ) The same method can be used to find the ranges of
A"PA = oP coefficients inB. and C.. The same formulas can be used
P = 0. (23)  but with sightly modified definitions for andw.
To find the range of coefficien{B.);;, use the same

Since (23) doesn't depend ¢d.., B, C..), for a fixed choice definitions forZ andw but let

of P, (3) becomes |
A _ p-1/2 CpTeJ
C={(A., B.,C.) | ATPA < a?P}. (24) w = AT

Any matrix P that satisfiesL(A., B.,C.,P) = 0 for wheree; is the jth unit vector inR™.
(Ac, Be,C;) € C is a valid choice. We take” to be the  To find the range of coefficienfC.);;, use the same

solution of the following optimization problem definitions forZ andw but let
maximize Amin(L(Ac, Be, Ce, P)) B 12 | Bpe
subjectto L(A.,B.,C.,P) =0 v=>1/e)P 0 ’
Tr(P) = 1.

wheree; is theith unit vector inR™«.
Here Ain (L(A¢, Be, Ce, P)) is the minimum eigenvalue of
L(A., B.,C., P), and P is the variable we are maximizing
over. Recall thatd., B. and C, are fixed. The constraint We test the proposed method in the case where the plant
Tr(P) = 1 is added becausg(A., B., C., P) is homoge- is given by
neous inP.

We will now show that¢ C C. Let (A., B.,C.) € C. p(t+1) = Apay () +Bpu(t)+w(t),  y(t) = Cpay(t)+o(t),

Consider the Lyapunov functiol : R"»*" — R defined wherew(t) ~ N(0,1) is the input noise and(t) ~ N(0, 1)

C. Numerical instance

asV(z) = 2" Pz. SinceA" PA < o*P then for allt > 0 is the measurement noise. The plant is controlled by an LQG
cTATPAz(t) < o2a(t)T Pa(t) controller with@ = I, R = I. The matrices describing the
- controller are
z(t+D)TPzx(t+1) < o’z(t)' Px(t)
Vix(t+1 < a2V (z(t)). Ac:Ap"'BpK_LOpa B.=L, C.=K,
(z(t+1))
This means that for all > 0, V(z(t)) < o*V(z(0)) and Where
Amin(P)|z(®)]? < ()" Pa(t) K = —(ByPiBy+R)"'ByPiA,,
< a®2(0)T Px(0) L = APCLH(C,PCI+V) ™
< Oth)\max(P)|\~’C(0)||2a P, and P, are the unique positive semidefinite solutions to
then |z (t)|| < \/matHI(O)H' wherex(P) is the condi- the discrete-time algebraic Riccati equations
tion number of P. The decay rate of the system is then less P, = AgPlAp 1 Q

thana, as required. _
—ATP\B,(R+ B} PLB,) ' Bl P A,,

B. Coefficient range calculation Py = APAT W
P

Let (I,u) be the range of coefficientd.);;. Given (24), AP CT(CyPyCT 4+ V) 1O, Py AT

problem (2) becomes pt 2¥p \¥p22¥p P P

. - ) Our example has dimensiong = 5, m. = 2 andm,, = 2.
[ = min{(A)i; | A" PA < a”P}, The plant matrix4,, is randomly generated using the same
u = max{(A.);; | ATPA<a*P}. method used to generaté in §3.3. The entries of3, and
C, are 1ID N(0,1). The matricesAz°™, B2o™ and Cho™
are then computed using the formulas presented above.
le/2Apfl/2H <a. 25)  The complexity measuresp;(z) are chosen to be
drrac—bits- 1 he fractional part of each entry ofie™, Brom
The method outlined if§ll-B can be used to computeand andC2°™ is expressed witH0 bits, requiring a total 01800
u by taking bits, i.e,, ®(6"°™) = 1800 bits. We run the algorithm with
Z = (1/a)PY2AP™1/2, e =5%.

The inequality in (24) is equivalent to
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Fig. 5. Best design complexity versus number of sample runthe
algorithm
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The progress of the complexit$p(f) and percentage
deterioration in performanc&00(J — J"°™)/J"°™ during
3 sample runs of the algorithm are shown in figure 4.

The best design aftet0 random runs of the algorithm
achieves a complexity of(f) = 171 bits with a cost of
J(0) = 1.0246J(6™°™). The best design aftef00 random
runs of the algorithm achieves a complexity ®f0) = 164
bits and.J(#) = 1.0362J(6"°™). Figure 5 shows the best 1
available design complexity versus the number of sample
runs of the algorithm.

(18]
[19]
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