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Abstract— We describe a method for truncating the coeffi-
cients of a linear controller while guaranteeing that a given
set of relaxed performance constraints is met. Our method
sequentially and greedily truncates individual coefficients, using
a Lyapunov certificate, typically in linear matrix inequali ty
(LMI) form, to guarantee performance. Numerical examples
show that the method is surprisingly effective at finding
controllers with aggressively truncated coefficients, that meet
typical performance constraints.

Index Terms— Coefficient truncation, Lyapunov function,
linear matrix inequality, state-feedback controller, decay rate.

I. I NTRODUCTION

A. The controller coefficient truncation problem

We consider a discrete-time linear time-invariant control
system, with plant

xp(t + 1) = Apxp(t) + B1w(t) + B2u(t),

z(t) = C1xp(t) + D11w(t) + D12u(t),

y(t) = C2xp(t) + D21w(t),

and controller

xc(t + 1) = Acxc(t) + Bcy(t),

u(t) = Ccxc(t) + Dcy(t).

Here t = 0, 1, 2, . . . is the discrete time index,xp(t) is
the plant state,u(t) is the control input,y(t) is the sensor
output,w(t) and z(t) are the exogenous input and output,
respectively, andxc(t) is the controller state.

The vectorθ ∈ RN will represent the design parameters
or coefficients in the controller. Typically these are (someof)
the entries in the matricesAc, Bc, Cc andDc. We are given a
nominal controller design, described by the coefficient vector
θnom, and a set of acceptable controller designsC ⊆ RN .
The set C gives the (coefficients of the) controllers that
achieve acceptable closed-loop performance. We assume that
θnom ∈ C, i.e., the nominal controller meets the performance
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specifications. For example, we can giveC in terms of a
single scalar performance measureJ : RN → R, as

C = {θ | J(θ) ≤ (1 + ǫ)J(θnom)},

which are the designs that are no more thanǫ worse than the
nominal design. If the nominal design is the controller that
minimizesJ , thenC is the set ofǫ-suboptimal designs. Our
goal is to findθ ∈ C that achieves closed-loop performance
close to nominal, and at the same time has low complexity.

The complexityof a vector of controller coefficientsθ is
measured by the functionΦ : RN → R,

Φ(θ) =

N
∑

i=1

φi(θi),

whereφi(θi) gives the complexity of theith coefficient of
θ. We can take, for example,φi(a) to be the number of
bits needed to expressa, or the total number of1s in the
binary expansion ofa, in which caseΦ(θ) gives the total
number of bits (or1s) in the controller coefficients, which
is closely related to the Kolmogorov-Chaitin complexity of
the controller [1]. Of course the functionsφi, and therefore
alsoΦ, can be discontinuous.

Our goal is to find the lowest complexity controller
among the acceptable designs. We can express this as the
optimization problem

minimize Φ(θ)
subject to θ ∈ C,

(1)

with variableθ ∈ RN . We call this thecontroller coefficient
truncation problem(CCTP), since we can think of the
controller coefficientθi as a truncated version of the nominal
controller coefficientθnom

i .
The CCTP (1) is in general very difficult to solve. For

example, whenΦ measures bit complexity, the CCTP can
be cast as a combinatorial optimization problem, with the
binary expansions of the coefficients as Boolean (i.e., {0, 1})
variables. Branch-and-bound, or other global optimization
techniques, could be used to solve small CCTPs, with
perhaps10 coefficients. But we are interested in methods that
can handle much larger problems, with perhaps hundreds (or
more) of controller coefficients. In addition, it is not crucial
to find the global solution of the CCTP (1); it is enough to
find a controller with low (if not lowest) complexity.

In this paper we describe a heuristic algorithm for the
CCTP (1), that runs quickly and scales to large problems.
While the designs produced are very likely not globally



optimal, they appear to be quite good. The method typ-
ically produces aggressively truncated controller designs,
even when the allowed performance degradation over the
nominal design is just a few percent.

In our method, we greedily truncate individual coefficients
sequentially, in random order, using a Lyapunov certificate
(which is updated at each step) to guarantee performance,
i.e., θ ∈ C. When the algorithm is run multiple times, the
randomness in the truncation order produces designs that are
different, but have very similar total complexity. Runningthe
algorithm a few times, and taking the best controller found,
can give a modest improvement over running it just once.

Before proceeding we mention a related issue that we
do not consider: the effects of truncation or saturation of
the control signalsu(t), y(t), and xc(t). This makes the
entire control system nonlinear, and can lead to instability,
large and small limit cycles, and other behavior. However,
the Lyapunov-based methods described in this paper can be
extended to handle nonlinearities.

B. Previous and related work

The subject of coefficient truncation is relatively old. It
was initially discussed in the context of filter design: there
was an understandable interest in designing finite wordlength
filters that would be easily implemented in hardware with a
small degradation in performance (see [2], [3]). The idea of
coefficient truncation subsequently appeared in other fields
like speech processing [4] and control [5].

Several methods have been proposed for coefficient trun-
cation: exhaustive search over possible truncated coefficients
[2], successive truncation of coefficients and reoptimiza-
tion over remaining ones [3], [6], local bivariate search
around the scaled and truncated coefficients [7], tree-traversal
techniques for truncated coefficients organized in a tree
according to their complexity [8], [9], coefficient quanti-
zation using information-theoretic bounds [10], weighted
least-squares [11], simulated annealing [12], [13], genetic
algorithms [14], [15], Tabu search [16], design of optimal
filter realizations that minimize coefficient complexity [17],
[12]. Other approaches have formulated the problem as a
nonlinear discrete optimization problem [18], or have used
integer programming techniques over the space of powers-
of-two coefficients [19], [20]. The reference [21] surveys dif-
ferent methods for quantizing lifting coefficients for wavelet
filters: mostly uniform bit allocation, exhaustively searched
allocation, simulated annealing with lumped scaling and/or
gain compensation. In [22], the authors show how to choose
the optimal realization for an LQG controller to be robust
to finite wordlength effects. The effects of quantization and
finite wordlength on robust stability of digital controllers
and performance bounds derived using Lyapunov theory are
presented in [23].

C. Outline

In §II we describe the general algorithm. In the next
three sections we present examples, in each case working
out the details for the general case, and illustrating the

algorithm with a numerical instance of the problem. In§III
the controller has constant state-feedback form, the nominal
controller is linear quadratic regular (LQR) optimal, and the
set of acceptable controllers is determined by the LQR cost.
In §IV the controller is dynamic, and the objective is the
decay rate of the closed-loop system.

II. T HE ALGORITHM

Our algorithm uses two subroutines or methods:interv,
which finds an interval of acceptable values of a coefficient,
and trunc, which truncates a coefficient, given an interval
of acceptable choices. We first describe these methods more
precisely, but still abstractly; more concrete descriptions will
be given later in§II-A and §II-B.

The methodinterv(θ, i) takes as input the coefficient
vectorθ ∈ C, and a coefficient indexi. It returns an interval
[l, u] of allowed values forθi, with the other parameters held
fixed, i.e., numbersl andu, with θi ∈ [l, u], with

(θ1, . . . , θi−1, z, θi+1, . . . , θN) ∈ C for z ∈ [l, u].

Of course the simple choicel = u = θi is always valid.
At the other extreme, the largest valid interval that can be
returned byinterv is given by

l⋆ = inf{l | (θ1, . . . , θi−1, z, θi+1, . . . , θN) ∈ C
for z ∈ [l, θi]},

u⋆ = sup{u | (θ1, . . . , θi−1, z, θi+1, . . . , θN) ∈ C
for z ∈ [θi, u]}.

A typical implementation ofinterv falls between these two
extremes, returning a reasonably large interval guaranteed
to lie in C, with reasonable computational effort. In the
examples we will consider, this can be done using linear
matrix inequalities (LMIs).

The methodtrunci(x, l, u) is a truncation method which,
given a numberx to be truncated, and an interval[l, u] of
acceptable choices (containingx), returns a numberz in the
interval [l, u], with Φi(z) ≤ Φi(x). One valid choice isz =
x; at the other extreme, the algorithm can return the point
with smallest complexity in the interval,i.e., the minimizer
of Φi(z) over [l, u]. For the complexity measures we use in
the examples shown later, we can easily compute the latter.

The algorithm is initialized with the nominal design, which
we assume has finite complexity. At each step an indexi
is chosen, and all parameters exceptθi are fixed. We use
interv to find an interval of acceptable values forθi, and
then trunc to find a value ofθi with (possibly) lower
complexity. We have experimented with various methods
for choosing the indexi in each step, and found the best
results by organizing the algorithm into passes, each of which
involves updating each parameter once; in each pass, the
ordering of the indices is random. The algorithm stops when
the parameter does not change over one pass. A high-level
decription of the algorithm is as follows.

θ := θnom

repeat
θprev := θ



choose a permutationπ of (1, . . . , N)
for i = 1 to N

j := π(i)
[l, u] := interv(θ, j)
θj := trunci(θj , l, u)

until θ = θprev

Since the algorithm is random, it can and does converge to
different points in different runs. It can be run several times,
with the best controller coefficient vector found taken as our
final choice.

A. Complexity measures and truncation methods

In this section we describe various possible complexity
measures, and the associated truncation methods. Anyz ∈ R
can be written as

z = s

∞
∑

i=−∞

bi2
−i,

wheres ∈ {−1, 1} is the sign, andbi ∈ {0, 1} are the bits
of z in a binary expansion. (This representation can be made
unique by ruling out any sequence that ends with all ones,
i.e., bi = 1 for i ≥ k, for somek.)

One possible complexity measure is the number of ones
in the binary expansion ofz,

φones(z) =

∞
∑

i=−∞

bi,

which gives the number of adders needed to implement
multiplication byz using a shift and sum method.

Another complexity measure is the width of the range of
the nonzero bits, more commonly referred to as the number
of bits in the expansion ofz,

φbits(z) = max{i | bi 6= 0} − min{i | bi 6= 0} + 1.

This measure is useful if multiplication byz will be carried
out in fixed-point arithmetic.

Yet another complexity measure is the number of bits
needed in the fractional part of the binary expansion ofz,

φfrac−bits(z) = max{0, max
i

{i | bi 6= 0}}.

For these complexity measures, it is straightforward to find
the numberz that minimizes the measure in a given interval,
i.e., to implement (the most powerful)trunc method. We
assume that the binary expansions ofl and u are finite
(though possibly long),

sll−L . . . l0.l1 . . . lR, suu−L . . . u0.u1 . . . uR,

respectively. The numberz will have at mostL bits in its
integer part andR bits in its fractional part, and we denote
its bits as

szz−L . . . z0.z1 . . . zR.

With complexity measureφones or φbits, z can be found
as follows.

zi := 0 for all i
for i = −L to R

C

θ

Ĉ

Fig. 1. The setC of acceptable design parameters need not be convex, as
shown in this example. The set̂C is a convex subset ofC, that containsθ.
The interval of values ofθ, shown as the vertical line segment, gives an
interval of values inC.

if li = ui, zi := li
else
if all bits after li are 0, break
elsezi := 1

When the complexity measure isφfrac−bits, the same algo-
rithm can be used, withzi initially set to zero fori > 0 and
the for loop index modified to run from1 to R, instead of
from −L to R.

B. Interval computation via Lyapunov performance certifi-
cate

Our approach to determining an interval[l, u] for which

(θ1, . . . , θi−1, z, θi+1, . . . , θN ) ∈ C for z ∈ [l, u]

will be based on a conservative approximation ofC. Given
θ ∈ C we first find a convex set̂C that satisfiesθ ∈ Ĉ and
Ĉ ⊆ C. We then take

l = inf{z | (θ1, . . . , θi+1, z, θi+1, . . . , θN ) ∈ Ĉ},
u = sup{z | (θ1, . . . , θi+1, z, θi+1, . . . , θN ) ∈ Ĉ}. (2)

SinceĈ is convex, it follows that

(θ1, . . . , θi+1, z, θi+1, . . . , θN ) ∈ Ĉ ⊆ C for z ∈ [l, u].

This is illustrated in figure 1. For more on convex sets, see
[24].

To find the setĈ, we use aLyapunov performance cer-
tificate. The details depend on the particular performance
measure or measures, but the common form is as follows. We
express the set of acceptable controllers using linear matrix
inequalities:

θ ∈ Ĉ ⇐⇒ ∃ν L(θ, ν) � 0,

whereL is a function that is bi-affine,i.e., affine inθ for fixed
ν, and affine inν for fixed θ. The symbol� refers to matrix
inequality, between symmetric matrices, so the condition
above is thatL(θ, ν) is positive semidefinite. The variableν
represents the coefficients in the Lyapunov function used to
certify performance. For more on representing control system
specifications via LMIs, see,e.g., [25], [26], [27].

For a givenθ ∈ C, we compute a value ofν such that
L(θ, ν) � 0. We then fixν, and take

Ĉ = {θ | L(θ, ν) � 0}. (3)



This set depends on the particular choice ofν; but in all
cases, it is convex, indeed, it is described by an LMI inθ.
For a givenθ ∈ C, ν can be typically chosen to maximize
the minimum eigenvalue ofL(θ, ν) or to maximize the
determinant ofL(θ, ν). Both of these problems are convex:
maximizing the minimum eigenvalue can be reduced to
solving a semidefinite program (SDP) and maximizing the
determinant can be reduced to solving a MAXDET problem.

To find l or u in (2), we need to minimize or maximize
a scalar variable over an LMI. This can be reduced to an
eigenvalue computation [24, Exer. 4.38], and can be carried
out efficiently. SinceL(θ, ν) is bi-affine in θ and ν, it can
be expressed as

L(θ, ν) = L0 +

N
∑

i=1

θiLi,

where we have obscured the fact that the matricesL0 and
Li depend onν. When θ̃ = (θ1, . . . , θi−1, z, θi+1, . . . , θN ),
we have

L(θ̃, ν) = L(θ, ν) + (z − θi)Li.

Assuming thatL(θ, ν) ≻ 0, the range[l, u] of θi consists of
the values ofz for which L(θ̃, ν) � 0. It can be shown that

l = θi − min{1/λi | λi > 0}, (4)

u = θi − max{1/λi | λi < 0}, (5)

whereλi are the eigenvalues ofL(θ, ν)−1/2LiL(θ, ν)−1/2.
In the examples we will consider, the LMIs that arise have

an even more specific form,

L(θ, ν) =

[

I ZT

Z I

]

� 0,

where

Z = Z0 +

N
∑

i=1

θiviw
T
i .

Here Z0 is a matrix, andvi and wi are vectors, with
dimensions and data that depend on the particular problem.
In the general notation used above, this corresponds to

L0 =

[

I ZT
0

Z0 I

]

, Li =

[

0 wiv
T
i

viw
T
i 0

]

,

for i = 1, . . . , N . We can then expresŝC as

Ĉ = {θ | ‖Z‖ ≤ 1},
where ‖ · ‖ denotes the spectral norm (maximum singular
value).

We now give the details of how to find the range of the
coefficientθi in the convex set̂C, i.e., how to computel and
u in (2).

Note that the rank ofLi is exactly 2. Assuming that
L(θ, ν) ≻ 0 and vi and wi are both nonzero, the matrix
L(θ, ν)−1/2LiL(θ, ν)−1/2 has one positive eigenvalueλmax,
(2n + m− 2) zero eigenvalues and one negative eigenvalue
λmin. We now proceed to find more explicit expressions
for λmin and λmax. Let Z = UΣV T be the full singular
value decomposition ofZ whereU and V are orthogonal

matrices andΣ has the same dimensions asZ. If m = n, Σ
is diagonal. Ifm ≥ n, we have

Σ =

[

diag(σ1, . . . , σn)
0

]

.

Otherwise, we have

Σ =
[

diag(σ1, . . . , σm) 0
]

.

Let

x = UT vi, y = V T wi,

E =

[

I ΣT

Σ I

]

, F =

[

0 yxT

xyT 0

]

.

Using a block Cholesky factorization, we can writeE =
CCT , where

C =

[

I 0
Σ (I − ΣΣT )1/2

]

.

Note that

C−1 =

[

I 0
−AΣ A

]

,

whereA = (I − ΣΣT )−1/2.
It is easy to show thatλmin andλmax are, respectively, the

minimum and maximum eigenvalues ofC−1FC−T . Since

F =

[

0 y
x 0

] [

yT 0
0 xT

]

,

and since nonzero eigenvalues ofMN andNM are identical
for any two matricesM ∈ Rn×m andN ∈ Rm×n, λmin and
λmax are the eigenvalues of

[

yT 0
0 xT

]

C−T C−1

[

0 y
x 0

]

.

These can be found analytically as

λmin = −α −
√

3α2 + βyT y + βγ, (6)

λmax = −α +
√

3α2 + βyT y + βγ. (7)

The termsα, β andγ can be computed more easily as

α = xT A2Σy =

min{m,n}
∑

i=1

xiyiσi

1 − σ2
i

, (8)

β = xT A2x =

m
∑

i=1

x2
i

1 − σ2
i

, (9)

γ = yT ΣT A2Σy =

n
∑

j=1

y2
j σ2

j

1 − σ2
j

. (10)

In summary, to findl and u, we start by computing the
SVD of theZ and settingx = UT vi, y = V T wi. We proceed
then to compute the 3 terms in (8), (9), (10) and compute
λmin andλmax from (6) and (7). Finally,l andu are found
from (4) and (5):

l = θi − 1/λmax, u = θi − 1/λmin. (11)



III. STATE FEEDBACK CONTROLLER WITHLQR COST

We will demonstrate how to apply the algorithm to a
specific problem class where the plant is given by

x(t + 1) = Ax(t) + Bu(t), x(0) = x0, (12)

and is controlled by a state feedback gain controller given
by

u(t) = Kx(t), (13)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n, K ∈ Rm×n

is the feedback gain matrix,x(t) ∈ Rn is the state of the
system andu(t) ∈ Rm is the input to the system. The design
variables are the entries of the matrixK.

A. Admissible controllers

Given Q ∈ Rn×n positive semidefinite andR ∈ Rm×m

positive definite, the performance measure is given by the
LQR cost

J(K) = E

[

∞
∑

t=0

x(t)T Qx(t) + u(t)T Ru(t)

]

= E

[

∞
∑

t=0

x(t)T (Q + KT RK)x(t)

]

, (14)

where the expectation is taken overx0 ∼ N (0, Σ). If A +
BK is unstableJ(K) is infinite. Otherwise, letP be the
(unique) solution to the Lyapunov equation

(A + BK)T P (A + BK) − P + Q + KT RK = 0. (15)

The cost in (14) can be expressed asJ(K) = Tr(ΣP ). This
holds because

J(K) = E

[

∞
∑

t=0

x(t)T Px(t) − x(t + 1)T Px(t + 1)

]

= E
[

xT
0 Px0

]

= Tr(E
[

x0x
T
0

]

P )

= Tr(ΣP ).

The nominal designKnom is chosen to be the optimal state
feedback controller,i.e., the one that minimizes the LQR cost
J . It can be found as follows,

Knom = −(R + BT P nomB)−1BT P nomA,

where P nom is the solution of the discrete-time algebraic
Riccati equation

P nom = Q + AT P nomA

− AT P nomA(R + BT P nomB)−1BT P nomA.

WhenK = Knom, P nom is also the solution of the Lyapunov
equation (15). The LQR cost associated with the optimal
controller isJnom = Tr(ΣP nom).

We define the set of admissible controller design as

C = {K | J(K) ≤ (1 + ǫ)Jnom},
whereǫ is a given positive number. This means that a con-
troller design is admissible if and only if it isǫ-suboptimal.

We choose the Lyapunov performance certificateL to
be the block diagonal matrix with the following blocks on
the diagonalP − (A + BK)T P (A + BK) − Q − KT RK,
(1 + ǫ)Jnom − Tr(ΣP ) andP . HereK andP correspond,
respectively, toθ and ν introduced in§II-B. The condition
that L(K, P ) � 0 is equivalent to

P − (A + BK)T P (A + BK) � Q + KT RK,

Tr(ΣP ) ≤ (1 + ǫ)Jnom, (16)

P � 0. (17)

Since (16) and (17) do not depend onK, and for a particular
choiceP , (3) becomes

Ĉ = {K | (A+BK)T P (A+BK)−P +Q+KTRK � 0}.
(18)

Given K ∈ C, any matrixP that satisfiesL(K, P ) � 0 is a
valid choice. We takeP to be the solution of the following
optimization problem

maximize λmin(L(K, P ))
subject to L(K, P ) � 0.

Hereλmin(L(K, P )) is the minimum eigenvalue ofL(K, P )
andP is the variable we are optimizing over. Recall thatK
is fixed.

We will now show thatĈ ⊆ C. Let K ∈ Ĉ. Consider the
Lyapunov functionV : Rn → R defined asV (z) = zT Pz.
For anyT > 0,

∆V (T ) = V (x(T )) − V (x(0))

=

T
∑

t=0

V (x(t + 1)) − V (x(t))

=

T
∑

t=0

x(t + 1)T Px(t + 1) − x(t)T Px(t)

≤ −
T

∑

t=0

x(t)
(

Q + KT RK
)

x(t).

Therefore,

T
∑

t=0

x(t)
(

Q + KT RK
)

x(t) ≤ V (x(0)) − V (x(T ))

≤ V (x(0)),

where the last inequality follows becauseV (x(T )) ≥ 0 from
(17). LettingT tend to infinity and taking expectation over
x0, we obtainJ(K) ≤ Tr(ΣP ). It follows from (16) that

J(K) ≤ (1 + ǫ)Jnom.

B. Coefficient range calculation

Let (l, u) be the range of coefficientKij . Given (18),
problem (2) becomes

l = min{Kij | (A + BK)T P (A + BK) − P

+Q + KT RK � 0},
u = max{Kij | (A + BK)T P (A + BK) − P

+Q + KT RK � 0}.
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Fig. 2. Total number of bits required to expressθ versus iteration number.

The inequality in (18) is equivalent to
∥

∥

∥

∥

[

P 1/2(A + BK)
R1/2K

]

(P − Q)
−1/2

∥

∥

∥

∥

≤ 1. (19)

The method outlined in§II-B can be used to computel and
u by taking

Z =

[

P 1/2(A + BK)

R1/2K

]

(P − Q)
−1/2

,

v =

[

P 1/2B

R1/2

]

ei, w = (P − Q)
−1/2

ej,

whereei andej are, respectively, theith unit vector inRm

andjth unit vector inRn andK ∈ Ĉ is the current admissible
controller design.

C. Numerical instance

Our example has dimensionsn = 10 and m = 5. We
generated the plant randomly, asA = I + 0.1X/

√
n, where

Xij are independent identically distributed (IID)N (0, 1). We
generated the matrixB ∈ R10×5, with Bij IID N (0, 1). We
takeΣ = I, Q = I andR = I.

The complexity measuresφi(z) are chosen to be
φfrac−bits. The fractional part of each entry ofKnom is
expressed with40 bits, requiring a total of2000 bits to
expressKnom, i.e., Φ(θnom) = 2000 bits. We takeǫ = 15%,
i.e., admissible feedback controllers are those that are up to
15%-suboptimal.

The progress of the complexityΦ(θ) during a sample run
of the algorithm is shown in figure 2. In this sample run the
algorithm converges to a complexity of85 bits in one pass
over the variables. During the run of the algorithm the costJ
is approximately constant and equal to its maximum allowed
value1.15Jnom.

The best design after10 random runs of the algorithm
achieves a complexity ofΦ(θ) = 81 bits, with a cost of
J(θ) = 1.1494J(θnom). The best design found after100
random runs of the algorithm achieves a complexity of
Φ(θ) = 75 bits andJ(θ) = 1.1495J(θnom).

This best design gives very aggressive coefficient trunca-
tion, with only 1.5 bits per coefficient. This is illustrated in

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

2

4

6

8

10

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

5

10

15

20

25

fr
eq

u
en

cy
fr

eq
u

en
cy

θi

θnom
i

Fig. 3. Top: histogram showing the distribution of the coefficients in
the nominal design. Bottom: histogram showing the distribution of the
coefficients in the best design in100 random runs.

figure 3, which shows the distribution of the (50) coefficients
of the nominal design and the coefficients of the best design.

IV. DYNAMIC CONTROLLER WITH DECAY RATE

SPECIFICATION

We demonstrate how to apply the algorithm to the problem
class where the plant is given by

xp(t + 1) = Apxp(t) + Bpu(t), y(t) = Cpxp(t), (20)

and is controlled by a dynamic controller given by

xc(t + 1) = Acxc(t) + Bcy(t), u(t) = Ccxc(t). (21)

where xp(t) ∈ Rnp , u(t) ∈ Rmc , y(t) ∈ Rmp , Ap ∈
Rnp×np , Bp ∈ Rnp×mc , Cp ∈ Rmp×np , xc(t) ∈ Rnc ,
Ac ∈ Rnc×nc , Bc ∈ Rnc×mp andCc ∈ Rmc×nc .

The closed-loop system is given byx(t + 1) = Ax(t)
where

x(t) =

[

xp(t)
xc(t)

]

, A =

[

Ap BpCc

BcCp Ac

]

. (22)

The design variables are the entries of the controller
matricesAc, Bc andCc.

A. Admissible controllers

A controller (Ac, Bc, Cc) is admissible if the decay rate
of the closed-loop system is less than a given rateα, where
0 ≤ α ≤ 1. The decay rate is given byρ(A), whereA is the
matrix specified in (22).

The performance measure is chosen to be the decay rate
of the closed-loop system,i.e., J(Ac, Bc, Cc) = ρ(A).

We are given a nominal controller design
(Anom

c , Bnom
c , Cnom

c ) such that

J(Anom
c , Bnom

c , Cnom
c ) = ρ.

We define the set of admissible controller designs as

C = {(Ac, Bc, Cc) | J(Ac, Bc, Cc) ≤ α},
whereα = (1 + ǫ)ρ andǫ is a given positive number.



We choose the Lyapunov performance certificateL to be

L(Ac, Bc, Cc, P ) =

[

α2P − AT PA 0
0 P

]

,

whereA is the matrix defined in (22). Here(Ac, Bc, Cc) and
P correspond, respectively, toθ andν introduced in§II-B.
The condition thatL(Ac, Bc, Cc, P ) � 0 is equivalent to

AT PA � α2P

P � 0. (23)

Since (23) doesn’t depend on(Ac, Bc, Cc), for a fixed choice
of P , (3) becomes

Ĉ = {(Ac, Bc, Cc) | AT PA ≤ α2P}. (24)

Any matrix P that satisfiesL(Ac, Bc, Cc, P ) � 0 for
(Ac, Bc, Cc) ∈ C is a valid choice. We takeP to be the
solution of the following optimization problem

maximize λmin(L(Ac, Bc, Cc, P ))
subject to L(Ac, Bc, Cc, P ) � 0

Tr(P ) = 1.

Hereλmin(L(Ac, Bc, Cc, P )) is the minimum eigenvalue of
L(Ac, Bc, Cc, P ), andP is the variable we are maximizing
over. Recall thatAc, Bc and Cc are fixed. The constraint
Tr(P ) = 1 is added becauseL(Ac, Bc, Cc, P ) is homoge-
neous inP .

We will now show thatĈ ⊆ C. Let (Ac, Bc, Cc) ∈ Ĉ.
Consider the Lyapunov functionV : Rnp+nc → R defined
asV (z) = zT Pz. SinceAT PA ≤ α2P then for all t ≥ 0

x(t)T AT PAx(t) ≤ α2x(t)T Px(t)

x(t + 1)T Px(t + 1) ≤ α2x(t)T Px(t)

V (x(t + 1)) ≤ α2V (x(t)).

This means that for allt ≥ 0, V (x(t)) ≤ α2tV (x(0)) and

λmin(P )‖x(t)‖2 ≤ x(t)T Px(t)

≤ α2tx(0)T Px(0)

≤ α2tλmax(P )‖x(0)‖2,

then ‖x(t)‖ ≤
√

κ(P )αt‖x(0)‖, whereκ(P ) is the condi-
tion number ofP . The decay rate of the system is then less
thanα, as required.

B. Coefficient range calculation

Let (l, u) be the range of coefficient(Ac)ij . Given (24),
problem (2) becomes

l = min{(Ac)ij | AT PA ≤ α2P},
u = max{(Ac)ij | AT PA ≤ α2P}.

The inequality in (24) is equivalent to
∥

∥

∥
P 1/2AP−1/2

∥

∥

∥
≤ α. (25)

The method outlined in§II-B can be used to computel and
u by taking

Z = (1/α)P 1/2AP−1/2,

and

v = (1/α)P 1/2

[

0
ei

]

, w = P−1/2

[

0
ej

]

,

whereei andej are, respectively, theith andjth unit vectors
in Rnc and A is the closed-loop matrix associated with
(Ac, Bc, Cc) ∈ Ĉ.

The same method can be used to find the ranges of
coefficients inBc and Cc. The same formulas can be used
but with sightly modified definitions forv andw.

To find the range of coefficient(Bc)ij , use the same
definitions forZ andv but let

w = P−1/2

[

CT
p ej

0

]

,

whereej is the jth unit vector inRmc .
To find the range of coefficient(Cc)ij , use the same

definitions forZ andw but let

v = (1/α)P 1/2

[

Bpe
i

0

]

,

whereei is the ith unit vector inRmc .

C. Numerical instance

We test the proposed method in the case where the plant
is given by

xp(t+1) = Apxp(t)+Bpu(t)+w(t), y(t) = Cpxp(t)+v(t),

wherew(t) ∼ N (0, I) is the input noise andv(t) ∼ N (0, I)
is the measurement noise. The plant is controlled by an LQG
controller with Q = I, R = I. The matrices describing the
controller are

Ac = Ap + BpK − LCp, Bc = L, Cc = K,

where

K = −(BT
p P1Bp + R)−1BT

p P1Ap,

L = ApP2C
T
p (CpP2C

T
p + V )−1.

P1 andP2 are the unique positive semidefinite solutions to
the discrete-time algebraic Riccati equations

P1 = AT
p P1Ap + Q

−AT
p P1Bp(R + BT

p P1Bp)
−1BT

p P1Ap,

P2 = ApP2A
T
p + W

−ApP2C
T
p (CpP2C

T
p + V )−1CpP2A

T
p .

Our example has dimensionsnp = 5, mc = 2 andmp = 2.
The plant matrixAp is randomly generated using the same
method used to generateA in §3.3. The entries ofBp and
Cp are IID N (0, 1). The matricesAnom

c , Bnom
c and Cnom

c

are then computed using the formulas presented above.
The complexity measuresφi(z) are chosen to be

φfrac−bits. The fractional part of each entry ofAnom
c , Bnom

c

andCnom
c is expressed with40 bits, requiring a total of1800

bits, i.e., Φ(θnom) = 1800 bits. We run the algorithm with
ǫ = 5%.
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Fig. 4. Top: total number of bits required to expressθ versus iteration
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Fig. 5. Best design complexity versus number of sample runs of the
algorithm

The progress of the complexityΦ(θ) and percentage
deterioration in performance100(J − Jnom)/Jnom during
3 sample runs of the algorithm are shown in figure 4.

The best design after10 random runs of the algorithm
achieves a complexity ofΦ(θ) = 171 bits with a cost of
J(θ) = 1.0246J(θnom). The best design after100 random
runs of the algorithm achieves a complexity ofΦ(θ) = 164
bits andJ(θ) = 1.0362J(θnom). Figure 5 shows the best
available design complexity versus the number of sample
runs of the algorithm.
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