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ABSTRACT: In this paper, we present a method for computing bounds for a variety of efficiency metrics in photonics, such as the
focusing efficiency or the mode purity. We focus on the special case where the objective function can be written as the ratio of two
quadratic functions of the field and show that there exists a simple semidefinite programming relaxation for this problem. We provide
a numerical example of bounding the maximal mode conversion purity for a device of given size. This paper is accompanied by an

open source Julia package for basic simulations and bounds.
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B INTRODUCTION

Traditionally, photonic devices were designed by a scientist or
engineer (whom we will call a designer) for a specific
application. This designer would piece together components
from a library to create a device for the desired task. While
effective in practice, this process is time consuming, possibly
irrelevant to the final application of the design itself, and may
produce designs that are far from optimal. In an alternative
approach to constructing devices, a designer specifies what
they want while forfeiting control of how the device is
constructed to an optimization algorithm. This optimization
algorithm then attempts to find a device that maximizes the
designer-specified performance metric—a mathematical ob-
jective function that outputs a number representing how well
the design matches the desired specifications. In photonics, this
approach is called “inverse design.”

Inverse Design. Photonic inverse designl_6 has been
extremely successful in finding photonic chip designs with very
good practical performance when compared to designs
generated by traditional methods. Still, there is an outstanding
question of whether there exist designs with much better
performance. For simple devices, such as spherical lenses, a
designer can find the optimal design with basic algebra and ray
optics. However, for more complicated devices, finding the
optimal design with respect to some performance metric is an
open research problem. As a result, designs are usually found
using heuristic methods in practice.”®
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Bounds. Given a design generated using a heuristic, it is
natural to wonder how much better one could have done. To
answer this question, we need to determine a design’s
suboptimality with respect to some performance metric.
Recently, there has been a large amount of work in this area,
attempting to find bounds of this form for a variety of metrics,
including mode volume,” free-space concentration,'® integral
overlap,'"'” among many others."”™*° Additionally, the
focusing objectives shown in ref 21, released well after the
preprint of this article, are included as a special case of the
formulation presented here.

This Paper. In this paper, we extend the current bound
formulations to include objective functions that can be
expressed as the ratio of two quadratic functions of the field.
This type of objective includes several efficiency metrics such
as the focusing efficiency, the mode purity, among many
others. We show a numerical example of these bounds and also
provide a set of simple open source packages that can be used
to compute bounds for many inverse design problems whose
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objectives can be phrased as quadratics or the ratio of
quadratics.

B THE PROBLEM OF MAXIMIZING EFFICIENCY

In the general photonic design problem, a designer must
design a device that maximizes some objective function f of the
fields z by choosing from a range of possible permittivities @ of
a device at each point in space. (For example, this might mean
that the designer is only able to choose some permittivity
between that of air and silicon at each point in the design
domain.)

We will assume that the fields z must satisfy the
electromagnetic wave equation, which can be written as

Az + diag(0)z = b (1)

for some linear operator A and excitation b. In general, we will
work with a discretization of the fields and permittivities, such
that 6, z, b € R” are represented as real-valued n-vectors, that f
: R" > Ris a function mapping z to a real number, while A €
R™" is a real n X n matrix. We have assumed that A, z, and b
are real in this case, but the complex case can be reduced to the
real one by separating it into its real and imaginary parts. (We
will see an explicit example of how to do this later in this
paper.) As a rough guideline, we may view eq 1 as the linear-
algebraic generalization of

2 .
—V X VXE + oy, €E = —iwp |
A

diag(0)z b

where the linear operator A corresponds to a discretization of
—V X V X ; the design parameters @ correspond to a (scaled)
discretization of the permittivities &; the fields z, of course,
correspond to the field E; and the excitation b corresponds to
the current —iou,J.

Because the designer is only allowed to choose materials
whose parameters range within some interval, we will write
grn < 0 < @™ for i = 1, -, n. Without loss of generality, we
will assume that @™ = —@™" = 1 since eq 1 can always be
rescaled such that this is true. (See, e.g, Section 2.2 of ref 8 for
more details.) The general optimization problem the designer
wishes to solve is then

maximize f(z)
subjectto Az + diag(0)z = b

-1<0<1 (2)

Here the variables are the fields z € R" and the permittivities 8
€ R, while the problem data are the matrix A € R™" and the
excitation b € R". Note that this problem, as stated, is NP-hard
(see Section 2.3 of 8), so finding its optimal value, which we
will call p*, is likely to be computationally infeasible except for
very small problems.

Efficiency Metrics. A common problem in photonic design
(and, more generally, in physical design) is the problem of
maximizing an efficiency metric. We say an objective is an
efficiency metric whenever, for any z € dom f, we have that

0<f(z2) <1 (3)

or, in other words, that the objective value for a feasible field z
is always a number between 0 and 1. (We may, of course,
replace the upper bound of 1 with any finite number, say v, but
this is the same as defining a new objective function f = (1/v) f
which satisfies eq 3.) Note that there are some cases in which
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the function f might be unbounded from above (or below) and
are therefore not “efficiency metrics” in the sense specified
here. Even in these cases, the relaxation method we present will
hold, but it is not guaranteed to return points that are
“reasonable”; i.e., the relaxation might give bounds which are
trivial. (We note that, in practice, we still expect the results to
be relatively tight, even without these guarantees.)

Ratio of Quadratics. In many important cases in photonic
design, efficiency metrics can be written as the ratio of two
quadratics in z, i.e.

2Pz + 2pTz +r
2'Qz + Zqu +s

(z) =
d 4)

where P, Q € §" are two symmetric matrices, while p, ¢ € R”
and r, s € R, whenever 2'Qz + 2qu + s> 0 and is —c0
otherwise. Note that this function f is, in general, nonconvex.
(We will see some examples of such objective functions soon.)
In order for f to be an efficiency metric (see eq 3), the
numerator and denominator must satisfy

<

0 < z'Pz+ ZpTz +r 2'Qz + Zqu +s

for all z € R". By minimizing over z, this is true whenever
P pl |1Q ¢
<

T

p

0<

T

r q N

(5)

where the inequalities are semidefinite inequalities (see Section

24.1 of ref 22). The inequalities of eq S imply that P and Q

satisfy 0 < P < Q, while r and s must satisfy 0 < r < s.
Optimization Problem. The resulting optimization

problem, when f is the ratio of two quadratics, is

2'Pz + ZpTz +r

2'Qz + Zqu +s

Az + diag(0)z = b

—1<6<1

maximize

subject to

(6)

The variables in this problem are the fields z € R" and the
design parameters @ € R, while the data are the matrices A €
R™" and P, Q € §"; the vectors p, g € R”; and the scalars r, s €
R. From the previous discussion, if the objective is an efficiency
metric, then the optimal value of problem 6, p*, will also satisfy
0 < p* < 1. Finding an upper bound to this optimal value p*
would then give us an upper bound on the maximal efficiency
of the best possible design.

Example: Normalized Overlap. One important special
case of an efliciency metric is sometimes known as the
normalized overlap. The normalized overlap is defined as

(c"z)
llzI3

where ¢ € R" is a normalized vector with ||¢||? = 1. This is a
special case of eq 4 where P = cc’, Q =1, and p = q = 0, while r
=s5s=0.

It is easy to verify that this is indeed an efficiency metric
since f(z) > 0 as it is the ratio of two nonnegative quantities,
while

flz) =

T 2 2
("2 _ Nl =1

2 = 2
llIl; llzll;

2
=l =1

fl2) =
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where the first inequality follows from Cauchy—Schwarz (see
Section 3.4 of ref 23). Whenever c is a mode of the system, this
objective is sometimes called the normalized mode overlap, or
the mode purity, and can be interpreted as the fraction of
power that is coupled into the mode specified by ¢, compared
to the total fraction of power going to all possible output
modes.

In the case we wish to measure the normalized overlap only
over some region specified by indices § C {1, .., n}, we can
instead write

(CTRZ)2

&= R @

where the matrix R € R™" is a diagonal matrix with diagonal
entries

{1 i€esS
i 0 otherwise

(8)
for i = 1, .., n. The resulting objective can be written in as the
special case of eq 4 where P = Rec'R and Q = R* = R, while g =
p=0andr=s=0, and is also easily shown to be an efliciency
metric.

Example: Focusing Efficiency. While there are many
ways of defining the focusing efficiency of a lens, one practical
definition is as the ratio of the sum of intensities over two
regions, written

2

_ lIRZ]l;

- 2

lIR=ll;
Here, the matrices R, R’ € R™" are defined as

1 ies$ 1 ies
R; = . Ri/i = l
0 otherwise, 0 otherwise

f@)

where S’ C S C {1, .., n} are sets of indices over which we sum
the square of the field. In this case, we call S the focusing plane
and S’ the focusing region or focal spot, which is usually
chosen to be approximately the full width at half maximum
(FWHM) of the intensity along S.

This metric is nonnegative as it is the ratio of two
nonnegative functions and satisfies f(z) <1las S CS. We
can write this as the special case of eq 4, where P =R’ and Q =
R, whilep=gq=0andr=s5=0.

B HOMOGENIZATION AND BOUNDS

In this section, we will show a transformation of problem 6
which results in a quadratic objective with an additional
quadratic constraint, by introducing a new variable. We will
then show how to construct basic bounds using procedures
similar to those of refs 8, 11, 12, and show a few simple
extensions.

Homogenized Problem. The main difficulty of construct-
ing bounds for problem 6 is that the fractional objective is
difficult to deal with. We will first give a ‘heuristic’ derivation
and show that it is always an upper bound to the original
problem. We then show that the converse is true: this new
problem is equivalent to the original when A + diag(0) is
invertible for all —1 < 6 < 1.

The main idea behind this method is to dynamically scale
the input excitation, b, by some factor @ € R, such that the
denominator is always equal to 1. To do this, we replace eq 1
with one where the input b is scaled to get

2523

Ay + diag(0)y = ab

Here y is a new variable we will call the scaled field as we can
write y = az. Plugging this into the objective, assuming that z is
feasible, we find that

(l/a)ZyTPy + 2(1/a)pTy +r
1/a)y"Qy + 2(1/a)q"y + s

f@) =f(y/a) =

_yTPy + ZapTy + a’r
yTQy + Zaqu + a’s

We will then constrain the denominator to equal 1, which
results in the homogenized problem

maximize yTPy + ZapTy +a’r
subjectto  y'Qy +2aq"y + a’s =1
Ay + diag(8)y = ab

-1<6<1, a=>0

(9)

The variables in this problem are the scaled field y € R" and
the scaling factor & € R, while the problem data are the same
as that of the original problem 6.

Upper Bound. We will now show that this new
homogenized problem 9 is an upper bound to the original
problem. More specifically, we will show that every feasible
field z and design parameters @ for problem 6 have a feasible
scaled field y, scaling factor a > 0, using the same design
parameters 6, with the same objective value.

First, note that z is feasible for 6, by definition, if f(z) > —o0,
ie., if z satisfies

Z'Qz + 29"z + 5> 0, (A + diag(6))z=b

for some —1 < @ < 1. Based on this choice of z, we will set

1

y )
J2'Qz + Zqu +s

and show that this choice of @ and y satisfies the constraints of
problem 9 with the same objective value. Plugging this value
into the first constraint of problem 9, we see that

a = = oz

y'Qy+ 209"y + o’ =a*(z2"Qz + 2"z +5) = 1
while the second constraint has

(A + diag(0))y = a(A + diag(0))z = ab
Finally, the objective satisfies

y'Py+2ap"y + a’r = a* (2" Pz + 2p 2 + 1)
2Pz + ZpTz +r
Qe+ 29"z 4

=f(2)

so the objective value for y and « for problem 9 is the same as
f(2), the objective value for problem 6 with field z.
Equivalence. We will show that, in fact, problem 9 and
problem 6 are equivalent in the special case where A + diag(6)
is invertible for any choice of -1 < 6 < 1. (We note that the
problems have the same optimal value even in the case where
the physics equation is not always invertible, but invertibility
usually holds in practice.) We have shown that every feasible
field z and design parameters 6 have a corresponding scaled

https://doi.org/10.1021/acsphotonics.3c00023
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fields y, scaling parameter  (with the same design parameters
0). We will now show the converse: every scaled field y with
scaling parameter o that is feasible for problem 9 has some
corresponding field z for problem 6 with the same objective
value. We break this up into two cases, one in which @ # 0 and
one in which a = 0.

Given a # 0 and any y satisfying the constraints of problem
9, we set z = y/a. This field z satisfies the physics constraint
with the same design parameters 6 as

(A + diag(8))z = = (A + diag(6))y = ~(ab) = b
(04 (04

On the other hand, the objective value for this choice of z is

yTPy + Z(xpTy + a’r

f(Z) =f()’/a) = yTQ)/ + 2aqu + azs

= yTPy + Z(xpTy +a’r

So this z is also feasible with design parameters 8 and the same
objective value.

On the other hand, we will show that @ = 0 is never feasible
for problem 9 for any choice of =1 < 0 < 1. If @ = 0, then (A+
diag(0)) y = ab = 0. Since A + diag(0) is invertible by
assumption, then y = 0. This implies that

yTQy+2(quy+a25= 0#1

So, given any 8 and a = 0, there is no scaled field y that is
feasible for problem 9. This shows that the problems are
equivalent as any feasible point for one is feasible in the other,
with the same objective value.

Semidefinite Relaxation. In general, problem 9 is still
nonconvex and likely computationally difficult to solve. On the
other hand, we can give a convex relaxation of the problem,
yielding a new problem whose optimal value is guaranteed to
be at least as large as that of problem 9 while also being
computationally tractable.

Variable Elimination. As in refs 8, 24, we can eliminate
the design variable 6 from problem 9, giving the following
equivalent problem over only the scaled field y and scaling
parameter

maximize yTPy + 2apTy + a’r
subjectto  y'Qy +2aq'y + a’s =1

(a'y —ab)® < )’izi

i=1,.,n (10)
with variables y € R” and @ € R. Here, a; denotes the ith row
of the matrix A, and the problem data are otherwise identical to
that of problem 9. Additionally, we note that this problem is
equivalent to problem 9 by the same argument as that of ref 8
and therefore to problem 6.

Rewriting and Relaxation. The new problem 10 is a
nonconvex quadratically constrained quadratic program
(QCQP). We can write problem 10 in a slightly more
compact form

- TH
maximize x° Px
subjectto  x' Qx = 1

-

(11)

2524

Here, the variable is x = (y, @) € R"", while the problem data
are the matrices

N ) I [OR'
P = T ) Q = T )
pr 19 S
_ aa; —eg —ba
A = , i=1,.,n
B B =

Using this rewritten problem, we can then form a semidefinite
relaxation in the following way

maximize tr(PX)
subject to  tr(QX) =1
tr(AX) <0, i=1,.,n
X>0 (12)

where we are maximizing over the variable X € §". We will call
d* the optimal value of this problem. Problem 12 is a
relaxation of problem 11 as any feasible point x € R” for
problem 11 gives a feasible point X = xx™ > 0 for problem 12,
since

tr(QX) = tr(Quax’) = 2" Qx =1

with the same objective value, tr(PX) = x” Px. This implies
that the optimal objective value of problem 6, p*, is never
larger than the optimal objective value of problem 12; i.e., we
always have p* < d*.

Properties. There are several interesting basic properties of
the relaxation of problem 12. First, since P > 0 by assumption
eq S, then d* > 0 since we know that, for any feasible X

d* > t(PX) > 0

Since we also know from eq 5 that P < Q, then, for any optimal
X* > 0, we have

d* = r(PX™) < tr(QX™) = 1
This implies that
0<p" <d <1

so d* can always be interpreted as a percentage upper bound of
p*, as expected. We note that, even if P < Q does not hold, the
resulting problem 12 still yields a bound on the optimal
objective value p*. The difference is that we lose the
guarantees derived here that the resulting dual bound d*
satisfies d* < 1. Additionally, given any X > 0 with tr(4; X) <
0 fori=1,..,n and tr(QX) > 0, then

o _ 1
T w(QX)

is a feasible point for problem 12.

Since we know that P < Q, then the equality constraint
tr(QX) = 1 in problem 12 can be relaxed to tr(QX) < 1, with
the same optimal objective value. Additionally, if we find a
solution X* whose rank is 1, then X* = xx” for some x and
therefore we have that x = (y, @) is a solution to the
homogenized problem 9, which is easily turned into a solution
of the original problem 6 by setting z = y/a and 0 = (a/z —
b;)/z; when z; # 0 and 0 otherwise.

X

https://doi.org/10.1021/acsphotonics.3c00023
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Dual Problem. The matrices A, fori = 1, ..., n, Q, and P are
sometimes chordally sparse.”> This structure can often be
exploited to more quickly solve for the optimal value of
problem 12 by considering the dual problem instead. Applying
semidefinite duality (see Section 5.9 of ref 22) to problem 12
gives

minimize 4,

subject to Z AA; +24,.,Q =P
i=1

A>0 (13)

where 4 € R"! is our optimization variable. This problem can
then be passed to solvers such as COSMO.31,°® which
support chordal decompositions, for faster solution times.

Discussion. The transformation of variables used here is
very similar to the transformation used in the reduction of
linear fractional programs to linear programs in Section 4.3.2 of
ref 22, and similar transformations have been used for
computational physics bounds in ref 9 in the special case
that b = 0 and Q = ee] (see, eg, Section 3.2 of ref 8). This
family of variable transformations has been known in the
optimization literature since the 1960s”” for a specific subset of
optimization problems known as ‘fractional programming,’
which include problems with objective functions of the form of
eq 4. The variable transformation used on problem 6 to get the
homogenized problem 9 is sometimes called the generalized
Charnes—Cooper transformation.”® We also note that the
same methodology yresented here can be applied to the
formulation in refs”'",” which is the special case where P and
Q are diagonal with nonnegative entries.

Extensions. There are a few basic extensions for the
bounds provided in problem 12.

Boolean Constraints. If we are allowed to choose only
Boolean parameters, ie., if we have 6; € {1}, instead of —1 <

0; <1 for each i = 1, .., n, we can write the bound as
maximize tr(PX)
subject to  tr(QX) =1
tr(AX) =0, i=1,.,n
X>0

which follows from Section 3.2 of ref 8. All of the same
properties for problem 12 also hold for the optimal value of
this problem.

Rewriting the Physics Equation. In practice, it is
sometimes the case that the physics eq 1 is better expressed
in the following form

z + Gdiag(0)z = V' (14)

where 0 < 0 <1, b’ € R, and G € R™". This formulation is
sometimes called the ‘Green’s formalism’ or ‘integral equation’
in electromagnetism and is equivalent to that of eq 1, in that
every (z, 0) that satisfies the physics eq 1 has a 8’ such that (z,
0') satisfies eq 14, and vice versa. To see this in the case that A
is invertible, we can map eqs 1—14 by setting G = (24 — )7},
b'=Gb,and @ = (0 + 1)/2.

Similar to refs 12,° we will reduce eq 14, which depends on
both the field z and the design parameters €, to an equation
depending only on the displacement field w = diag(6’)z. To do
this, we can write eq 14 in terms of w and z

2525

z+ Gw=1V, w=diag(d)z

Multiplying both sides of the first equation elementwise by w
gives

wz; + w‘-gt_Tw =wb, i=1,,n
where g,-T is the ith row of G. Finally, because 0 < 6’ < 1, we

get that w} = Owz; < wz, which means that

w + w,.giTw <wh, i=1,.,n (15)
The converse—that there exists a field z and design parameters
0’ satisfying eq 14 and w = diag(0')z, for any w satisfying eq
15—can be easily shown; cf,, App. A of ref 8.

Rewriting eq 14, we have that z = b* —Gw, and replacing the
physics constraint in problem 6 with eq 15 gives a new

problem over the displacement field w
wPw+2p w41
w'Qw + 2q 'w + ¢

maximize

subject to wl-2 + w,-gt_Tw < wb, i=1l,,n

with variable w € R" and problem data G, b, and
P'=G'PG, p =-G'P(p+b),
P =b"Pb+2p"b+r
while
Q=G'QG, q=-G'Qg+b),
S =b"Qb+29"b +s

Applying the same homogenization procedure and semidefinite
relaxation, this results in a problem identical to problem 12
with the following problem data

B P/ p/ B Q q/
P = 'T | Q = 'T A
p q9 s
eieiT + (e‘sgiT + g,-eiT)/z —bje;
;= . , i=1,.,n
—ble; 0

Convex Constraints. We can also allow convex constraints
in the SDP relaxation problem 12. If we have several convex
constraints on the field z = y/a given by f: R* > Rforj=1, ..,
m, we can write

maximize tr(PX)
subject to  tr(QX) =1
w(AX) =0, i=1,n

afj(l) <0, j=1,,m
a

Y y

yoa

X =

>0

The variables in this problem are the matrices X € §"', Y € §",
the vector y € R”, and scalar a € R, while the problem data are
identical to that of problem 12. This new problem is again a
convex optimization problem since the functions af]@/ a) over

https://doi.org/10.1021/acsphotonics.3c00023
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Figure 1. Designer wishes to choose materials in the design region to maximize the mode purity, measured at the output of the waveguide.

the variable (y, @) are convex if the original functions f; are
convex. This transformation is known as the perspective
transform and always preserves convexity (see Section 3.2.6 of
ref 22). The resulting problem is then convex and can
therefore be efficiently solved in most cases.

Additional Quadratic Constraints. Similar to the
previous, we can include additional (potentially indefinite)
quadratic constraints on the field z into the relaxation problem
12. More specifically, we wish to include several constraints on

the field z
zTsz + 2usz + tj <0

with matrices U; € §" vectors u; € R, and scalars t€R forj =
1, .., m. Using the fact that z = y/a, we can write these as

yTUy + ZaujTy + aztj <0 j=1,.,m

or equivalently as

xTij <0, i=1,.m

where x = (y, @) as in problem 12 and

I T
UI. =\ r , j=1l,,m
u g

Using the same relaxation method as in problem 12 with the
additional quadratic inequalities, we get the following semi-
definite problem:

maximize tr(PX)

subject to  tr(QX) =1
w(AX) =0, i=1,un
tr(L_]jX) <0 j=1,,m
X>0

This problem has the same variables and problem data as
problem 12, with the addition of the matrices U, € s™1 as
defined above.

B NUMERICAL EXPERIMENTS

In this section, we solve problem 12 for the the maximal mode
purity of a small mode converter. We also find a design that
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approximately saturates the bound. To compute these bounds,
we introduce two open source Julia® packages, Wave-
Operators.jl and PhysicalBounds. j1, that allow
users to setup physical design problems and compute bounds
in only a few lines of code.

Our packa§es setup the dual form of the SDP, problem 13,
using JuMP*?' and solve it using any conic solver that
supports semidefinite programming. We use SCS” for the
experiments in this paper. The code can be found at

github.com/cvxgrp/WaveOperators.jl

github.com/cvxgrp/PhysicalBounds.jl

which can be used to generate the plots found in this paper.

Physics Equation. We assume that the EM wave equation
is appropriately discretized and results in a problem of the
form

Az + diag(0)z = b

Here z € C" is the (complex) field while & € R" are the (real)
parameters and A € C™", b € C". To turn this into a problem
over real variables, we can separate the real and imaginary parts
of the variables to get a new physics equation that is purely real

AZ + diag(0, 0)z' =V
Here, we define
Re(A) —Im(A)
Im(A) Re(A)

Re(b)
Im(b)

Re(z)
Im(z)

/

) )y 2=

where Re(x) denotes the elementwise real part of x (where x is
a vector or a matrix) while Im(x) denotes the imaginary part.
Note that this results in a larger system with parameters A’ €
R > b’ € R*, and field 27 € R*, whose parameters are all
real. Finally, note that we can write this system as

AZ + diag(0)z' =V, 0,,,=6

1

where we have introduced a new, larger vector of parameters,
0 € R* with an additional constraint. Dropping this latter
constraint over 6’ leads to a relaxation of the original physics
equation, in the following sense: any design and field that
satisfies the original equation also satisfies this new ‘relaxed’
equation. This makes the final physics equation

Az + diag(0)z = b (16)
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Figure 2. Design (left) is optimized for mode purity. The corresponding field (right) closely matches the target mode at the output.

Optimal Design (opt for power)

1
9
8
7
6
5
4
3
2
1
0

purity-optimized design, but it sacrifices some amount of purity.

Realized Field (opt for power)

0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 3. Design (left) is optimized for mode power. The corresponding field (right) has greater power at the output compared to that of the

where we have dropped the apostrophes for convenience. As a
reminder we have the physics operator A € R***", excitation b
€ R, the field z € R*, and the permittivities & € R*". This
relaxation corresponds to allowing the designer to vary both
real and imaginary permittivities, where each component is box
constrained, while the original problem only allows the
designer to choose real permittivities. (We note that some
solvers, including Hypatia.jl, > support complex varia-
bles, but we do not solve the problem over complex variables
in this work.)

Mode Converter. The setup is shown in Figure 1. In this
problem, the designer is attempting to design a mode converter
with the maximum mode purity, by choosing the permittivities
in the region shown. The input to this device is the first-order
mode of the waveguide on the left-hand side. The desired
output is a field whose normalized overlap with the second-
order mode of the waveguide is maximized. In this problem,
the designer is allowed to choose the permittivities within the
design region, so long as the permittivities lie in a given
interval. More information about the problem setup is given in
appendix and the documentation of the corresponding
packages.

Problem Data. In our specific problem setup, as shown in
Figure 1, we have a source that is a distance of about one
wavelength from the design region. The simulation region is a
rectangle that is one wavelength tall and 1.6 wavelengths wide.
The design region is a centered square with side length 1/3 of
a wavelength. In this approximation, we assume that the grid is
a 60 X 96 grid; i.e., the side length of a pixel in this simulation
is roughly 1/60th of a free-space wavelength, so 1 = 1/60. The
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material contrast (see appendix) is set to § = 10 while the free-
space wavenumber is k = 2.

Optimization Problem. In this experiment, we attempt to
maximize the normalized overlap as defined in eq 7

o ((Re)
maximize ———-
[IR=[l;
subject to Az + diag(0)z = b
-1<0<1

Here, the variables and problem data are similar to those of
problem 6. More specifically, the problem variables are z € R”,
0 € R, while the problem data are the physics matrix A €
R>**" the excitation b € R*, the vector ¢ € R*" specifying the
desired output mode, and the matrix R € R*>*", defined in eq
8, where the region S is the rightmost column of pixels. The
resulting semidefinite upper bound for this problem is given in
problem 12 with

P=R«'R, Q=R, p=0,q=0,r=0,5s=0

Results. The resulting upper bound on the mode purity,
which no design can exceed, is .981. We also find an
(approximately) optimal design with 6, = 8, (i.e., with real
permittivities). This design and its corresponding field are
shown in Figure 2. The mode purity this design achieves is
.966, which is (981 — .966)/.981 =~ 1.5% percent from the
upper bound. We note that this design, while very close to the
optimal value for the mode purity, is not very good in a
practical sense: most of the power in the input waveguide is
actually scattered out to space. In general, we find that simply
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Figure 4. Design optimized for mode purity better matches the target mode waveform but has lower output power.

optimizing for the numerator, as is usually done in practice,
yields designs that are relatively efficient and have reasonable
mode purity. In this case, simply maximizing the numerator of
the objective results in a design that achieves a mode purity of
.933, with an output power that is approximately 76% greater.
(This design, and its corresponding field, is shown in Figure 3.)
This difference is highlighted in Figure 4.

B CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a simple method to compute
bounds on several efficiency metrics for physical design
problems, by solving a semidefinite program. In particular,
we focused on the common case where the efficiency metric
can be written as a ratio of two quadratics, which includes
metrics such as the focusing efficiency and the mode
conversion efficiency. We present a small example, but note
that while larger numerical examples are possible, the resulting
semidefinite programs are large; computing bounds on designs
of larger sizes in reasonable time will likely require more
sophisticated solvers (or larger computers). While the designs
shown here are also somewhat reasonable, they are still very far
from the three dimensional designs that are useful in practice.
Future work would focus on creating faster solvers that can
exploit the special structure of these problems, along with
simple interfaces that are user-friendly and can be used to
easily setup and solve these bounds.
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