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Abstract
Stratified models depend in an arbitrary way on a selected categorical feature that 
takes K values, and depend linearly on the other n features. Laplacian regulariza-
tion with respect to a graph on the feature values can greatly improve the perfor-
mance of a stratified model, especially in the low-data regime. A significant issue 
with Laplacian-regularized stratified models is that the model is K times the size 
of the base model, which can be quite large. We address this issue by formulating 
eigen-stratified models, which are stratified models with an additional constraint that 
the model parameters are linear combinations of some modest number m of bottom 
eigenvectors of the graph Laplacian, i.e., those associated with the m smallest eigen-
values. With eigen-stratified models, we only need to store the m bottom eigenvec-
tors and the corresponding coefficients as the stratified model parameters. This leads 
to a reduction, sometimes large, of model size when m ≤ n and m ≪ K . In some 
cases, the additional regularization implicit in eigen-stratified models can improve 
out-of-sample performance over standard Laplacian regularized stratified models.

Keywords  Optimization · Convex optimization · Data science · Machine learning

1  Introduction

Stratified models are models that depend in an arbitrary way on a selected categori-
cal feature (or set of features) that takes K values, and depend linearly on the other 
features  (Tuck et  al. 2019). For example in a date-stratified model we might have 
a different linear model for each day of the year, with K = 365 . Laplacian regular-
ization can be added to exploit some known relations among the categorical fea-
tures, expressed as a graph. In our date-stratified example, Laplacian regularization 
encourages the models for adjacent dates to be close, including the January 1 and 
December 31 models. In this example, the underlying graph is a cycle with 365 
vertices.
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Laplacian regularization can greatly improve the performance of a stratified 
model, especially in the low-data regime. In particular, it allows us to form a reason-
able model even when we have no training data for some values of the categorical 
variable. The number of parameters in a Laplacian-regularized stratified model is 
K, the number of values of the categorical feature, times the size of the base model, 
which can be quite large when the catgorical values take many values. For example, 
a date-stratified model contains 365 times more coefficients than the base model. 
This is one of the challenges that we address in this paper.

Laplacian regularization encourages the model parameters to vary smoothly 
across the graph that encodes our prior information about the categorical values. 
If the model parameters vary smoothly across the graph, it is reasonable to assume 
they can be well approximated as linear combinations of a modest number of the 
eigenvectors of the associated graph Laplacian associated with the smallest eigen-
values. Our idea is simple: We impose the constraint that the model parameters 
are linear combinations of some number m of the bottom eigenvectors of the graph 
Laplacian. We refer to such a model as an eigen-stratified model. The resulting 
eigen-stratified model uses only a factor m parameters more than the base model, 
compared to a factor K for a general stratified model. In addition to this savings in 
model size, insisting that the model parameters are linear combinations of the bot-
tom m eigenvectors acts as an additional useful regularization, that enforces smooth 
variation of the model parameters across the graph.

In our date-stratified example, the bottom eigenvector is constant, and the next 
ones occur in sine and cosine pairs, with periods one year, a half year, one-third of 
year, and so on. Using m = 7 , say, requires that the model parameters are Fourier 
series with 7 terms (i.e., constant plus three harmonics). So here the eigen-stratified 
model is very natural.

In more complex cases, the eigen-stratified model is far less obvious. For exam-
ple, the underlying graph can contain multiple edge weights, which are hyper-
parameters. In any but the simplest cases, we do not have analytical expressions for 
the eigenvalues and eigenvectors, but they are readily computed, even for very large 
graphs.

1.1 � Related work

Model approximations It is quite common to approximate a larger model with a 
smaller, but only slightly less accurate model. In signal processing, discrete signals 
are transformed into a basis where they may be approximated by a linear combina-
tion of a small number of basis vectors, such as complex exponentials or cosines, in 
order to achieve significant size compression at the cost of signal degradation, which 
in many cases is minimal (Ahmed et al. 1974; Oppenheim and Schafer 2009). Like-
wise, eigen-stratified models can be interpreted as an approximate stratified model, 
whose model parameters are approximated as linear combinations of bottom eigen-
vectors of the stratified model’s graph Laplacian.

Categorical embeddings Learning low-dimensional vector representations of 
discrete variables is consistently used as a method to handle categorical features. 
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Embeddings are a popular tool in fields such as natural language processing, 
to embed text as continuous vectors (Elman 1990; Mikolov et  al. 2013; Guo and 
Berkhahn 2016). We can associate with each vertex the m coefficients of the bottom 
Laplacian eigenvectors. This gives a Laplacian or spectral embedding of the features 
into �m.

Spectral graph theory The study of properties of graphs through their Laplacian 
eigen-decomposition is a long studied field in graph theory  (Chung 1997; Cohen-
Steiner et al. 2018). Three example applications include spectral clustering (Ng et al. 
2002), which is a form of dimensionality reduction that uses the the eigen-decompo-
sition of the graph Laplacian to cluster nodes in a graph; finding the fastest Mixing 
Markov process on a graph, whose convergence guarantees rely on the spectrum 
of the graph’s Laplacian matrix (namely, the Fiedler eigenvalue of the Laplacian) 
(Boyd et al. 2004; Sun et al. 2006; Boyd et al. 2009); and graph coloring (Brooks 
1941; Brélaz 1979), where the goal is to assign one of a set of colors to a graph node 
such that no two adjacent nodes share a color. Graph coloring is an NP-hard task in 
general, but ideas from spectral graph theory are naturally used as heuristics to sub-
optimally solve this problem (Aspvall and Gilbert 1984).

Laplacian regularization in large-scale optimization There are many general 
methods to solve convex optimization problems with Laplacian regularization. 
Examples include the alternating direction method of multipliers (ADMM) (Tuck 
et  al. 2019), majorization-minimization (MM) (Tuck et  al. 2019), and Anderson 
accelerated Douglas-Rachford splitting (Fu et  al. 2019b). ADMM and proximal 
algorithms in general have also been used in the past to fit large-scale network mod-
els, such as the network lasso and the logistic network lasso, which are stratified 
models that encourage closeness of parameters by their difference as measured by 
the �2-norm, rather than by the �2-norm squared (Hallac et al. 2015, 2017; Jung and 
Tran 2019; Tran et al. 2020). In addition, the idea of applying Laplacian approxi-
mations to large-scale optimization problems has been studied in the past, where 
one approximates the graph Laplacian by a linear combination of the eigenvectors 
to solve extremely large semidefinite programs in, e.g., maximum variance unfold-
ing (Weinberger et al. 2007).

1.2 � Outline

In Sect. 2.1 we review stratified models, fixing our notation; in Sect. 2.2 we formally 
describe the eigen-stratified model fitting problem, and in Sect. 3, we give a distrib-
uted solution method. In Sect. 4 we give some simple numerical examples, carried 
out using an accompanying open-source implementation of our method.

2 � Eigen‑stratified models

In this section, we give a brief overview of stratified models; see (Tuck et al. 2019) 
for much more detail.
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2.1 � Stratified models

We fit a model to data records of the form (z, x, y) ∈ Z × X × Y . Here z ∈ Z is the 
feature over which we stratify, x ∈ X  is the other features, and y ∈ Y is the outcome, 
label, or dependent variable. The feature and label spaces X  and Y are arbitrary data 
types; the stratified feature values Z , however, must consist of only K possible val-
ues, which we denote as Z = {1,… ,K}.

A stratified model is built on top of a base model, which models pairs (x, y) (or, 
when x is absent, just y). The base model is parametrized by a parameter vector 
𝜃 ∈ 𝛩 ⊆ �n . In a stratified model, we use a different value of the parameter � for 
each value of z. We denote these parameters as �1,… , �K , where �k is the parameter 
value used when z = k . We let � ∈ �n×K denote the parameter values for the strati-
fied model, where

(In (Tuck et  al. 2019), the individual parameter vectors �k were stacked into one 
vector of dimension nK; here it will be more convenient to assemble them into a 
matrix.)

To choose the parameters �1,… , �K , we minimize

The first term is the sum of K local objective functions, with the kth local objective 
function consisting of a local loss of the form

with loss function l ∶ � × X × Y → � , and local regularizer r ∶ � → � ∪ {∞} . 
(Infinite values of the regularizer encode constraints on allowable into a matrix.) 
Examples of local regularization r are ‖ ⋅ ‖2

2
 and ‖ ⋅ ‖1 . Choosing �k to minimize 

�k(�k) + r(�k) gives the regularized empirical risk minimization model parameters, 
based only on the data records that take the particular value of the stratification fea-
ture z = k.

The second term L(�) in (1) measures the non-smoothness of the model param-
eters over z ∈ Z . Let W ∈ �K×K be a symmetric matrix with nonnegative entries. 
The associated Laplacian regularization or Dirichlet energy is the function 
L ∶ �n×K

→ � given by

We can associate the Laplacian regularization with a graph with K vertices, with an 
edge (i, j) for each positive Wij , with weight Wij . We can express the Laplacian regu-
larization as the positive semidefinite quadratic form

� = [�1 ⋯ �K] ∈ �n×K .

(1)
K∑

k=1

(
�k(�k) + r(�k)

)
+ L(�).

(2)�k(�) =
∑

i∶zi=k

l(�, xi, yi),

(3)L(�) =
1

2

K�

i,j=1

Wij‖�i − �j‖22.
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where L ∈ �K×K is the (weighted) Laplacian matrix associated with the weighted 
graph, given by

We note that the Laplacian regularization L(�) is separable in the rows of �.
We refer to the model obtained by solving (1) as a standard stratified model. 

When the loss function � and local regularization function r are convex, the 
objective in (1) is convex, which implies that a global solution can be found effi-
ciently (Boyd and Vandenberghe 2004). When this assumption does not hold, 
heuristic methods can be used to approximately solve (1).

2.2 � Eigen‑stratified models

The eigen-decomposition of the Laplacian matrix L is

where � ∈ �K×K , a diagonal matrix consisting of the eigenvalues of L, is of the 
form � = ����(�1,… , �K) with 0 = �1 ≤ ⋯ ≤ �K , and Q = (q1,… , qK) ∈ �K×K is a 
matrix of orthonormal eigenvectors of L. Since L� = 0 , where � is the vector with all 
entries one, we have �1 = 0 , and q1 = �∕

√
K (Spielman 2010). (When the graph is 

connected, q1 is unique, and 𝜆2 > 0 .) In many cases, the eigenvectors and eigenval-
ues of a graph Laplacian matrix can be computed analytically; in “Appendix 1”, we 
mention a few of these common graphs and give their eigenvectors and eigenvalues.

For m ≤ K , we refer to �1,… , �m as the bottom m eigenvalues, and q1,… , qm 
as the bottom m eigenvectors. They are an orthonormal basis of the subspace of 
�K that is smoothest, i.e., minimizes �� Q̃TLQ̃ , where Q̃ = [q1 ⋯ qm] ∈ �K×m , 
subject to Q̃TQ̃ = Im . Roughly speaking, functions on Z that are smooth should 
be well approximated by a linear combination of the bottom m eigenvectors (for 
suitable m).

Assuming that � has low Dirichlet energy, i.e., a small Laplacian regularization 
term, we conclude that its rows are well approximated by a linear combination of the 
bottom m eigenvectors. This motivates us to impose a further constraint on the rows 
of � : They must be linear combinations of the bottom m eigenvectors of L. This can 
be expressed as

where Z ∈ �n×m are the (factorized) model parameters and Q̃ ∈ �K×m are the bottom 
m eigenvectors of L.

Adding the constraint (4) to the Laplacian regularized stratified model fitting 
problem (1), we obtain the problem

L(�) = (1∕2)��(�L�T ),

Lij =

�
−Wij i ≠ j∑K

k=1
Wik i = j

, i, j = 1,… ,K.

L = Q�QT ,

(4)𝜃 = ZQ̃T ,
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where now both � and Z are optimization variables, coupled by the equality con-
straint. We can express the Laplacian regularization term in (5) directly in terms of 
Z as

where �m = ����(�1,… , �m) is the diagonal matrix of the eigenvalues correspond-
ing to the bottom m eigenvectors of L. We refer to the model obtained by solving (5) 
as an eigen-stratified model.

We note that the sum of empirical losses and local regularization are clearly sepa-
rable in the columns of � , and the Laplacian regularization is a separable function in 
the rows of Z; we utilize this fact in Sect. 3.

Comparison to standard stratified models With standard stratified models, we 
allow arbitrary variations of the model parameter � across the graph. With eigen-
stratified models, we sharply limit how � varies across the graph by constraining � to 
be a linear combination of the m bottom eigenvectors of the graph.

Storage The standard stratified model requires us to store Kn model parameters. 
An eigen-stratified model, on the other hand, stores m(K + n) variables in the eigen-
vectors Q̃ and the factorized model parameters Z. This implies that when m ≤ n and 
m ≪ K , the storage savings is significant.

Convexity If the local losses �k and local regularizers r are convex, then (5) is a 
convex problem, which is readily solved globally in an efficient manner. It is eas-
ily formulated using domain specific languages for convex optimization (Boyd and 
Vandenberghe 2004; Grant et al. 2006; Grant and Boyd 2014; Diamond and Boyd 
2016; Fu et al. 2019a). If any of the �k or r are nonconvex, it is a hard problem to 
solve (5) globally. In this case, our method (described in Sect. 3) will provide a good 
heuristic approximate solution.

The two extremes For a given set of edge weights, we analyze the behavior of 
the eigen-stratified model as we vary m. When we take m = 1 and the graph is con-
nected, we recover the common model (i.e., a stratified model with all �i equal). We 
can see this by noting that when m = 1 and the graph is connected, the constraint 
in (5) becomes a consensus constraint (recall that the bottom eigenvector of a Lapla-
cian matrix is a scalar multiple of � ). If we take m = K , the eigen-stratified model is 
the same as the standard stratified model.

3 � Distributed solution method

In this section we describe a distributed algorithm for solving the fitting problem 
(5). To derive the algorithm, we first express (5) as

(5)minimize
∑K

k=1
(�k(𝜃k) + r(𝜃k)) + L(𝜃)

subject to 𝜃 = ZQ̃T ,

L(𝜃) = (1∕2)��(𝜃L𝜃T ) = (1∕2)��(ZQ̃TLQ̃ZT ) = (1∕2)‖Z𝛬1∕2
m

‖2,

(6)minimize
∑K

k=1
(�k(𝜃k) + r(𝜃k)) + (1∕2)‖Z𝛬1∕2

m ‖2
subject to 𝜃 = ZQ̃T

𝜃 = 𝜃,
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where we have introduced an additional optimization variable 𝜃 ∈ �n×K.
The augmented Lagrangian L

�
 of (6) has the form

where u ∈ �n×K and ũ ∈ �n×K are the (scaled) dual variables associated with the 
two constraints in (6), respectively, and 𝜌 > 0 is the penalty parameter. The ADMM 
algorithm (in scaled dual form) for the splitting (�, Z) and 𝜃 consists of the iterations

If the �k and r are convex, the iterates �i , 𝜃i are guaranteed to converge to each other 
and �i , 𝜃i , and Zi are guaranteed to converge to a primal optimal point of (6) (Boyd 
et al. 2011).

This algorithm can be greatly simplified (and parallelized) by making use of a 
few observations. Our first observation is that the first step in ADMM (7) can be 
expressed as

where ����g ∶ �n
→ �n is the proximal operator of the function g (Parikh and Boyd 

2014), and

Note that the updates for �i+1 and Zi+1 can be carried out in parallel, since they do 
not depend on each other. Also, we can compute �i+1

1
,… , �i+1

K
 in parallel.

Our second observation is that the second step in ADMM (8) can be expressed 
as

Similarly, we can compute 𝜃i+1
1

,… , 𝜃i+1
K

 in parallel.
Combining these observations leads to Algorithm 3.1.

L
𝜌
(𝜃, 𝜃, Z, u, ũ) =

K�

k=1

(�k(𝜃k) + r(𝜃k)) + (1∕2)‖Z𝛬1∕2
m

‖2

+ (1∕2𝜌)‖𝜃 − 𝜃 + u‖2
2
+ (1∕2𝜌)‖𝜃 − ZQ̃T + ũ‖2

2
,

(7)𝜃
i+1, Zi+1 ∶= argmin

𝜃,Z

L
𝜌
(𝜃, 𝜃i+1, Z, ui, ũi)

(8)𝜃
i+1 ∶= argmin

𝜃

L
𝜌
(𝜃i+1, 𝜃, Zi+1, ui, ũi)

(9)ui+1 ∶= ui + 𝜃
i+1 − 𝜃

i+1

(10)ũi+1 ∶= ũi + 𝜃
i+1 − Zi+1Q̃T .

𝜃
i+1
k

= ����
𝜌lk
(𝜃i

k
− ui

k
), k = 1,… ,K,

Zi+1 = (1∕𝜌)(ũi + 𝜃
i)Q̃(𝛬m + (1∕𝜌)I)−1.

𝜃
i+1
k

= ����
𝜌r(Z

i+1Q̃T − ũi), k = 1,… ,K,
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Complexity Generally, the dominant cost of this algorithm depends on the com-
plexity of computing a single proximal operator of lk or r. Otherwise, the dominant 
costs are in multiplying a dense n × K matrix, a dense K × m matrix, and a diagonal 
K × K matrix together.

4 � Examples

In this section, we illustrate the efficacy of the proposed method on two simple and 
relatively small examples.

Software implementation An implementation of our method for fitting an eigen-
stratified model is given as an extension of the stratified model fitting implementa-
tion in (Tuck et al. 2019), available at www.githu​b.com/cvxgr​p/strat​_model​s (along 
with the accompanying examples). To fit an eigen-stratified model, one may invoke

Here, ���� are the problem data (i.e., (z, x, y) or (z, y)) and ���_����� is the number 
of bottom eigenvectors to use in the eigen-stratified model (i.e., m); if ���_����� is 
���� , a standard Laplacian-regularized stratified model is fit.

4.1 � Cardiovascular disease prediction

We consider the problem of predicting whether a patient has cardiovascular disease, 
given their sex, age, and other medical features.

Dataset We use data describing approximately 70000 patients across the world 
(Kaggle 2019). The dataset is comprised of males and females between the ages of 
39 and 65 (inclusive), with approximately 50% of the patients diagnosed with car-
diovascular disease.

There are 9 raw medical features in this dataset, which include: height, weight, sys-
tolic blood pressure (a categorical feature with values “below average", “average", and 
“above average"), diastolic blood pressure (a categorical feature with values “below 

�����.���(����, ���_����� = �).

http://www.github.com/cvxgrp/strat_models
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average", “average", and “above average"), cholesterol, glucose levels, whether or not 
the patient smokes, whether or not the patient drinks alcohol, and whether or not the 
patient undergoes regular physical activity. We randomly partition the data into a train-
ing set consisting of 5% of the records, a validation set containing 5% of the records, 
and a test set containing the remaining 90% of the records. We choose extremely small 
training and validation sets to illustrate the efficacy of stratified models in low-data 
regimes.

Data records We performed basic feature engineering on the raw medical features 
to derive a feature vector x ∈ �14 (i.e., n = 14 ), namely scalarization and converting 
the systolic blood pressure and diastolic blood pressure basic categorical features into 
multiple features via one-hot encoding, and adding a constant feature. The outcomes 
y ∈ {0, 1} denote whether or not the patient has contracted cardiovascular disease, 
with y = 1 meaning the patient has cardiovascular disease. The stratification feature z 
is a tuple of the patient’s sex and age; e.g., z = (Male, 47) corresponds to a 47 year old 
male. The number of stratification feature values is thus K = 2 ⋅ 27 = 54.

Data model We model the conditional probability of contracting cardiovascular dis-
ease given the features using a logistic regression base model (with intercept). We use 
logistic loss and sum of squares regularization, i.e., r = (1∕2)‖ ⋅ ‖2

2
 , with associated 

hyper-parameter �local.
Regularization graph We take the Cartesian product of two regularization graphs:

•	 Sex. The regularization graph is a path graph that has one edge between male and 
female, with edge weight �sex.

•	 Age. The regularization graph is a path graph between ages, with edge weight �age.

Figure 1 illustrates the structure of this regularization graph.
From “Appendix 1”, the eigenvectors of the regularization graph’s Laplacian, qi,j for 

i = 1, 2 and j = 1,… , 27 , are given in closed-form as

where ⊗ denotes a Kronecker product, v = (0,… ,K − 1) , and cos(⋅) is applied ele-
mentwise. (It is convenient for the eigenvectors to be indexed by i and j, with i cor-
responding to sex and j corresponding to age.)

qi,j = q̃i,j∕‖q̃i,j‖2,
q̃i,j = cos((𝜋∕2)(i − 1)(v − 1∕2))⊗ cos((𝜋∕27)(j − 1)(v − 1∕2)) i = 0, 1, j = 0,… , 26,

M,39

F,39

M,40

F,40

· · ·

· · ·

M,64

F,64

M,65

F,65

Fig. 1   Regularization graph for Sect. 4.1
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Figure 2 plots 8 of the 54 eigenvectors of the sex/age regularization graph Lapla-
cian, with the particular sex/age edge weights (�sex, �age) = (15, 175) , sorted in 
increasing order corresponding to the bottom 8 eigenvalues of the Laplacian.

Results For each of the fitting methods (the separate, common, standard stratified 
and eigen-stratified models), we ran a hyper-parameter search over a grid of hyper-
parameters and selected hyper-parameters that performed well over the validation 
set. For �local , we looked at a grid of values between 0.001 and 100. For �sex and �age , 
we looked at a grid of values between 0.1 and 1000. For the separate model, we 
used �local = 35 , and for the common model, we used �local = 5 . (Recall that the sepa-
rate model is a stratified model with all edge weights zero, and a common model 
is a stratified model with all edge weights +∞ (Tuck et al. 2019).) For the standard 

Fig. 2   Heatmaps of the eigenvectors of the sex/age regularization graph Laplacian corresponding to the 
bottom 8 eigenvalues of the Laplacian
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stratified model, we used �local = 0.01 , �sex = 125 and �age = 150 . For the eigen-strat-
ified model, we used �local = 2.5 , �sex = 15 and �age = 175 , and m = 5 . Table 1 shows 
the average negative log likelihood (ANLL) over the training, validation, and test 
datasets for the separate, common, standard stratified and eigen-stratified models.

We see that this test ANLL attains a minimum when only 5 bottom eigenvectors 
are used for the eigen-stratified model. This minimum test ANLL of the eigen-strat-
ified model is competitive with (in fact, slightly smaller than) the test ANLL of the 
standard stratified model.

In the eigen-stratified model with m = 5 , the model parameters are linear combi-
nations of 5 bottom eigenvectors. There are nK = 14 ⋅ 54 = 756 parameters in the 
standard stratified model to store, whereas the eigen-stratified model with minimum 
test ANLL stores m(n + K) = 5 ⋅ (14 + 54) = 340 values, or approximately 45% as 
many parameters. So there is some storage efficiency gain even in this very simple 
example.

4.2 � Weather distribution modeling

We consider the problem of modeling the distribution of weather temperature as a 
function of week of year and hour of day.

Data records and dataset We use temperature measurements from the city of 
Atlanta, Georgia for all of 2013 and 2014, sampled every hour (for a total of approx-
imately 17500 measurements). The temperature is in Celsius; we round the tempera-
tures to the nearest integer. There are n = 43 unique temperatures, ranging from -9 
to 33 Celsius. Each data record includes the temperature, as well as the week of the 
year and the hour of the day (which will be the stratification features). The number 
of stratification features is K = 52 ⋅ 24 = 1248.

We partition the dataset into three separate sets; a training set consisting of 30% 
of the data, a validation set consisting of 35% of the data, and a held-out test set con-
sisting of the remaining 35% of the data. The model is trained on approximately 4.2 
samples per stratification feature.

Data model We model the distribution of temperature in Atlanta at each week 
and hour using a non-parametric discrete distribution (Tuck et al. 2019). Our local 
regularizer is a sum of two regularizers: a sum of squares regularizer and a scaled 
sum of squares regularizer on the difference between adjacent parameters, i.e., 
r(�) = �1r1(�) + �2r2(�) , with r1(�) = (1∕2)‖�‖2

2
 and r2(�) = (1∕2)

∑n

i=1
(�i+1 − �i)

2 ; 
the associated hyper-parameters with each are �1 and �2 . The distribution pz at each 
node z is calculated as

Table 1   Results for Sect. 4.1 Model Train ANLL Validation ANLL Test ANLL

Separate 0.607 0.656 0.658
Common 0.610 0.597 0.615
Standard stratified 0.572 0.567 0.597
Eigen-stratified 0.581 0.563 0.596
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where exp(⋅) is evaluated elementwise.
Regularization graph We take the Cartesian product of two regularization 

graphs:

•	 Week of year. The regularization graph is a cycle graph with 52 nodes (one for 
each week of the year) with edge weights �week.

•	 Hour of day. The regularization graph is a cycle graph with 24 nodes (one for 
each hour of the day) with edge weights �hr.

The Cartesian product of these two graphs is a torus, illustrated in Fig. 3.
This graph has K = 1248 eigenvectors. The eigenvectors of this graph are 

given by

pz =
exp(�z)∑n

i=1
exp(�z)i

,

s̃i,j∕‖s̃i,j‖2
ũi,j∕‖ũi,j‖2
ṽi,j∕‖ṽi,j‖2
w̃i,j∕‖w̃i,j‖2,

Fig. 3   Regularization graph for Sect.  4.2. Each node corresponds to a week of year and hour of day, 
where the toroidal direction corresponds to increasing week of year, and the poloidal direction corre-
sponds to increasing hour of day
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where

for i = 1,… , 26 and j = 1,… , 12 , u = (0,… , 51) , v = (0,… , 23) , and cos(⋅) and 
sin(⋅) are applied elementwise. Figures 4 and 5 plots the bottom 10 eigenvectors of 
the week/hour regularization graph Laplacian, with the particular week/hour edge 
weights (�week , �hr) = (.45, .55) , sorted in increasing order corresponding to the bot-
tom 10 eigenvalues of the Laplacian.

Results For each of the fitting methods, we ran a hyper-parameter search over 
a grid of hyper-parameters and selected hyper-parameters that yielded the small-
est ANLL over the validation set. For �1 and �2 , we looked at a grid of values 
between 0.001 and 1. For �week and �hr , we looked at a grid of values between 0.1 
and 1. For the separate model, we used �1 = 0.75 and �2 = 0.3 , and for the com-
mon model, we used �1 = 0.65 and �2 = 0.55 . For the standard stratified model, 
we used �1 = 0.05 , �2 = 0.05 , �week = 0.6 and �hr = 0.5 . For the eigen-stratified 
model, we used �1 = 0.01 , �2 = 0.001 , �week = 0.45 and �hr = 0.55 , and m = 90 
(roughly 7% of the 52 ⋅ 24 = 1248 eigenvectors). We compare the ANLLs over 
the training, validation, and test datasets for the separate, common, standard 
stratified and eigen-stratified models in Table 2.

The validation and held-out test ANLLs of the eigen-stratified model were 
smaller than the respective ANLLs of every other model in Table 2, including 
those of the standard stratified model.

In Fig.  6 we plot the cumulative distribution functions (CDFs) of tempera-
ture for week 1, hour 1; week 28, hour 12; and week 51, hour 21 (which have 2, 
3, and 2 empirical measurements in the training dataset, respectively), for the 
eigen-stratified model, and for the test empirical data.

In Fig. 7, we plot heatmaps of the expected value and standard deviation of 
the distributions given by the eigen-stratified model. The statistics vary smoothly 
as hours of day and weeks of year vary.
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si,j = cos(𝜋(i − 1)u∕26)⊗ sin(𝜋(j − 1)v∕12),

ui,j = cos(𝜋(i − 1)u∕26)⊗ cos(𝜋(j − 1)v∕12),

vi,j = sin(𝜋(i − 1)u∕26)⊗ sin(𝜋(j − 1)v∕12),

wi,j = sin(𝜋(i − 1)u∕26)⊗ cos(𝜋(j − 1)v∕12),

http://www.github.com/cvxgrp/strat_models
http://www.github.com/cvxgrp/strat_models
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Fig. 4   Heatmaps of the eigenvectors of the week/hour regularization graph Laplacian corresponding to 
�1,… , �5
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Fig. 5   Heatmaps of the eigenvectors of the week/hour regularization graph Laplacian corresponding to 
�5,… , �9
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Appendix: Eigenvectors and eigenvalues of common graphs

The direct relation of a graph’s structure to the eigenvalues and eigenvectors of 
its corresponding graph Laplacian is well-known (Jr and Morley 1985). In some 
cases, mentioned below, we can find them analytically, especially when the 
graph has many symmetries. The eigenvectors are given in normalized form (i.e., 
‖qk‖2 = 1 .) Outside of these common graphs, many other simple graphs can be 
analyzed analytically; see, e.g., (Brouwer and Haemers 2012).

A note on complex graphs. If a graph is complex, i.e., there is no analytical 
form for its graph Laplacian’s eigenvalues and eigenvectors, the bottom eigen-
values and eigenvectors of the Laplacian of a graph can be computed extremely 
efficiently by, e.g., the Lanczos algorithm, variants of power iteration, the Jacobi 
eigenvalue algorithm, the folded spectrum method, and other exotic methods. We 
refer the reader to (Jacobi 1846; Mises and Pollaczek-Geiringer 1929; MacDonald 
1934; Lanczos 1950; Ojalvo and Newman 1970; Paige 1971) for these methods.

Table 2   Results for Sect. 4.2 Model Train ANLL Validation ANLL Test ANLL

Separate 0.186 0.447 0.448
Common 0.255 0.488 0.488
Standard stratified 0.172 0.393 0.394
Eigen-stratified 0.183 0.377 0.378

−5 0 5 10 15 20 25 30
Temperature [ C]

0.0

0.5

1.0
Week = Jan 1-7, Hour = 12PM-1PM

Eigen-stratified CDF
Empirical CDF

−5 0 5 10 15 20 25 30
Temperature [ C]

0.0

0.5

1.0
Week = Jul 1-7, Hour = 11PM-12AM

Eigen-stratified CDF
Empirical CDF

−5 0 5 10 15 20 25 30
Temperature [ C]

0.0

0.5

1.0
Week = Dec 18-24, Hour = 8AM-9AM

Eigen-stratified CDF
Empirical CDF

Fig. 6   CDFs of various weeks of the year and hours of the day, as given by the eigen-stratified model, 
along with their corresponding empirical CDFs
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Path graph. A path or linear/chain graph is a graph whose vertices can be listed in 
order, with edges between adjacent vertices in that order. The first and last vertices only 
have one edge, whereas the other vertices have two edges. Figure 8 shows a path graph 
with 8 vertices and unit weights.

Eigenvectors q1,… , qK of a path graph Laplacian with K nodes and unit edge 
weights are given by

where v = (0,… ,K − 1) and cos(⋅) is applied elementwise. The eigenvalues are 
2 − 2 cos(�k∕K), k = 0,… ,K − 1.

Cycle graph. A cycle graph or circular graph is a graph where the vertices are con-
nected in a closed chain. Every node in a cycle graph has two edges. Figure 9 shows a 
cycle graph with 10 vertices and unit weights.

Eigenvectors of a cycle graph Laplacian with K nodes and unit weights are given by

where v = (0,… ,K − 1) and cos(⋅) and sin(⋅) are applied elementwise. The eigenval-
ues are 2 − 2 cos(2�k∕K), k = 0,… ,K − 1.

qk = cos(�kv∕K − �k∕2K)∕‖ cos(�kv∕K − �k∕2K)‖2 k = 0,… ,K − 1,

1
√
K

�, k = 0

cos(2�kv∕K)∕‖ cos(2�kv∕K)‖2 and sin(2�kv∕K)∕‖ sin(2�kv∕K)‖2, k = 1,… ,K∕2,

Jan 1-7
12PM-1PM

11AM-12PM
Expected value

Jan 1-7
12PM-1PM

11AM-12PM
Standard deviation

7.5

10.0

12.5

15.0

17.5

20.0

22.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Fig. 7   Heatmaps of the expected value (top) and standard deviation (bottom) of the distributions given 
by the eigen-stratified model

1 2 3 4 5 6 7 8

Fig. 8   A path graph with 8 vertices and unit weights
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Star graph. A star graph is a graph where all of the vertices are only connected 
to one central vertex. Figure 10 shows an example of a star graph with 10 vertices 
(9 outer vertices) and unit weights.

Eigenvectors of a star graph with K vertices (i.e., K − 1 outer vertices) and unit 
edge weights are given by

Fig. 9   A cycle graph with 10 
vertices and unit weights

1

2

34

5

6

7

8 9

10

Fig. 10   A star graph with 10 
vertices (9 outer vertices) and 
unit weights

0

1

2
3

4

5

6
7

8

9
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where ei is the ith basis vector in �K . The smallest eigenvalue of this graph is zero, 
the largest eigenvalue is K, and all other eigenvalues are 1.

Wheel graph. A wheel graph with K nodes consists of a center (hub) vertex and 
a ring of K − 1 peripheral vertices, each connected to the hub (Boyd et al. 2009). 
Figure 11 shows a wheel graph with 11 vertices (10 peripheral vertices) and unit 
weights.

Eigenvectors of a wheel graph with K vertices (i.e., K − 1 peripheral vertices) are 
given by (Zhang et al. 2009)

where v = (0,… ,K − 1) and cos(⋅) and sin(⋅) are applied elementwise. The smallest 
eigenvalue of the graph is zero, the largest eigenvalue is K, and the middle eigen-
values are given by 3 − 2 cos(2�i∕(K − 1)), i = 1,… , (K − 2)∕2 , with multiplicity 2 
(Butler 2008).

q0 =
1

√
K
�

qk =
1
√
2
(ei − ei+1), 1 ≤ i ≤ K − 2

qK−1 =
1

√
K(K − 1)

(K − 1,−1,−1,… ,−1,−1),

q0 =
1

√
K
�

qk = sin(2�kv∕K)∕‖ sin(2�kv∕K)‖2, 1 ≤ i ≤ K − 2, i odd

qk = cos(2�kv∕K)∕‖ cos(2�kv∕K)‖2, 1 ≤ i ≤ K − 2, i even

qK−1 =
1

√
K(K − 1)

(K − 1,−1,−1,… ,−1,−1),

Fig. 11   A wheel graph with 11 
vertices (10 peripheral vertices) 
and unit weights
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Complete graph A complete graph contains every possible edge; we assume 
here the edge weights are all one. The first eigenvector of a complete graph Lapla-
cian with K nodes is 1√

K
� , and the other K − 1 eigenvectors are any orthonormal 

vectors that complete the basis. The eigenvalues are 0 with multiplicity 1, and K 
with multiplicity K − 1.

Figure  12 shows an example of a complete graph with 8 vertices and unit 
weights.

Complete bipartite graph A bipartite graph is a graph whose vertices can be 
decomposed into two disjoint sets such that no two vertices share an edge within 
a set. A complete bipartite graph is a bipartite graph such that every pair of ver-
tices in the two sets share an edge. We denote a complete bipartite graph with 
� vertices on the first set and � vertices on the second set as an (�, �)-complete 
bipartite graph. We have that � + � = K , and use the convention that � ≤ � . Fig-
ure 13 illustrates an example of a complete bipartite graph with (�, �) = (3, 6) and 
unit weights.

Eigenvectors of an (�, �)-complete bipartite graph with unit edge weights are 
given by (Merris 1998):

1

2

3

4

5

6

7

8

Fig. 12   A complete graph with 8 vertices and unit weights
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The eigenvalues are zero (multiplicity 1), � (multiplicity � − 1 ), � (multiplicity 
� − 1 ), and K = � + � (multiplicity 1).

Scaling and products of graphs We can find the eigenvectors and eigenvalues 
of the graph Laplacian of more complex graphs using some simple relationships. 
First, if we scale the edge weights of a graph by � ≥ 0 , the eigenvectors remain 
the same, and the eigenvalues are scaled by � . Second, the eigenvectors of a Car-
tesian product of graph Laplacians are given by the Kronecker products between 
the eigenvectors of each of the individual graph Laplacians; the eigenvalues con-
sist of the sums of one eigenvalue from one graph and one from the other. This 
can be seen by noting that the Laplacian matrix of the Cartesian product of two 
graphs with graph Laplacians L1 ∈ �P×P and L2 ∈ �Q×Q is given by

where L is the Laplacian matrix of the Cartesian product of the two graphs. With 
Cartesian products of graphs, we find it convienent to index the eigenvalues and 
eigenvectors of the Laplacian by two indices, i.e., the eigenvalues may be denoted as 
�i,j with corresponding eigenvector qi,j for i = 0,… ,P − 1 and j = 0,… ,Q − 1 . (The 
eigenvalues will need to be sorted, as explained below.)

q0 =
1

√
K
�

qk =
1
√
2
(ek − ek+1), 1 ≤ k ≤ 𝛼 − 1

qk =
1
√
2
(ek − ek+1), 𝛼 ≤ k ≤ K − 1

(qK−1)i =

� −𝛽√
𝛼
2
𝛽+𝛽2𝛼

1 ≤ i ≤ 𝛼

𝛼√
𝛼
2
𝛽+𝛽2𝛼

𝛼 < i ≤ K
.

L = (L1 ⊗ I) + (I ⊗ L2),

β1 β2 β3 β4 β5 β6

α1 α2 α3

Fig. 13   A (3,6)-complete bipartite graph with unit weights
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As an example, consider a graph which is the product of a chain graph with P 
vertices, edge weights �ch and eigenvalues �ch ∈ �P ; and a cycle graph with Q verti-
ces, edge weights �cy , and eigenvalues �ch ∈ �P . The eigenvalues have the form

To find the m smallest of these, we sort them. The order depends on the ratio of the 
edge weights, �ch∕�cy.

As a very specific example, take P = 4 and Q = 5 , �ch = 1 , and �cy = 2 . The 
eigenvalues of the chain and cycle graphs are

The bottom six eigenvalues of the Cartesian product of these two graphs are then
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