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Fast Evaluation of Quadratic Control-Lyapunov Policy
Yang Wang and Stephen Boyd, Fellow, IEEE

Abstract—The evaluation of a control-Lyapunov policy, with
quadratic Lyapunov function, requires the solution of a quadratic
program (QP) at each time step. For small problems this QP can
be solved explicitly; for larger problems an online optimization
method can be used. For this reason the control-Lyapunov control
policy is considered a computationally intensive control law, as
opposed to an “analytical” control law, such as conventional linear
state feedback, linear quadratic Gaussian control, or H_,, too
complex or slow to be used in high speed control applications. In
this note we show that by precomputing certain quantities, the
control-Lyapunov policy can be evaluated extremely efficiently.
We will show that when the number of inputs is on the order
of the square-root of the state dimension, the cost of evaluating
a control-Lyapunov policy is on the same order as the cost of
evaluating a simple linear state feedback policy, and less (in order)
than the cost of updating a Kalman filter state estimate. To give an
idea of the speeds involved, for a problem with 100 states and 10
inputs, the control-Lyapunov policy can be evaluated in around
67 ps, on a 2 GHz AMD processor; the same processor requires
40 s to carry out a Kalman filter update.

Index Terms—Approximate dynamic programming, model
predictive control (MPC), optimization-based control, real-time
convex optimization, stochastic control.

I. INTRODUCTION AND BACKGROUND

HIS note concerns the evaluation of a particular type of
feedback control policy, called a quadratic control-Lya-
punov policy, which requires the solution of convex quadratic
program (QP) at each step. Solving a QP is generally consid-
ered a serious computational task, but we will see that such con-
trol laws can be evaluated very quickly, with a computational
complexity often comparable to, or even smaller than, that re-
quired for an “analytical” modern control law, or to implement
a Kalman filter state estimate. Even for a system with 30 states
and 10 actuators, each with lower and upper limits, the policy
can be evaluated in around 51 us on a 2 GHz AMD processor,
allowing sample rates exceeding 10 kHz. Our conclusion is that
a quadratic control-Lyapunov controller should be considered
practical for a broad range of applications, including those with
fast sample rates.
In Sections I-A and I-B we briefly describe the constrained
linear stochastic control problem and its solution via dynamic
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programming. This material is used only to motivate the control
law we consider, which is described in Sections I-C and I-D. In
Section III, we describe methods for fast evaluation of the con-
trol law, and in Section IV, we give some experimental results
demonstrating fast evaluation.

A. Linear Stochastic Control Problem

The material of this section is given only to motivate the con-
trol-Lyapunov policy; fast evaluation of such a policy, our main
focus, does not depend on the problem or assumptions stated
here. We consider a discrete-time linear time-invariant system,
with dynamics

Tiy1 = Az + Bug +wy, t=0,1,...

where z; € R" is the state, u; € R™ is the control input,
w; € R™ is the process noise or exogeneous input, A € R"*"
is the dynamics matrix, and B € R™*" is the input matrix. We
assume that wi, wa, . .. are independent identically distributed
(IID) with mean w = Ew;. The objective function is the average
state cost

;| N
J = limsup NE Z Uy, up)

N —o00 —0

where / : R®" xR™ — R is the stage cost function. We consider
state feedback control policies, i.e.,

Ut = ¢(1’t)7

where ¢ : R" — U C R™ is the state feedback function or
policy, and I/ is a non-empty input constraint set. The stochastic
control problem is to find a policy ¢ that minimizes .J.

t=0,1

PRI

B. Optimal Control Policy

It is well known (see, e.g., [1], [2]) that an optimal feedback
function has the form

¢*(z) = argmin{l(z,v) + EV(Az + Bv+w;)} (1)
veU
where V : R” — R is called the value function or Bellman
function, and satisfies the Bellman or dynamic programming
equation

V(z)+ J = néibrtl{ﬂ(z, v) + EV(Az + Bv + wy)}

for all z € R™, where J* is the optimal objective value. (Here
we overlook many technical details, including various patholo-
gies that can occur; see, e.g., [1]-[4].)

The value function V/, and the optimal control policy ¢* can
be effectively found in only a few special cases. One well known
case is when there are no constraints, i.e., / = R™, and the
stage cost £ is a convex quadratic function. In this case the value
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function is convex quadratic, and the optimal state feedback
function is affine, i.e., linear plus a constant; the coefficients of
these functions can be effectively computed. But in general it
is difficult to compute the value function, or the optimal policy,
exactly.

C. Control-Lyapunov Policy

A control-Lyapunov policy, also called approximate dynamic
programming or horizon-1 model predictive control, is a sub-
optimal policy inspired by the characterization of the optimal
policy given in (1). We replace the value function V' with an ap-
proximate or surrogate value function V¢ : R® — R, called
the control-Lyapunov function [5]-[8]. The policy is given by

dat(z) = argnljin{f(z./ v) + EVys(Az + Bv+w)}. (2)
S
When Vs = V, the control-Lyapunov policy is optimal. But the
control-Lyapunov policy has been found to provide good control
performance even when V. is a fairly crude approximation of
V. Many methods for selecting V¢ have been proposed; a brief
list of these appears in Section II-B.

To evaluate ¢.r at z, we must solve an optimization problem,
so V¢ is chosen in part so that this problem can be solved with
reasonable effort. When the minimization problem is not easily
solved, the argmin can be computed approximately, by a local
optimization method, solving a convex relaxation, or replacing
£(z,v) with an approximation.

The purpose of this note is not to argue for or against the
use of a control-Lyapunov policy, or any particular method for
finding a suitable control-Lyapunov function. Instead our focus
is on the fast evaluation of a control-Lyapunov function, when
U is a polyhedron and Vs is quadratic, in which case evaluation
requires the solution of a QP.

D. Quadratic Control-Lyapunov Function

In this note we focus on the specific case where the stage cost
is convex and quadratic, and separable in state and control

Uz,v) = 27Qz+2¢" 2+ v" Rv 4+ 2rTw 3)

where Q = Q7 > 0, R = RT > 0, and the input set is a
polyhedron

U={v|Fv<h} @)

where F' € R**™ h € RF. (Our method however can easily be
extended to more general convex stage costs and convex input
constraint sets.) A common special case is when I/ is a box, i.e.,

U= {,U|umin <ov< umax} (5)
corresponding to k = 2n and
I umax
(] ae (5]

We further assume that the control-Lyapunov function is
convex and quadratic, with the form

Vae(z) = 2TPz+2pT 2 (6)

with P = PT > 0,p € R".

With quadratic stage-cost (3) and quadratic control-Lya-
punov function (6), we can explicitly evaluate the expectation
appearing in the control-Lyapunov feedback function (2), and
write it as

per(z) = argmin{v? (R + BT PB)v
Fu<h

+2(r 4+ BT PAz + B"Pw+ BTp)'v}. (7)

To evaluate the quadratic control-Lyapunov policy (7) for a
given value of z, we must solve a QP

minimize vT Rv + 27T
subjectto Fov < h (8)

where

R=R+BTPB, 7#=r+BTPAz+ B"Pw+ BTp
with variable v € R™. The data A, B, R,r,w, P,p, F', and h
are known and constant, i.e., do not change in each iteration.
The data z € R™ (which represents the current system state)
changes in each iteration. Note that the QP (8) is always feasible,
since we assume (see Section I-A) that the set I/ is non-empty.

The data dimensions are n, m, and k, so the computational
complexity of solving the QP (8) depends on these. In this note
we will show that by precomputing certain quantities (offline),
we can reduce the (online) solution of this QP to an m X n
matrix-vector multiply, followed by the solution of a QP with
data dimensions m and & only. Coupled with an efficient method
for solving this QP, this gives a method for solving the QP (8),
i.e., evaluating the quadratic control-Lyapunov policy (7), that
is very efficient. For example, we will see that the complexity
of evaluating the control-Lyapunov policy grows only linearly
with state dimension. As a practical matter, we will see that the
control-Lyapunov policy can be evaluated on current processors
in time measured in microseconds, enabling its use for systems
with high sample rates.

II. RELATED WORK

In this section we describe prior work related to our topic,
fast evaluation of quadratic control-Lyapunov feedback control
policies. None of this material is used in the sequel.

A. Fast Solution of QPs and Fast MPC

In this section we describe various fast methods for solving
QPs that arise in control problems. Many of these methods were
developed specifically for model predictive control (MPC),
which is a popular control method in many applications areas,
and goes by other names such as receding horizon control,
rolling horizon planning, and dynamic matrix control [9], [10].
In MPC, a QP is solved at each time step to compute a sequence
of inputs to apply over a fixed horizon. The first input in this
sequence is executed, and at the next time step the process
is repeated. The control-Lyapunov policy can be viewed as
a special case of MPC when the planning horizon is 1. In
particular, all methods for fast evaluation of an MPC policy can
be applied to fast evaluation of a control-Lyapunov policy.
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There are several methods we can use to solve QPs that arise
in MPC. These are roughly divided into two categories: online
methods and explicit offline methods. In an online method, an
iterative optimization algorithm such an active set method [9],
[11], [12] or an interior-point method [13], [14] is used to solve
the QP at each time step. Here, there are several techniques we
can use to speed up the optimization. The main strategy is to
exploit the structure of the QPs that arise in MPC [15]-[21].
The QP can also be solved approximately, since it is often ob-
served that high quality control is obtained even when the QPs
are not solved to full accuracy [15], [19], [21]-[26]. In addition,
the computation time can be improved via warm-starting, where
the optimization algorithm is initialized with the input sequence
computed in the previous time period [15], [22], [27], or with
an approximation (typically derived from the associated uncon-
strained linear controller). For example, for a (medium-sized)
control problem with n = 10 states, lm = 3 inputs, and a
horizon T' = 30, these methods allow us to solve MPC QPs
within milliseconds [15], [16].

The second method is to compute the solution of the QP as an
explicit function of the current state. This is called multipara-
metric quadratic programming, and was originally proposed
by Bemporad et al. [28]. The explicit solution decomposes the
state-space into polyhedral regions, and within each region we
apply a precomputed affine control law. Online evaluation of
the control policy reduces to searching through a lookup table,
and applying the appropriate affine function. In the past ten
years, there has been a large volume of work on algorithms for
efficiently computing the explicit solution (see, e.g., [29]-[31]),
as well as methods for reducing complexity of the explicit
solution [32]-[34], which is exponential in the size of the QP in
the worst case. In addition, many sophisticated methods exist
for searching through the lookup table of regions [30], [35],
[36]. In cases when the number of regions is small, explicit
methods are extremely fast, and have the additional advantages
of simplicity and transparency. Indeed, the explicit solution
has been successfully applied to a variety of control problems,
such as hybrid traction control [37], flow control in supersonic
diffusers [38], magnetic actuators in satellites [39], chemical
process plants [40] as well as many others.

We will discuss these methods in more detail in the context of
evaluating the CLF policy in sections Sections III-A and III-B.

B. Finding a Control-Lyapunov Function

Here we describe some of the many methods that can be
used to find a control-Lyapunov function Vi for which eval-
uating ¢.i¢(z) is tractable, and which results in (one hopes)
good quality of control, i.e., a small (if not optimal) value of
J; see, e.g., [41]-[43]. In recent work, Wang and Boyd devel-
oped a tractable method that yields a provable lower bound on
J*, as well as a candidate quadratic control-Lyapunov function
[44], [45]. In a different context (finite state and input space) De
Farias and Van Roy proposed a method for finding an approxi-
mate value function as a linear combination of basis functions,
optimizing over the weights by solving a linear program [41].

Approximate dynamic programming (also known as
neuro-dynamic programming or reinforcement learning) is
another general method for finding a suitable control-Lyapunov

function. Here too V. is taken to be a linear combination
of some given basis functions; the coefficients are adjusted
through simulation of the system. One method in this area is
called temporal difference (TD-)\) learning [46]-[48], which
is a stochastic gradient method for adjusting the coefficients
in the surrogate value function. Another approach is to use
projected value iteration (PVI), which involves applying the
Bellman operator followed by projection onto the span of
the basis functions [46]. A practical implementation of PVI
based on simulating the system is called least squares policy
evaluation (LSPE-)), and has become a popular method for
finding surrogate value functions, with provable convergence to
the same limit as PVI [2], [46], [49], [50]. Another popular (but
slightly different) method is called Q-learning. The Q-learning
algorithm attempts to approximate the Q-factor, which is the ex-
pression that is minimized at the right-hand side of the Bellman
equation. The Q-factors are updated via simulation-based value
iteration. One major advantage of Q-learning is that an explicit
dynamical system description is not needed; only the ability
to simulate the system is required [2], [46], [51], [52]. There
are many other variations/improvements on these methods, for
example, least squares temporal difference method (LSTD-)\)
combines techniques from both TD-) and LSPE-) learning
[50], [52], [53].

III. EVALUATION OF QUADRATIC CONTROL-LYAPUNOV POLICY

In this section we discuss methods for evaluating the
quadratic control-Lyapunov policy (7), i.e., solving the QP (8).
Our first step is to show that we can reduce this to the evaluation
of an affine feedback function, followed by the solution of a
QP with problem dimensions involving only m (the number of
actuators) and £ (the number of constraints).

We first rewrite the control-Lyapunov policy (7) as

ber(z) = argmin{ (v — a)T R(v — @)}
Fu<h

where

m
K=—(R+B'PB)"'BTPA
g=—(R+B"PB)"'(r+ B"Pw+ B"p).

The matrices R and K, and the vector g, can be computed of-
fline, i.e., ahead of time. At run-time, we can compute u from
the state z from & = Kz 4 g. Note that u = Kz + g is the
control-Lyapunov policy for the associated unconstrained sto-
chastic control problem, i.e., the one with the same stage cost
and control-Lyapunov function, and / = R™.

To evaluate ¢ ¢(z) we first form @ = Kz + g, and then solve
the QP

minimize (v — )T R(v — i)
subjectto Fv < h )

with variable v, s0 ¢ei¢(z) = v*. This QP has data R e R™*™,
F ¢ RF*™ h € RF, and & € R™. In particular, none of the
data involve the state dimension n. The state dimension n only
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comes up in the first step, evaluating uw = K z+g,i.e., evaluating
an affine control law.

If u satisfies F'u < h, then it is optimal for the QP (9), so
¢cit(z) = 4, and no further computation is needed. The control-
Lyapunov policy can therefore be evaluated as follows.

1) Compute u = Kz + g.

2) If Fu < h, ¢as(z) = a. Otherwise, solve the QP (9); set
dar(z) = v*.
The computational effort of the first step is that of a matrix-
vector multiply, which costs 2mn flops. The complexity of the
second step depends on the method used to solve the QP (9),
which can only depend on m and & (and, possibly, the sparsity
patterns of R and F).

In our computational effort comparisons, we define one flop
(floating-point operation) to be one multiplication, subtraction,
addition, or division of two floating-point numbers. We will
often simplify a flop count to include only the leading terms. For
example, if a particular algorithm requires m?k +m3 +mk+k,
we would simplify this to m?k + m3.

Many methods can be used to solve the QP (9), including
active-set methods, various first-order methods (such as pro-
jected gradient), interior-point methods, and explicit analytical
solution via multiparametric optimization. We will consider
here the explicit solution method and interior-point methods,
both of which have been used for fast solution of QPs for
control purposes; other methods that we do not describe (such
as active set methods) can also be used for fast evaluation of a
control-Lyapunov policy; see, e.g., [11], [12], [54]. The reason
we do not describe active-set methods in detail is because their
computational effort is very similar to that of an interior-point
method—both methods require solving a similar system of
equations in each step. While the worst case complexity of an
active-set method is exponential in problem size, for most prac-
tical applications the method converges to the optimal solution
in surprisingly few iterations. Thus, in the sequel we will focus
exclusively on interior-point methods, with the understanding
that active set methods can also achieve similar computation
times.

We will see in our complexity comparisons that for certain
problem sizes the effort of evaluating the control-Lyapunov
policy via an interior-point method is comparable to the effort
of evaluating a linear state feedback, or Kalman filter update.
This shows that for many problems the control-Lyapunov
policy can be essentially considered an “analytic” policy.

A. Explicit Solution of QP

The solution of the QP (9) can be shown to be a piecewise
linear function of @, with the regions determined by the set of
active constraints, i.e., the entries of the vector inequality F'v <
h that hold with equality. When m and k are small enough,
we can explicitly compute the coefficients for each region, as
well as the inequalities defining the regions. At run-time, we
first determine which region « lies in, and then compute the
appropriate affine function of .

To see how this works, we first write the necessary and suffi-
cient optimality (KKT) conditions for the QP (9) as

2R(v—1u)+FTA=0, Fv<h

)\,(fTU — h7) = 0,

A >0, ; i=1,....k

where fI denotes the ith row of F, and A € R¥ is a vector of
Lagrange multipliers associated with the constraint F'v < h. For
a given feasible v, let Z C {1,...,k} denote the set of indices
of the active constraints, i.e., the set of ¢ for which f,t-Tv = h;,
and let \Z denote its complement. The KKT conditions can then

be expressed as

~ T ~
|:2Ff Fg— :| |:)\’UI:| = [2};’“} y F\I’U S h\I7>‘I Z 0.
(10)

Here F7, hz, and A7 are matrices formed from the rows of F,
and entries of h and )\, corresponding to the indices in Z. For
simplicity we will assume that F77 is full row rank (the explicit
method still works when this is not the case, but is slightly more
complicated; see, e.g., [28], [30]). This implies that the block
matrix in (10) is nonsingular (since R > 0), and so for any u
there is a unique solution to the linear equations in (10), which
moreover is a linear function of the right-hand side. Thus we
can write

v=LPDu+1D, N=0CDi+dP

for appropriate matrices L(*) € R™*™ (1) ¢ R™, C¥) ¢
R¥*™ and d@ € RF. (These matrices can be found using
standard linear algebra methods.) So for a fixed set of active
constraints, the optimal v is an affine function of u. Substituting
this expression for v into the other KKT conditions we obtain

Ry (LDa+1D) <hyg, ¢Piatd® >0 (1

which defines the set of % that are consistent with our active set
assumption. Thus, if @ satisfies (11), then the solution of the QP
is v* = L&) 4 + 1), For any value of 1, the inequalities (11)
hold for at least one index set Z.

We can solve the QP quickly as follows. Offline, we compute
L@ 1D @ and dP) for each of the 2¥ possible active sets.
(We can also carry out a pruning step, in which we analyze the
sets of linear inequalities (11), removing those that are inconsis-
tent.) At run-time, we proceed as follows. Given u, we search
until we find an active index set Z for which the inequalities
(11) are satisfied. Then, v* = LT)4 + [0, Checking the in-
equalities (11) for each Z requires up to 4km + 2m? flops, so
searching through the active sets requires at most 2% (2m(2k +
m)) = 28*+1m(2k+m) flops (since there are 2* possible active
sets that must be checked in the worst case). Evaluating v* =
LEOa+1@) costs order 2m? flops, so the overall computational
effort of evaluating the explicit solution is 2*+1m(2k +m) op-
erations in the worst case.

We should emphasize that this is a highly conservative worst-
case estimate of the computational effort. For many problem
instances the number of active sets we obtain is often much
smaller than 2%, For example, when the constraint set is a box,
we have k = 2m inequalities, so the complexity bound above is
5.22m+1m2 But for a box, the number of possible active sets
is only 3™, corresponding to the three possible cases for each i:
v; < uPt uPn <y < ueX and v; > u. Checking the
inequalities (11) requires up to 6m? flops, so the total flop count
is no more than 6 - 3™m?2, which is smaller than 5 - 22m+1y2,
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We should also point out that the algorithm we have described
is a simple, but crude implementation. In fact, many methods
can be used to speed up evaluation of the explicit QP solu-
tion, including more sophisticated search methods, as well as
obtaining approximate (suboptimal) solutions with fewer active
constraint sets; see, e.g., [10], [30], [32]-[36]. Nevertheless, for
m and k larger than ten or so, the explicit method becomes less
practical. However, for problems with small m and &, or more
accurately, for problems in which the total number of regions is
modest, the explicit method is entirely practical.

B. Interior-Point Methods

The QP (9) can also be solved using an interior-point method
[13], [14], [55]. In practice interior-point methods require no
more than a few tens of iterations to compute the solution of a
QP; for control purposes, however, an accurate enough solution
can generally be computed in just a few iterations, and certainly
fewer than ten or so [15], [16], [18], [19], [21]-[23]. There are
several types of interior-point algorithms, including primal bar-
rier, affine scaling, and primal-dual methods. But they are all
similar, and involve roughly the same steps.

Some interior-point methods need to be initialized with a
strictly feasible primal point. To do this, we find any point vg
that satisfies F'ug < h. This step can be done offline, and is
often trivial: for example when the constraint set is a box, we
can take vg as the center of the box. Online, when we are given
, we initialize the algorithm with v(9) = 6+ (1—6)vg, where
f € [0,1] is chosen so that Fv(®) < ¢. (If § = 1 works here, ©
is already optimal.)

The iterations then proceed as follows. At iteration ¢ we com-
pute primal and dual search directions (Av(®?, AX()) € R™ x
RF by solving a system of equations of the form

2R FT ] [Av® ;
F ool [Se]=m0 o
where D) € RF** is a positive definite diagonal matrix,
and (¥ € R™1¥. These depend on the type of interior-point
method we use, as well as the current point (v, \()), and
change in each iteration. (In most primal-dual methods, two
search directions are computed, using the same coefficient ma-
trix, but two different right-hand sides. Since the factorization
of the coefficient matrix dominates the solution time, this does
not take significantly more time; see, e.g., [55].) Once the search
directions have been computed, we update our primal and dual
points as
0D = @ 4 OAL@D A = \O) 4 O ANG

where s() ¢ (0,1] is a step size that is appropriately chosen.
(The details of the line search depend on the particular method.)

The computational effort of the interior-point method is dom-
inated by solving the system of (12); the line searches, and the
cost of computing D@ and () are (relatively) insignificant.
By eliminating A, the (12) can be reduced to a system of
the form

2R+ FT (D)1 F)Av®) = ¢

TABLE 1
COMPARISON OF COMPUTATIONAL EFFORT FOR SOLVING THE QP (9)

constraints | explicit solution
2k+1m(2k + m)
2. 3m+1m2

interior-point method

m?(10k + 3m)
3

general

box 3m

where ¢() € R™. Forming the matrix 2R 4+ FT(D®)~1F re-
quires m2k flops; factoring it and solving the symmetric positive
definite system of (12) requires (1/3)m? flops. Assuming that
the interior-point method requires ten iterations, the total com-
putational effort is around m?(10k + 3m) operations.

For the particular case of box constraints, F7(D®)~1F is
diagonal, and requires order k flops to form. In this instance, the
total computational effort of each step is dominated by the effort
of solving the system (12), which costs (1/3)m?> operations.
Thus, assuming we take around 10 steps, the overall effort is
approximately 3m? flops.

The explicit QP solution method and interior-point methods
are more closely related than might first appear. We can interpret
the system of (10) arising in the explicit method as a limiting
case of the (12) arising in an interior-point method, with D;;
converging to 0 or oo, depending on whether the constraint
is active or not. Thus, we can think of the explicit method as
pre-solving the KKT systems for all possible active sets ahead
of time; or, we can think of an interior-point method as one that
works out what the active set is online, in around ten iterations.

C. Summary and Complexity Comparison

Table I summarizes the computational effort estimates for
both the explicit solution method and the interior-point method
for solving the QP (9). Our estimates also distinguish between
general linear inequality constraints (4), and box constraints (5).
When £ is on the same order as m (which is very often the case),
the interior-point method effort is a modest multiple of 3.

Now we consider the computational complexity of evaluating
the quadratic control-Lyapunov feedback function. The cost of
evaluating the affine feedback function © = Kz + g is 2mn
flops; the cost of solving the QP (9) is a modest multiple of m?,
assuming k is no more than a small multiple of m. Thus, when
m is on the order of \/n, the cost of solving the QP is order
m?3, the same as evaluating an affine feedback function. This is
quite surprising, since an affine feedback function is among the
simplest possible feedback control laws, whereas methods that
require solution of a QP, such as a control-Lyapunov or MPC
policy, are generally (and incorrectly) considered computation-
ally demanding.

We can also compare the cost of evaluating a quadratic con-
trol-Lyapunov policy with the effort of computing a Kalman
filter state estimate update. At each step this requires evaluating

&y = Aty + Bug_y + Ly (yy — C(AZy_1 + Buy_1))

where y; € R* is a vector of outputs, C' € R*¥*" is the output
matrix, and L, is an appropriate filter gain matrix, which re-
quires around 2n? + 2nm + 4nk flops. When m is on the order
of \/n, we see that the Kalman filter update cost is order m?*,
larger than the cost of evaluating a quadratic control-Lyapunov
policy. Indeed, the cost of computing a Kalman filter update is
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comparable with the cost of evaluating the control-Lyapunov
policy as long as m is no more than on the order of n2/?,

Though not difficult to derive, these results seem remark-
able to us. Most control engineers would consider affine state
feedback policies and Kalman filters (or the combination, an
estimated-state linear feedback policy) to be implementable
and practical, even for medium size systems and relatively
high sample rates. Many of the same control engineers would
think of a control-Lyapunov policy as complicated and slow to
evaluate, and not practical for medium size systems and fast
sample rates. Our observation is that, when m and k are on
the order of v/n, a control-Lyapunov feedback function can be
evaluated with effort not much more than that required for a
simple affine feedback function, and less than the effort required
to update a Kalman filter. In particular, it is entirely practical
even for medium size systems and fast sample rates.

IV. IMPLEMENTATION RESULTS

To demonstrate fast evaluation of a quadratic control-Lya-
punov feedback function we developed a simple C implemen-
tation of an interior-point method, using the LAPACK library
[56], [57] for the linear algebra operations. The simulations
were carried out on a 2 GHz AMD Opteron, running Linux.
The particular method we used was primal-dual, with fixed du-
ality parameter « (as in [15], where, however, a primal barrier
method was used). For all of our examples we found that five
steps provided more than adequate accuracy for any feedback
control purpose. We made no attempt to optimize the code for
fast execution, so substantial further reductions in computation
time are likely possible. Full source code for our implementa-
tion is available from the authors’ web sites.

We report the maximum time taken to evaluate the control-
Lyapunov policy (including the initial affine policy evaluation
v = Kz + g) for ten problems with different dimensions. The
evaluation time does not depend on the particular data values,
but for completeness we explain how the data were generated.
The matrices A, B, F, and g were chosen randomly. The ma-
trix P is found from the value function of the associated un-
constrained problem, with Q@ = I, R = I. We take p = 0,
and w; ~ N (0, pI), where p was chosen so that the input con-
straints were active around 50% of the time. For each of our ten
problems, we evaluated the control-Lyapunov policy at 10 000
points, by simulating the closed-loop system. We also report
the time taken to evaluate an affine policy, as well as the time
taken to carry out a Kalman filter update (assuming a number
of sensors equal to the number the actuators). It is difficult to
accurately measure execution times below 1 us, so these entries
should be interpreted as less than or approximately equal to 1
US.

Table II shows the maximum time to evaluate the control-Lya-
punov policy (t.i¢) compared with linear state feedback (in),
and Kalman filter state update (¢x¢), over a 10 000 time step sim-
ulation. The entries in the k£ column marked with asterisks in-
dicate problems with box constraints, rather than general linear
constraints. We should direct the reader to the time unit, which is
microseconds, not a common time unit when describing the ex-
ecution time for solving a QP. For a small problem with n = 15
states, m = b5 box-constrained inputs, the control-Lyapunov

TABLE II
MAXIMUM TIME TO EVALUATE CONTROL-LYAPUNOV POLICY, LINEAR STATE
FEEDBACK, AND KALMAN FILTER STATE UPDATE. (ASTERISKS (*) INDICATE
PROBLEMS WITH BOX CONSTRAINTS.)

nom k| tar (us)  tin (us)  tir (us)
15 5 *10 35 1 1
15 5 20 70 1 2
50 15 *30 85 3 9
70 5 *10 35 3 20
70 5 20 72 3 21
100 10 *20 67 4 40
100 5 *10 45 3 39
100 20 30 230 4 41
500 25 *50 231 80 2400
1000 30 *60 298 130 8300

policy can be solved in around 35 ps, allowing a sample rate up
to 20 kHz or so. For a large example, with n = 100 states and
m = 10 box-constrained inputs, the control-Lyapunov policy
can be evaluated in around 67 us, allowing sample rates up to
10 kHz. Running a control-Lyapunov control policy at 1 kHz
seems entirely practical, even on a slower processor, with only
a fraction of its time allocated for control law computation.

We can see that for the middle-sized problems, with n = 70
or n = 100 states, evaluating the control-Lyapunov policy takes
roughly the same time as updating a Kalman filter estimate. For
the larger problems, with n = 500 or n = 1000 states, eval-
uating the control-Lyapunov policy is far faster than updating
a Kalman filter estimate. (We do not claim that problems this
large arise in many practical situations; we consider these prob-
lems just to illustrate the scaling with state dimension.) All of
these computation time are consistent, within a factor or 2 or 3,
with our complexity analyses above.

V. EXTENSIONS

The same ideas can be applied in more complex situations,
a few of which we list here. First, we can use more complex
convex control-Lyapunov functions, such as piecewise-linear or
piecewise-quadratic; in this case the optimization problem that
has to be solved at each step is different (e.g., a quadratically
constrained quadratic program (QCQP) in the second case), but
is still small and convex, and can be solved quickly for the same
reasons and using similar methods. QCQPs also arise in robust
formulations of the control-Lyapunov policy, where we add a
quadratic constraint that guarantees that the control-Lypunov
function decreases at each iteration. These formulations are par-
ticularly popular since the resulting policies guarantee stability
even if the optimization problem is not solved to high accuracy.

In the same way we can use more complex convex stage cost
functions, including piecewise-linear or piecewise-quadratic
stage cost functions. We can add equality constraints, as was
used in [58] for dynamic portfolio optimization problems. It
is also possible to consider the case in which the data A, B,
@, R, and others change in each time step. This occurs for
finite-horizon problems, or in controllers for nonlinear sys-
tems, where these data are obtained from linearization of the
dynamics at each point. In these cases the control-Lyapunov
policy can still be evaluated quickly, but the computational
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complexity can grow more than linearly with n, so for large n
we will no longer have the dramatic speeds seen above.

The same methods can also be applied for problems with con-
straints on both the inputs as well as the states. In this case, the
optimization problem (8) can be infeasible. A common method
to deal with this is addition of so-called soft state constraints, in
which we add a linear penalty for constraint violations [9], [10].

For these more complex formulations, custom code for an in-
terior-point method can be developed, to obtain high execution
speeds. An alternative is to use recently developed automatic
code generation techniques, developed by Mattingley and Boyd
[16]. Such systems work from a high level description of the
problem family to be solved, and automatically generate source
code (say, C) and auxiliary files for a custom solver for the par-
ticular problem family.

The ability to rapidly evaluate a quadratic control-Lyapunov
policy, as described in this note, can be directly leveraged to
handle an extension in which the state update has the form
41 = f(@¢,ue), where f is not affine in u;. For such prob-
lems we can linearize the state update equation at the current
point x; and some guess of wu;, using a Jacobian or particle
method derived linearization. After quickly solving the QP
associated with the linearized state update, we can relinearize
the state update equation using the new value of w,; this process
can be repeated for a few steps if needed.
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