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Abstract. We consider a class of weighted gradient methods for distributed
resource allocation over a network. Each node of the network is associated
with a local variable and a convex cost function; the sum of the variables
(resources) across the network is fixed. Starting with a feasible allocation,
each node updates its local variable in proportion to the differences between
the marginal costs of itself and its neighbors. We focus on how to choose the
proportional weights on the edges (scaling factors for the gradient method) to
make this distributed algorithm converge and on how to make the convergence
as fast as possible.

We give sufficient conditions on the edge weights for the algorithm to
converge monotonically to the optimal solution; these conditions have the
form of a linear matrix inequality. We give some simple, explicit methods
to choose the weights that satisfy these conditions. We derive a guaranteed
convergence rate for the algorithm and find the weights that minimize this
rate by solving a semidefinite program. Finally, we extend the main results to
problems with general equality constraints and problems with block separable
objective function.

Key Words. Distributed optimization, resource allocations, weighted
gradient methods, convergence rates, semidefinite programming.

1. Introduction

We consider an optimal resource allocation problem over a network of au-
tonomous agents. The network is modeled as a directed graph (V, E) with node
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set V = {1, . . . , n} and edge set E ⊆ V × V . Each edge (i, j ) is an ordered pair of
distinct nodes. We define Ni , the set of (oriented) neighbors of node i, as

Ni = {j | (i, j ) ∈ E};
in other words, j ∈ Ni if there is an edge from node i to node j.

With node i, we associate a variable xi ∈ � and a corresponding convex cost
function fi : � → �. We consider the following optimization problem:

min
n∑

i=1

fi(xi), (1a)

s.t.
n∑

i=1

xi = c, (1b)

where c ∈ � is a given constant. We can think of xi as the amount of some
resource located at node i and interpret – fi as the local (concave) utility function.
The problem (1) is to fund an allocation of the resource that maximizes the total
utility

∑n
i=1 −fi(xi). In this paper, we are interested in distributed algorithms for

solving this problem, where each node is only allowed to communicate with its
neighbors and conduct local computation. Thus, the local information structure
imposed by the graph should be considered as part of the problem formulation.
This simple model and its variations have many applications in economic systems
(e.g., Refs. 1–2) and distributed computer systems (Ref. 3).

We assume that the functions fi are convex and twice continuously differen-
tiable with second derivatives that are bounded below and above,

li ≤ f ′′
i (xi) ≤ ui, xi ∈ �, i = 1, . . . , n, (2)

where li > 0 and ui are known (the functions are strictly convex). Let x =
(x1, . . . , xn) ∈ �n denote the vector of the variables and let

f (x) =
n∑

i=1

fi(xi)

denote the objective function. We use f ∗ to denote the optimal value of this
problem; i.e.,

f ∗ = inf{f (x) | 1T x = c},
where 1 denotes the vector with all components one. Under the above assumption,
the convex optimization problem (1) has a unique optimal solution x∗. Let

∇f (x) = (f ′
1(x1), . . . , f ′

n(xn))

denote the gradient of f at x. The optimality conditions for this problem are

1T x∗ = c, ∇f (x∗) = p∗1, (3)

where p∗ is the (unique) optimal Lagrange multiplier.
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In a centralized setup, many methods can be used to solve the problem (1) or
equivalently the optimality conditions (3). If the functions fi are all quadratic, the
optimality conditions (3) are a set of linear equations in x∗, p∗ and can be solved
directly. More generally, the problem can be solved by iterative methods, e.g., the
projected gradient method, Newton’s method, quasi-Newton methods (e.g. BFGS
method); see e.g. Refs. 4–5.

The design of decentralized mechanisms for resource allocation has a long
history in economics (Ref. 6) and there are two main classes of mechanisms: price-
directed (Ref. 1) and resource-directed (Ref. 2). However, most of the methods are
not fully distributed because they either need a central price coordinator or need
a central resource dispatcher. In this paper, we will focus on a class of center-free
algorithms first proposed in Ref. 7.

1.1. Center-Free Algorithm for Resource Allocation. Assume that we
have an initial allocation of the resource x(0) that satisfies 1T x(0) = c. The center-
free algorithm for solving problem (1) has the following iterative form:

xi(t + 1) = xi(t) − Wiif
′
i (xi(t)) −

∑

j∈Ni

Wijf
′
j (xj (t)), i = 1, . . . , n, (4)

for t = 0, 1, . . . . In other words, at each iteration, each node computes the deriva-
tive of its local function, queries the derivative values from its neighbors, and then
updates its local variable by a weighted sum of the values of the derivatives. Here,
Wii is the self-weight at node i, and Wij , j ∈ Ni , is the weight associated with
the edge (i, j ) ∈ E . Setting Wij = 0 for j /∈ Ni , this algorithm can be written in
vector form as

x(t + 1) = x(t) − W∇f (x(t)), (5)

where W ∈ �n×n is the weight matrix. Thus, this algorithm can be thought of as
a weighted gradient descent method, in which the weight matrix W has a sparsity
constraint,

W ∈ S = {Z ∈ �n×n|Zij = 0, if i 
= j and (i, j ) 
∈ E}. (6)

Throughout this paper, we focus on the following question: How should we choose
W?

We consider first two basic requirements on W. First, we require that all
iterates x(t) of the algorithm are feasible, i.e., satisfy 1T x(t) = c for all t. With the
assumption that x(0) is feasible, this requirement will be met provided the weight
matrix satisfies

1T W = 0, (7)
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since we then have

1T x(t + 1) = 1T x(t) − 1T W∇f (x(t)) = 1T x(t).

We will also require, naturally, that the optimal point x∗ is a fixed point of (5), i.e.,

x∗ = x∗ − W∇f (x∗) = x∗ − p∗W1.

This will hold in the general case (with p∗ 
= 0) provided

W1 = 0. (8)

The requirements (7) and (8) show that the vector 1 must be both a left and right
eigenvector of W associated with the eigenvalue zero. One special case of interest
is when the weight matrix W is symmetric. In this case, of course, the requirements
(7) and (8) are the same and simply state that 1 is in the null space of W.

Assuming that the weights satisfy (8), we have

Wii = −
∑

j∈Ni

Wij ,

which can be substituted into equation (4) to get

xi(t + 1) = xi(t) −
∑

j∈Ni

Wij (f ′
j (xj (t)) − f ′

i (xi(t))), i = 1, . . . , n. (9)

Thus, the change in the local variable at each step is given by a weighted sum of
the differences between its own derivative value and those of tis neighbors. The
equation (9) has a simple interpretation: at each iteration, each connected pair of
nodes shifts resources from the node with higher marginal cost to the one with
lower marginal cost, in proportion to the difference in marginal costs. The weight
– Wij gives the proportionality constant on the edge (i, j ) ∈ E .

Remark 1.1. This interpretation suggests that the edge weights should be
negative, but we will see examples where a few positive edge weights actually
enhance the convergence rate.

1.2. Previous Work. Distributed resource allocation algorithms of the form
(9) were first proposed and studied by Ho, Servi, and Suri in Ref. 7. They con-
sidered an undirected graph with symmetric weights on the edges and called
algorithms of this form center-free algorithms (the term center-free refers to the
absence of a central coordinating entity). In the notation of this paper, they assumed

W = WT , W1 = 0,
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and derived the following additional conditions on W that are sufficient for the
algorithm (9) to converge to the optimal solution x∗:

(a) W is irreducible, (10a)

(b) Wij ≤ 0, (i, j ) ∈ E, (10b)

(c)
∑

j∈Ni

|Wij | < 1/umax, i = 1, . . . , n, (10c)

where umax is an upper bound on the second derivatives of the functions fi , i.e.,
umax ≥ maxi ui . The first condition, that W is irreducible, is equivalent to the
statement that the subgraph consisting of all the nodes and edges with nonzero
weights is connected. We will show that these conditions are implied by those
established in this paper.

It should be noted that the problem considered in Ref. 7 has nonnegativity
constraints on the variables: xi ≥ 0, i = 1, . . . , n, with c > 0. They gave a separate
initialization procedure, which identifies and eliminates some nodes that will have
zero value at optimality (not necessarily all such nodes). As a result of this
initialization procedure and some additional conditions on the initial point x(0),
all the following iterates of the center-free algorithm (9) automatically satisfy the
nonnegativity constraints. In Ref. 3, the second derivatives of the functions fi are
used to modify the algorithm (9) (with a constant weight on all edges) to obtain
faster convergence. An interesting analogy between various iterative algorithms
for solving problem (1) and the dynamics of several electrical networks can be
found in Ref. 8.

Many interesting similarities exist between the resource allocation problem
and network flow problems with convex separable cost (see e.g. Refs. 9–11 and
references therein). In particular, by ignoring the local information structure,
problem (1) can be formulated as a simple network flow problem with two nodes
and n links connecting them. Thus, many distributed algorithms for network
flow problems such as those in Refs. 12–13 can be used; see also Ref. 14 for
a convergence rate analysis of such an algorithm. However, with the imposed
local information structure on a graph, the above mentioned algorithms cannot be
applied directly. The center-free algorithm considered in this paper belongs to a
more general class of gradient-like algorithms studied in Ref. 15.

In this paper, we give sufficient conditions weaker than (10) for the center-free
algorithm to convergence and optimize the edge weights to get fast convergence.
Our method is closely related to the approach in Ref. 16, where the problem of
finding the fastest mixing Markov chain on a graph is considered. In Ref. 17,
the same approach was used to find fast linear iterations for a distributed average
consensus problem.

1.3. Outline. In Section 2, we give sufficient conditions on the weight matrix
W under which the algorithm (5) converges to the optimal solution monotonically.
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These conditions involve a linear matrix inequality (LMI) in the weight matrix.
Moreover, we quantify the convergence by deriving a guaranteed convergence
rate for the algorithm. In Section 3, we give some simple, explicit choices for the
weight matrix W that satisfy the convergence conditions. In Section 4, we propose
to minimize the guaranteed convergence rate obtained in Section 2 in order to get
fast convergence of the algorithm (5). We observe that the optimal weights (in the
sense of minimizing the guaranteed convergence rate) can be found by solving a
semidefinite program (SDP). In Section 5, we show some numerical examples that
demonstrate the effectiveness of the proposed weight selection methods. Finally, in
Section 6, we extend the main results to problems with general equality constraints
and problems with block separable objective functions. We give our conclusions
and some final remarks in Section 7.

2. Convergence Conditions

In this section, we state and prove the main theorem. We use the following
notation: L and U denote diagonal matrices in �n×n whose diagonal entries are the
lower bounds li and upper bounds ui given in (2). Note that L and U are positive
definite (L � 0 and U � 0). For a symmetric matrix Z, we list its eigenvalues (all
real) in nonincreasing order,

λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λn(Z),

where λi(Z) denotes the ith largest eigenvalue of Z.

Theorem 2.1. If the weight matrix W satisfies 1T W = 0,W1 = 0, and

λn−1(L1/2(W + WT − WT UW )L1/2) > 0, (11)

then the algorithm (5) converges to the optimal solution x∗ of problem (1) and the
objective function decreases monotonically. In fact, we have

f (x(t)) − f ∗ ≤ η(W )t [f (x(0)) − f ∗] (12)

with a guaranteed convergence rate

η(W ) = 1 − λn−1(L1/2(W + WT − WT UW )L1/2). (13)

Moreover, the condition (11) is equivalent to the strict linear matrix inequality
(LMI)

[
W + WT + (1/n)11T W

WT U−1

]
� 0. (14)
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Proof. Let

�x(t) = x(t + 1) − x(t).

From (5), we have

�x(t) = −W∇f (x(t)).

The Taylor expansion of fi at xi(t) yields

fi(xi(t + 1)) = fi(xi(t)) + f ′
i (xi(t))�xi(t) + (1/2)f ′′

i (zi(t))�xi(t
2),

where zi(t) is between xi(t) and xi(t + 1). Let

∇2f (x) = diag(f ′′
1 (x1), . . . , f ′′

n (xn))

be the Hessian matrix of f at x. The objective function at iterate t + 1 can be
written as

f (x(t + 1)) = f (x(t)) + ∇f (x(t))T �x(t) + (1/2)�x(t)T ∇2f (z(t))�x(t)

= f (x(t)) − ∇f (x(t))T W∇f (x(t))

+ (1/2)∇f (x(t))T WT ∇2f (z(t))W∇f (x(t))

= f (x(t)) − (1/2)∇f (x(t))T [W + WT − WT ∇2f (z(t))W ]

×∇f (x(t)).

Using the assumption (2), we have

∇2f (z(t)) 
 U,

so

f (x(t + 1)) ≤ f (x(t)) − (1/2)∇f (x(t))T (W + WT − WT UW )∇f (x(t))

= f (x(t)) − (1/2)∇f (x(t))T L−1/2V L−1/2∇f (x(t)), (15)

where

V = L1/2(W + WT − WT UW )L1/2. (16)

From conditions (7) and (8), i.e., 1T W = 0 and W1 = 0, we conclude that L−1/21
is an eigenvector of the symmetric matrix V associated with the eigenvalue zero.
Let e(t) be the projection of L−1/2∇f (x(t)) onto the subspace that is orthogonal
to L−1/21,

e(t) = [I − (1/1T L−11)L−1/211T L−1/2]L−1/2∇f (x(t))

= L−1/2

[
∇f (x(t)) − 1T L−1∇f (x(t))

1T L−11
1

]
.

Replacing L−1/2∇f (x(t)) by e(t) does not change the equation (15), so we have

f (x(t + 1)) ≤ f (x(t)) − (1/2)e(t)T V e(t). (17)
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Now the condition (11), i.e., λn−1(V ) > 0 means that the matrix V is positive
semidefinite and λn(V ) = 0 is a simple eigenvalue, with associated eigenvector
L−1/21. This implies that

f (x(t + 1)) < f (x(t)),

i.e., that the objective function decreases provided e(t) 
= 0. When e(t) = 0, the
gradient ∇f (x(t)) must be a multiple of 1, i.e., the optimality conditions (3) are
satisfied; in this case, we conclude that x(t) is optimal.

Next, we derive the guaranteed convergence rate (13). Note that, with the
condition (11) and the inequality (17), we have

f (x(t + 1)) − f (x(t)) ≤ −(1/2)λn−1(V )‖e(t)‖2. (18)

We shall derive another inequality relating f (x(t)), f ∗, and ‖e(t)2‖. To do so, we
use again the Taylor expansion of f at x(t). Using the assumption (2), we have

f (y) ≥ f (x(t)) + ∇f (x(t))T (y − x(t)) + (1/2)(y − x(t))T L(y − x(t)),

for any y ∈ �n. If y is feasible (true for any iterate of the proposed algorithm),
then

1T (y − x(t)) = 0.

So, we have

f (y) ≥ f (x(t)) +
[
∇f (x(t)) − 1T L−1∇f (x(t))

1T L−11
1

]T

(y − x(t))

+ (1/2)(y − x(t))T L(y − x(t))

= f (x(t)) + e(t)T L1/2(y − x(t)) + (1/2)(y − x(t))T L(y − x(t))

= f (x(t)) + e(t)T z + (1/2)zT z,

where

z = L1/2(y − x(t)).

Minimizing the right-hand side over z yields

f (y) ≥ f (x(t)) − (1/2)‖e(t)‖2.

Since this is true for all feasible y, it is certainly true for x∗. In other words, we
have

f ∗ ≥ f (x(t)) − (1/2)‖e(t)‖2. (19)

Now combining the inequalities (18) and (19) yields

f (x(t + 1)) − f ∗ ≤ [1 − λn−1(V )][f (x(t)) − f ∗], (20)
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which gives the desired results (12) and (13). Since all x(t) are feasible, we always
have

f (x(t)) − f (x(t + 1)) ≤ f (x(t)) − f ∗.

Applying the two inequalities (18) and (19) on two sides of the above inequality
respectively yields λn−1(V ) ≤ 1, hence 0 < η(W ) < 1. It follows that

lim
t→∞ f (x(t)) = f ∗,

i.e., the algorithm converges to the optimal solution under condition (11).
It remains to show that the eigenvalue condition (11) is equivalent to the strict

LMI (14). Since L is diagonal and positive definite, λn−1(V ) > 0 if and only if

λn−1(W + WT − WT UW ) > 0,

which can be expressed as the quadratic matrix inequality

W + WT − WT UW + (1/n)11T � 0.

Here, the rank-one matrix (1/n)11T has its only nonzero eigenvalue one associated
with the eigenvector 1. Finally, using Schur complements, the above quadratic
matrix inequality is equivalent to the LMI (14). Note that we do not need to know
L to test the convergence condition (11), although it is needed in calculating the
guaranteed convergence rate. �

Remark 2.1. The derivation of the equation (20) holds without assuming
the convergence condition (11), so long as we interpret λn−1(V ) as the smallest
eigenvalue of V excluding the zero eigenvalue associated with the eigenvector 1.
It is evident from (20) that λn−1(V ) > 0 is necessary for η(W ) < 1 and sufficient
for the algorithm to converge to the optimal solution.

2.1. Conditions for Symmetric Weights. When the weight matrix W is
symmetric, the convergence conditions reduce to

W = WT , W1 = 0, (21)

2W + (1/n)11T � 0, (22)

2U−1 − W � 0. (23)

To see this, we first rewrite the LMI (14) for symmetric W,
[

2W + (1/n)11T W

W U−1

]
� 0.
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Applying Schur complements, this LMI is equivalent to

2W + (1/n)11T � 0,

U−1 − W [2W + (1/n)11T ]−1W � 0.

The first inequality is precisely (22). The second inequalty is in fact (23) because,
under the conditions (21) and (22), we have

W [2W + (1/n)11T ]−1W = (1/2)W.

The conditions (21)–(23) are generalizations of (10). In particular, we con-
sider the conditions that the matrix 2U−1 − W is strictly diagonally dominant,
which is sufficient for (23) to hold. The strictly diagonal dominance property can
be expressed as

|2/ui − Wii | >
∑

j∈Ni

|Wij |, i = 1, . . . , n.

If all the off-diagonal elements of W are nonpositive and

Wii = −
∑

j∈Ni

Wij ,

the above condition becomes
∑

j∈Ni

|Wij | < 1/ui, i = 1, . . . , n. (24)

When all the numbers ui are equal or simply take their maximum, as assumed in
Ref. 7, the inequality (24) is exactly the third condition in (10).

3. Simple Weight Selections

In this section, we give two simple methods to select the weight matrix so
that it satisfies the convergence conditions established in the previous section.
Here, we consider only symmetric weight matrices and the methods are based
on the sufficient condition (24). For symmetric weight matrices, each edge of the
graph is bidirectional and has the same weight in both directions, so each can be
considered as an undirected edge with a single weight.

3.1. Constant Weight on Edges. The simplest and most commonly used
method is to have constant weight on all the edges of the graph and obtain the
self-weights Wii from the equality constraint W1 = 0,
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Wij =

⎧
⎪⎨

⎪⎩

α, (i, j ) ∈ E,

−diα, i = j,

0, otherwise,

where di = |Ni | is the degree of node i. From the condition (24), we can deduce
a range of α that guarantees the convergence of the algorithm,

−1/
(

max
i∈N

diui

)
< α < 0. (25)

Actually, it is also safe to set

α = −1
/(

max
i∈N

diui

)
(26)

unless all the diui’s are equal. This can be verified by considering the irre-
ducibly diagonally dominant property of the matrix 2U−1 – W; see e.g., Ref. 18,
Section 6.2.

We call the constant weight in (26) the max-degree weight. It comes from
the fact that, when the functions fi are appropriately scaled such that ui = 1 for
all i, then α is determined solely by the maximum degree of the graph. In fact,
the range (25) is usually very conserative. In Section 4.2, we will find the best
constant α∗ that minimizes the guaranteed convergence rate η in (13). We will see
that α∗ is often outside the range (25).

3.2. Weights Determined by Local Information. A slightly more sophis-
ticated method is to determine a range for the weight on each edge of the graph.
From the condition (24), it is straightforward to obtain the following ranges for
the edge weights that guarantee the convergence of the algorithm:

− min{1/diui, 1/djuj } < Wij < 0, (i, j ) ∈ E .

As before, after choosing the edge weights, we can determine the self-weights
using

Wii = −
∑

j∈Ni

Wij .

Again, unless all the nodes have the same value of diui , we can set

Wij = − min{1/diui, 1/djuj }, (i, j ) ∈ E . (27)

We call these weights the Metropolis weights, because the main idea of this
method relates to the Metropolis algorithms for choosing transition probabilities
on a graph to make the associated Markov chain mix rapidly (see Ref. 19; see
also e.g. Refs. 16, 20). In Section 5, we will see that the weights selected by
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this method often perform better than the max-degree constant weight on all
edges.

Note that this method of choosing edge weights relies only on local infor-
mation in the graph: the degrees and the upper bounds on the second derivatives
of the functions at its two incident nodes. This property allows the weights to be
selected in a distributed manner, which is ideal for a distributed algorithm running
on the graph such as (9).

4. Optimal Scaling of the Center-Free Algorithm

In this section, we pose the question of how to choose the weight matrix
to make the algorithm (5) converge as fast as possible. Clearly, the convergence
properties depend on the particular objective functions and initial condition. When
the lower and upper bounds L and U are the only information available, it is
reasonable to choose the weight matrix to minimize the guaranteed convergence
rate η established in Theorem 2.1. This is equivalent to maximizing the second
smallest eigenvalue of the matrix V in (16), i.e.,

max λn−1[L1/2(W + WT − WT UW )L1/2], (28a)

s.t. W ∈ S, 1T W = 0, W1 = 0, (28b)

where the optimization variable is W. In this section, we show that this problem
is convex, can be converted into a semidefinite program (SDP), and so can be
efficiently and globally solved using numerical algorithms such as interior-point
methods (see e.g. Ref. 21). We discuss also the special case of finding the best
constant weight.

4.1. Weight Design via SDP. We show first that the eigenvalue optimization
problem (28) can be converted to an SDP. Let s be a lower bound on the eigenvalues
of L1/2(W + WT − WT UW )L1/2 on the subspace that is orthogonal to L−1/21
(which corresponds to the eigenvalue zero). Then, we have

L1/2(W + WT − WT UW )L1/2 � s[I − (1/1T L−11)L−1/211T L−1/2],

which is equivalent to (by multiplying L−1/2 on the left and right),

W + WT − WT UW � s[L−1 − (1/1T L−11)L−111T L−1]. (29)
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Using the Schur complements, the above quadratic matrix inequality is equivalent
to the LMI

[
W + WT − s[L−1 − (1/1T L−11)L−111T L−1] WT

W U−1

]
� 0. (30)

Therefore the eigenvalue optimization problem (28) is equivalent to the SDP

max s, (31a)

s. t. W ∈ S, 1T W = 0, W1 = 0, (31b)[
W + WT − s[L−1 − (1/1T L−11)L−111T L−1] WT

W U−1

]
� 0, (31c)

with optimization variables s and W.
Note that the matrices on both sides of the inequality (29) have the common

eigenvalue zero associated with the eigenvector 1. As a result, the LMI (30) has
empty interior, which can cause trouble for some classes of interior-point methods
(see e.g. Refs. 5 and 22–24). But this problem is readily avoided: we simply add
the rank-one matrix (1/n)11T to the left hand side of (29) to get the inequality

W + WT − WT UW + (1/n)11T � s[L−1 − (1/1T L−11)L−111T L−1].

This leads to the SDP

max s, (32a)

s. t. W ∈ S, 1T W = 0, W1 = 0, (32b)
[
W +WT + (1/n)11T − s[L−1 − (1/1T L−11)L−111T L−1] WT

W U−1

]
� 0,

(32c)

This SDP is equivalent to (31), but here the LMI constraint has nonempty interior,
so general interior-point methods can be applied to solve this problem.

Since W is often very sparse, exploiting sparsity can further improve the
efficiency of numerical algorithms and allow the solution of very large-scale
problems. We discuss how to exploid sparsity in interior-point methods and a
simple subgradient method for solving a similar class of SDPs in Ref. 17. The
same techniques apply in this case.
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4.2. Best Constant Weight. If the weight matrix is symmetric and all the
edge weights are equal to a constant α (as described in Section 3.1), we can write
the weight matrix as

W = −αL, (33)

where L is the Laplacian matrix of the graph, which is defined as

Lij =

⎧
⎪⎨

⎪⎩

−1, (i, j ) ∈ E,

di, i = j,

0, otherwise.

The Laplacian matrix is positive semidefinite. Since the graph is assumed con-
nected, it has a simple eigenvalue λn(L) = 0 with associated eigenvector 1 (see
e.g. Ref. 25–26). From the expression (33), we must have α < 0 for W to be
positive semidefinite [see condition (22)].

We can substitute (33) into the SDP (32) to solve for the best constant α∗.
Here, we consider a simple case where α∗ can be found analytically. We assume
that the functions fi are appropriately scaled such that the upper bound on the
second derivatives is U = I (the identity matrix) and the lower bound is L = βI

with 0 < β < 1. In this case,

V = β(W + WT − WT UW )

= β(−2αL − α2L2)

= βI − β(I + αL)2.

Now, we can express λn−1(V ) in terms of β and the two extreme eigenvalues
of L,

λn−1(V ) = β − β[max{1 + αλn−1(L),−1 − αλ1(L)}]2.

For λn−1(V ) > 0, the weight α must lie in the range

−2/λ1(L) < α < 0.

The optimal constant weight that maximizes λn−1(V ) is

α∗ = −2/[λ1(L) + λn−1(L)].

It is interesting to note that this result is very similar to the best constant weight
found in the fast averaging problem; see Ref. 17, Section 4.1. The only difference
is the sign, which is due to different sign conventions used.

5. Numerical Example

In this section, we use simulation to demonstrate the effectiveness of the
weight matrices determined by various methods proposed in the previous two
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Fig. 1. Simulation on a randomly generated graph (lower left corner): objective function values
f (x(t)) − f ∗ versus iteration number t, with five different weight matrices and the common
initial condition x(0) = 0.

sections. We consider the graph shown at the lower left corner of Figure 1. This is a
randomly generated regular graph with n = 20 nodes, where each node has degree
three. Each edge is bidirectional. In this example, we consider both symmetric
and nonsymmetric weight matrices.

We use the following family of functions:

fi(xi) = (1/2)ai(xi − ci)
2 + log[1 + exp(bi(xi − di))], i = 1, . . . , n,

with the coefficients ai, bi, ci, di generated randomly with uniform distributions
on [0, 2], [−2, 2], [−10, 10], [−10, 10] respectively. The second derivatives of
these functions are

f ′′
i (xi) = ai + b2

i exp[bi(xi − di)]/[1 + exp(bi(xi − di))]
2, i = 1, . . . , n,

which have the following lower and upper bounds:

li = ai, ui = ai + (1/4)b2
i , i = 1, . . . , n.

We assume that the sum of the variables if fixed to zero, i.e.,
n∑

i=1

xi = 0.
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Table 1. Guaranteed convergence rates of different weight matrices.

Method Max-degree Metropolis Best constant SDP Symmetric SDP Nonsymmetric

η(W ) 0.9503 0.9237 0.9217 0.8750 0.8729

Using these bounds, we find the weights using the five methods that have been
described in Sections 3 and 4. In particular, we find the best constant edge weight
by solving the SDP (32), yielding α∗ = −0.2030, which is outside the range (25)
derived from the diagonally dominant condition (24). The smallest value for the
diagonally dominant condition is given by the max-degree weight (26), which is
αmd = −0.1251.

Table 1 shows the guaranteed convergence rates η(W ) obtained with differ-
ent weight selection methods. These show that the max-degree has the largest
value of η, with Metropolis and best constant about the same and smaller. The
optimal symmetric and nonsymmetric weights (obtained by solving SDPs) give
even faster convergence. The nonsymmetric weight matrix W found by solving
the SDP (32) has two positive offdiagonal entries; see Remark 1.1. Of course,
it must be remembered that η is only a guaranteed bound on the convergence
rate, so small differences in η (such as between the optimal symmetric and op-
timal nonsymmetric weights) probably have no meaning in terms of the actual
convergence.

Figure 1 shows the objective values of the algorithm (5) using the five different
weight matrices, all starting with the initial condition xi(0) = 0 for all i. The plot
shows that, in this case, the bound η does predict the actual convergence rate; in
particular, the convergence with the optimal weights is substantially faster than,
for example, the max-degree weights.

6. Extensions

In this section, we extend the main results to problems with more complex
constraints and problems with vector variables at each node.

6.1. Problems with General Equality Constraints. We consider the fol-
lowing optimization problem with general linear equality constraints:

min f (x), (34a)

s. t. Ax = b, (34b)

where x ∈ �n is the varible and A ∈ �m×n, b ∈ �m are given parameters. Without
loss of generality, we assume that m < n and A is full rank.We assume that the
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function f (x) is strictly convex and

L 
 ∇2f (x) 
 U,

for some symmetric positive-definite matrices L and U. In fact, the above partial
ordering only needs to hold on the nullspace of A, i.e., {x ∈ �n | Ax = 0}. Here,
we do not assume explicitly additional structure such as those imposed by a graph;
we note only that the sparsity pattern of W could depend on the sparsity pattern of
∇2f (x). A point x∗ is optimal for (34) if and only if there is a v∗ ∈ �m such that

Ax∗ = b, ∇f (x∗) = AT v∗.

We consider solving the problem (34) using the weighted gradient descent
algorithm (5). Here, the feasibility and fixed point conditions translate into the
following constraints on the weight matrix W:

AW = 0, WAT = 0, (35)

which correspond to conditions (7) and (8) respectively. The rows of A form the
left and right eigenspace of W associated with the eigenvalue zero, which has
multiplicity m. The additional sufficient condition for monotonic convergence
becomes [see condition (11)]

λn−m(V ) = λn−m[L1/2(W + WT − WT UW )L1/2] > 0,

which can be expressed as the strict LMI condition [see condition (14)]
[
W + WT + AT (AAT )−1A W

WT U−1

]
� 0.

As before, the convergence condition does not rely on L. In this case, the guaran-
teed convergence rate is given by

η(W ) = 1 − λn−m(V ).

Similarly, for optimization-based weight design, we need only to carry out the
following replacements in the SDPs (31) and (32):

(1/n)11T ←→ AT (AAT )−1A,

(1/1T L−11)L−111T L−1 ←→ L−1AT (AL−1AT )−1AL−1.

In this case, however, it is difficult to come up with simple methods to select
the weight matrix, like those given in Section 3. While the diagonally dominant
condition (24) is still useful, it is difficult to directly construct weight matrices
satisfying the eigenspace conditions in (35).
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6.2. Problems with Vector Variables at Each Node. We consider a modi-
fied version of problem (1)

min
n∑

i=1

fi(xi), (36a)

s. t.
n∑

i=1

xi = b, (36b)

where each xi is an m-dimensional vector, i.e.,

xi = (
x1

i , . . . , x
m
i

)
, for i = 1, . . . , n.

Here we do impose the local information structure given by the graph. In this case,
we assume the following condition on the Hessians of the functions fi

Li 
 ∇2f (xi) 
 Ui i = 1, . . . , n,

where Li and Ui are positive-definite matrices.
The center-free algorithm now takes the form

xi(t + 1) = xi(t) +
∑

j∈Ni

Wij [∇fi(xi(t)) − ∇fj (xj (t))], (37)

where Wij ∈ �m×m is the weight matrix between two adjacent nodes i and j. The
n by n blocks of W (each with size m by m) are either zero (if the corresponding
two nodes are not connected) or a full m by m matrix (for two adjacent nodes). A
simplified version of (37) was suggested in Ref. 7, where the weight matrix Wij

between two adjacent node is diagonal.
The convergence condition and optimization-based weight design can be

obtained by applying the results in Section 6.1. Here, x = (xT
1 , . . . , xT

n ) is an
augmented vector of length mn and the equality constraint can be written as
Ax = b, where A = [Im, . . . , Im] and Im is the m-dimensional identity matrix.
The weight matrix W should satisfy the eigenspace conditions (35). The lower
and upper bounding matrices are block diagonal,

L = diag(L1, . . . , Lm), U = diag(U1, . . . , Un).

7. Conclusions

We have considered a class of distributed gradient algorithms for optimally
allocate a fixed amount of resource over a network, to minimize the sum of the
convex cost functions at each node. In these algorithms, each node updates the
amount of its local resource in proportion to the differences between the marginal
costs of itself and its neighbors. We focused on how to choose the proportional
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weights on the edges to make the algorithm converge and on how to optimize the
weights (scaling of the gradient method) to get fast convergence. We should make
several comments about the algorithm and the methods for selecting the weights.

First, the algorithm is designed for distributed implementation, with a simple
protocol between each pair of connected nodes. In general, it is not competi-
tive with offline centralized optimization algorithms, such as BFGS or Newton’s
methods. These methods generally give faster (and sometimes much faster) con-
vergence than the center-free algorithm; but on the other hand, they cannot be
implemented in a simple, fully distributed way.

The second point concerns the cost of computing the optimal weights by solv-
ing an SDP. While these weights evidently yield faster convergence (compared to,
say, the max-degree or Metropolis weights), solving the SDP often involves sub-
stantially more computational effort than solving the original resource allocation
problem. So if the resource allocation problem is to be solved just once or a few
times (say), this extra cost is certainly not justified. On the other hand, if we are to
solve the resource allocation problem multiple times, on a network with the same
topology, with (say) different initial conditions or different cost functions (with
the same lower and upper bounds on their second derivatives), then the extra effort
of solving an SDP to find the optimal weights can be justified.

In contrast, the Metropolis methods (which are based only on local informa-
tion) are well suited for distributed weight selection and can potentially be used
with time-varying network topologies. One can imagine that, at a slower time
scale, nodes can join or leave the network, carrying in or out their current share of
total resource. The algorithms presented in this paper, with the Metropolis weights
determined in real-time, can run at a faster time scale to track the optimal solution
of each network configuration.

References

1. ARROW, K. J., and HURWICZ, L., Decentralization and Computation in Resource Allo-
cation, Essays in Economics and Econometrics, Edited by R. W. Pfouts, University of
North Carolina Press, Chapel Hill, North Carolina, pp. 34–104, 1960.

2. HEAL, G. M., Planning without Prices, Review of Economic Studies, Vol. 36, pp.
347–362, 1969.

3. KUROSE, J. F., and SIMHA, R., A Microeconomic Approach to Optimal Resource Al-
location in Distributed Computer Systems, IEEE Transactions on Computers, Vol. 38,
pp. 705–717, 1989.

4. BERTSEKAS, D. P., Nonlinear Programming, 2nd Edition, Athena Scientific, Belmont,
Massachusetts, 1999.

5. BOYD, S., and VANDENBERGHE, L., Convex Optimization, Cambridge University Press,
Cambridge, UK, 2004.

6. HURWICZ, L., The Design of Mechanisms for Resource Allocation, American Economic
Review, Vol. 63, pp. 1–30, 1973.



488 JOTA: VOL. 129, NO. 3, JUNE 2006

7. Ho, Y. C., SERVI, L. D., and SURI, R., A Class of Center-Free Resource Allocation
Algorithms, Large Scale Systems, Vol. 1, pp. 51–62, 1980.

8. SERVI, L. D., Electrical Networks and Resource Allocation Algorithms, IEEE Transac-
tions on Systems, Man, and Cybernetics, Vol. 10, pp. 841–848, 1980.

9. ROCKAFELLAR, R. T., Network Flows and Monotropic Optimization, John Wiley and
Sons, New York, NY, 1984.

10. BERTSEKAS, D. P., and TSTTSIKLIS, J. N., Parallel and Distributed Computation,
Prentice-Hall, Englewood, Cliffs, New Jersey, 1989.

11. BERTSEKAS, D. P., Network Optimization: Continuous and Discrete Models, Athena
Scientific, Belmont, Massachusetts, 1998.

12. TSITSIKLIS, J. N., and BERTSEKAS, D. P., Distributed Asynchronous Optimal Routing in
Data Networks, IEEE Transactions on Automatic Control, Vol. 31, pp. 325–332, 1986.

13. EL BAZ, D., Asynchronous Gradient Algorithms for a Class of Convex Separable
Network Flow Problems, Computational Optimization and Applications, Vol. 5, pp.
187–205, 1996.

14. LUO, Z. Q., and TSENG, P., On the Rate of Convergence of a Distributed Asynchronous
Routing Algorithm, IEEE Transactions on Automatic Control, Vol. 39, pp. 1123–1129,
1994.

15. TSITSIKLIS, J. N., BERTSEKAS, D. P., and ATHANS, M., Distributed Asynchronous De-
terministic and Stochastic Gradient Optimization Algorithms, IEEE Transactions on
Automatic Control, Vol. 31, pp. 803 812, 1986.

16. BOYD, S., DIACONIS, P., and XIAO, L., Fastest Mixing Markov Chain on a Graph, SIAM
Review, Vol. 46, pp. 667–689, 2004.

17. XIAO, L., and BOYD, S., Fast Linear Iterations for Distributed Averaging, Systems and
Control Letters, Vol. 53, pp. 66–78, 2004.

18. HORN, R. A., and JOHNSON, C. A., Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1985.

19. METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M., TELLER, A., and TELLER, E.,
Equations of State Calculations by Fast Computing Machines, Journal of Chemical
Physics, Vol. 21, pp. 1087–1092, 1953.

20. DIACONIS, P., and SALOFF-COSTE, L., What Do We Know About the Metropolis Algo-
rithms, Journal of Computer and System Sciences, Vol. 57, pp. 20–36, 1998.

21. VANDENBERGHE, L., and BOYD, S., Semidefinite Programming, SIAM Review, Vol. 38,
pp. 49–95, 1996.

22. NESTEROV, Y., and NEMIROVSKII, A., Interior-Point Polynomial Algorithms in Convex
Programming, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pennsyl-
vania, 1994.

23. Ye, Y., Interior-Point Algorithms: Theory and Analysis, John Wiley and Sons, New
York, NY, 1997.

24. WOLKOWICZ, H., SAIGAL, R., and VANDENGERGHE, L., Editors, Handbook of Semidef-
inite Programming: Theory, Algorithms, and Applications, Kluwer Academic Publish-
ers, Boston, Massachusetts, 2000.

25. MERRIS, R., Laplacian Matrices of Graphs: A Survey, Linear Algebra and Its Applica-
tions, Vol. 197, pp. 143–176, 1994.

26. GODSIL, C., and ROYLE, G., Algebraic Graph Theory, Springer, New York, NY, 2001.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


