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Abstract—We consider the problem of optimally allocating
local feedback to the stages of a multistage amplifier. The local
feedback gains affect many performance indices in a complicated
and nonlinear fashion, making optimization of the feedback gains
a very challenging problem. We show that geometric program-
ming provides a complete solution.

| INTRODUCTION

The use of linear feedback around an amplifier stage was pi-
oneered by Black [1], Bode [2], and others. The relation be-
tween the choice of feedback gain and the (closed-loop) gain,
bandwidth, rise-time, sensitivity, noise, and distortion prop-
erties, is well understood (see, e.g., [3]). For a single stage
amplifier, the choice of the (single) feedback gain is a simple
problem.

In our work we consider the multistage amplifier shown in
figure 1, consisting of n open-loop amplifier stages denoted
Aq,..., Ay, with local feedback gains f1,..., f, employed
around the stages.
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Fig. 1. Block diagram of multistage amplifier.

We assume that the amplifier stages are fixed, and consider
the problem of choosing the feedback gains fi,..., f,. The
choice of these feedback gains affects a wide variety of per-
formance measures for the overall amplifier, including gain,
bandwidth, rise-time, delay, noise, distortion and sensitivity
properties, maximum output swing, and dynamic range. These
performance measures depend on the feedback gains in a com-
plicated and nonlinear manner. It is thus far from clear, given a
set of specifications, how to find an optimal choice of feedback
gains. We refer to the problem of determining optimal val-
ues of the feedback gains, for a given set of specifications on
overall amplifier performance, as the local feedback allocation
problem.

In our work [4], we have shown that the local feedback al-
location problem can be cast as a geometric program (GP),
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which is a special type of optimization problem. Even com-
plicated geometric programs can be solved very efficiently,
and globally, by recently developed interior-point methods
(see [5]-[7])- Therefore we are able to give a complete, global,
and efficient solution to the local feedback allocation problem.

In §11, we give a detailed description of the amplifier stage
models used to analyze the performance of the amplifier.
Though simple, the models capture the basic qualitative be-
havior of a source-degenerated differential pair. §111 provides a
brief overview of geometric programming, and an example of
derived amplifier characteristics. A design example is given in
§IV.

Il AMPLIFIER STAGE MODELS

In this section we describe the different models of an ampli-
fier stage used in our analysis.

A Linearized static model

The simplest model we use is the linear static model shown
in figure 2. The stage is characterized by y; = a;e;, where «;
is the gain of the 4th stage, which we assume to be positive.
We use this simple model for determining the overall gain of
the amplifier, determining the maximum signal swing, and the
sensitivity of the amplifier gain to each stage gain.
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Fig. 2. Linearized static model of amplifier stage.

B Static nonlinear model

To quantify nonlinear distortion effects, we use a static non-
linear model of the amplifier stage as shown in figure 3. We
assume a nonlinearity of the form

yi = ai(e) = aie — Bie® + o(€?). 1)
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Fig. 3. Nonlinear static model of amplifier stage.

This form is inspired by the transfer characteristic of a source-
coupled pair [8], and is a general model for third-order non-
linearity in a stage with an odd transfer characteristic. The
function a;(-) is called the transfer characteristic of the ith
stage, and g; is called the third-order coefficient of the ampli-
fier stage. Note that the gain and third-order coefficient are
related to the transfer characteristic by

a; = aj(0), Bi=—-——. 2

We assume that 3; > 0, which means the third-order term is
compressive: as the signal level increases from zero, the non-
linear term tends to decrease the output amplitude when com-
pared to the linear model.

C Linearized dynamic model

To characterize the bandwidth, delay, and rise-time of the
overall amplifier, we use the linearized dynamic model shown
in figure 4. Here the stage is represented by a simple one-pole
transfer function with time constant 7; (which we assume to be
positive).
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Fig. 4. Linear dynamic model of amplifier stage.

D Static noise model

Last, we have the static noise model shown in figure 5, which
includes a simple output-referred noise v;1. Our noise model
is characterized by the RMS value of the noise source, which
we denote ;. We assume that noise sources associated with
different stages are uncorrelated.

I More complicated noise models can also be handled by our method.
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Fig. 5. Static noise model of amplifier stage.

Il AMPLIFIER ANALYSIS

Having established the models of §ll, there are many figures
of merit that are straightforward to derive. For our purposes
we require that such derivations result in posynomials, thereby
enabling the use of geometric programming. To this end, it is
useful to adopt return differences, I; = 1 + f;«;, as our design
variables.

This section provides a basic description of geometric pro-
gramming, followed by an example of a derived amplifier char-
acteristic. A more complete treatment of geometric program-
ming can be found in [9], [7], [5]; an extensive series of deriva-
tions can be found in [4].

A Geometric programming

Let f be a real-valued function of n real, positive variables
Z1,2,...,2Ty. Itis called a posynomial function if it has the
form

t
f(x17~~~7xn) = ZCkx?lkxg% '”‘T%nk (3)
k=1

where ¢; > O and a;; € R. Whent = 1, f is called a
monomial function. Thus, for example, 0.7 + 221 /x3 + 293
is posynomial and 2.3(z1 /z2)*® is a monomial. Posynomials
are closed under sums, products, and nonnegative scaling.

A geometric program (GP) has the form

minimize  fo(z)
subjectto  fi(z) <1, i=1,2,...,m, @
gifz) =1, i=12,...,p,

where f; are posynomial functions and g; are monomial func-
tions. Geometric programs were introduced by Duffin, Peter-
son, and Zener in the 1960s [9].

The most important property of geometric programs for us
is that they can be solved, with great efficiency, and globally,
using recently developed interior-point methods [7], [5]. Ge-
ometric programming has recently been used to optimally de-
sign electronic circuits including CMOS op-amps [10], [11],
and planar spiral inductors [12].



B Example Derivation

Here we examine the static nonlinearity of a cascade of
stages. This derivation would be useful for detemining the
spurious-free dynamic range, or for evaluating intermodulation
distortion products.

We begin by deriving the closed-loop third-order coefficient
of a single feedback amplifier stage, using the static nonlinear
model of §I1. The output y is related to the input  through the
relation

y = a(u— fy). (®)
Differentiating both sides with respect to u leads to the familiar
result from elementary feedback theory:

iy @0) _a
y(O)_TG'(O)_T_& (6)

Differentiating again yields

y"(0) = =0, )
and, once more,

a"(0)l — 3fa"(0)2 68

yIII(O) = B = _1_47 (8)

using a"’(0) = —64 and a"(0) = 0 from the previous equa-
tion. This equation shows that the third-order coefficient of the
closed-loop transfer characteristic is given by

y"(0) _ B

f=t =5 (©)

This is the well-known result showing the linearizing effect of
(linear) feedback on an amplifier stage.

More generally, the third-order coefficient of a cascade of n
stages can be expressed as [4]

n i—1 n
=3 |(Tat)a( T o)l
i=1 k=1 j=i+1
This formula gives the relation between the local return differ-
ences and the third-order coefficient of the overall amplifier.

IV DESIGN EXAMPLE

We find that complicated problems of feedback allocation
can be solved, globally and efficiently, using geometric pro-
gramming. We can take as an objective any posynomial per-
formance measure, and apply any combination of posynomial
constraints. We can also compute optimal trade-off curves by
varying one of the specifications or constraints over a range,
computing the optimal value of the objective for each value of
the specification.

A Trade-offs among bandwidth, gain, and noise

Consider a three-stage amplifier, all stages identical, with pa-
rameters

a; = 10, 7; = 10 5sec, Vi =4.07uV.  (11)
The required closed-loop gain is 23.5dB. We maximized the
bandwidth, subject to the equality constraint on closed-loop

gain, and a maximum allowed value of input-referred noise.

Figure 6 shows the optimal bandwidth achieved, as a function
of the maximum allowed input-referred noise. As it must, the
optimal bandwidth increases as we relax (increase) the input-
referred noise limit. Figure 7 shows the optimal values of the
feedback gains as the input-referred noise limit varies.
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Fig. 6. Maximum bandwidth versus limit on input-referred noise.

These curves roughly identify two regions in the design
space. In one, the noise constraint is so relaxed as to not be
an issue. The program identifies the optimum bandwidth so-
lution for the given gain, which is to place all of the closed
loop poles in the same place. In the other, the tradeoff between
bandwidth and noise is strong. The noise contribution of v, 1
is independent of [;, but the noise contributions of the follow-
ing stages can be diminished by making /; (and therefore f1)
small. It follows that f5 is the greatest of the feedback gains,
followed by f> and f;.

We can also examine the optimal trade-off between band-
width and required DC gain. Here we impose the fixed limit
on input-referred noise at 4.15 x 10~7 V rms, and maximize
the bandwidth subject to a required closed-loop gain.

Figures 8 and 9 show the maximum attainable bandwidth and
the optimal feedback gain allocation as a function of the re-
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Fig. 7. Optimal feedback allocation pattern, for maximum bandwidth with Fig. 9.
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Optimal feedback allocation pattern for maximum bandwidth versus

limit on input-referred noise. Gain = 23.5dB. required closed-loop gain. Maximum Input-referred noise = 4.15e-7 Vrms.

quired closed-loop gain. Again we see two regions in the de-  Unambiguously detected.

sign space caused by the noise constraint.
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Fig. 8. Maximum bandwidth versus required closed-loop gain. Maximum
input-referred noise = 4.15e-7 Vrms.
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V CONCLUSION
[12]

In our work we have demonstrated that the local feedback
allocation problem is globally solvable by the use of geometric
programming. We emphasize the advantages of this method
over most general methods of nonlinear optimization: there is
no danger of getting “trapped” in a local extremum; there is
no need for a user-supplied starting point; infeasibility can be
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