
Automatica 96 (2018) 11–21

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Fitting jump models✩

Alberto Bemporad a,*, Valentina Breschi b, Dario Piga c, Stephen P. Boyd d

a IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L.Da Vinci, 32, 20133 Milano, Italy
c Dalle Molle Institute for Artificial Intelligence Research - USI/SUPSI, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
d Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o

Article history:
Received 25 November 2017
Received in revised form 23 February 2018
Accepted 21 May 2018

Keywords:
Model regression
Mode estimation
Jump models
Hidden Markov models
Piecewise affine models

a b s t r a c t

We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate
between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss
function to determine which set of model parameters is active at each data point. The framework is quite
general and encompasses popular classes of models, such as hidden Markov models and piecewise affine
models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump
model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In many regression and classification problems the training
dataset is formed by input and output observations with time
stamps. However, when fitting the function that maps input data
to output data, most algorithms used in supervised learning do not
take the temporal order of the data into account. For example, in
linear regression problems solved by least squares minθ∥Aθ − b∥22
each row of A and b is associated with a data-point, but clearly the
solution θ ⋆ is the same no matter how the rows of A and b are or-
dered. In system identification temporal information is often used
only to construct the input samples (or regressors) and outputs,
but then it is neglected. For example, in estimating autoregressive
models with exogenous inputs (ARX), the regressor is a finite
collection of current and past signal observations, but the order
of the regressor/output pairs is irrelevant when least squares are
used. Similarly, in logistic regression and support vector machines
the order of the data points does not affect the result. In training
forward neural networks using stochastic gradient descent, the
samples may be picked up randomly (and more than once) by the
solution algorithm, and again their original temporal ordering is
neglected.

✩ Thematerial in this paper was not presented at any conference. This paper was
recommended for publication in revised formbyAssociate Editor Alessandro Chiuso
under the direction of Editor Torsten Söderström.
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On the other hand, there are many applications in which rel-
evant information is contained not only in data values but also
in their temporal order. In particular, if the time each data-point
was collected is taken into account, one can detect changes in
the type of regime the data were produced. Examples range from
video segmentation (Chan & Vasconcelos, 2008; Oh, Rehg, Balch,
& Dellaert, 2008) to speech recognition (Rabiner, 1989; Schuller,
Wöllmer, Moosmayr, Ruske, & Rigoll, 2008), asset-price models
in finance (Guidolin, 2011; Timmermann, 2015), human action
classification (Ozay, Sznaier, & Lagoa, 2010; Pavlovic, Rehg, &Mac-
Cormick, 2001), and many others. All these examples are charac-
terized by the need of fitting multiple models and understanding
when switches from one model to another occur.

Piecewise affine (PWA)models attempt at fittingmultiple affine
models to a dataset, where each model is active based on the
location of the input sample in a polyhedral partition of the input
space (Breschi, Piga, & Bemporad, 2016b; Ferrari-Trecate, Muselli,
Liberati, & Morari, 2003). However, as for ARX models, the order
of the data is not relevant in computing the model parameters
and the polyhedral partition. In some cases, mode transitions are
captured by finite statemachines, for example in hybrid dynamical
models with logical states, where the current mode and the next
logical state are generated deterministically by Boolean functions
(Bemporad & Giorgetti, 2006; Breschi, Bemporad, & Piga, 2016a).
In spite of the difficulty of assessing whether a switched linear
dynamical system is identifiable from input/output data (Vidal,
Chiuso, & Soatto, 2002), a rich variety of identification methods
have been proposed in the literature (Bemporad, Garulli, Paoletti, &
Vicino, 2005; Bemporad, Roll, & Ljung, 2001; Breschi et al., 2016b;
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Ferrari-Trecate et al., 2003; Juloski, Heemels, Ferrari-Trecate, Vi-
dal, Paoletti, & Niessen, 2005; Juloski, Weiland, & Heemels, 2004;
Pillonetto, 2016).

Hidden Markov models (HMMs) treat instead the mode as a
stochastic discrete variable, whose temporal dynamics is described
by a Markov chain (Rabiner, 1989). Natural extensions of hid-
den Markov models consider the cases in which each mode is
associated with a linear function of the input (Costa, Fragoso, &
Marques, 2006; Fridman, 1994; Ohlsson & Ljung, 2013). Hidden
Markov models are usually trained using the Baum–Welch algo-
rithm (Baum, Petrie, Soules, & Weiss, 1970), a forward–backward
version of the more general Expectation–Maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977).

In this paper we consider rather general jump models to fit
a temporal sequence of data that takes the ordering of the data
into account. The proposed fitting algorithm alternates two steps:
estimate the parameters of multiple models and estimate the tem-
poral sequence of model activation, until convergence. The model
fitting step can be carried out exactly when it reduces to a convex
optimization problem,which is often the case. Themode-sequence
step is always carried out optimally using dynamic programming.

Our jumpmodeling framework is quite general. The structure of
the model depends on the shape of the function that is minimized
to obtain themodel parameters, theway themodel jumps depends
on the function that is minimized to get the sequence of model
activation. When we impose no constraints or penalty on the
model sequence, ourmethod reduces to automatically splitting the
dataset in K clusters and fitting one model per cluster, which is
a generalization of K -means (Hastie, Tibshirani, & Friedman, 2009
Algorithm 14.1). HiddenMarkovmodels (HMMs) are a special case
of jumpmodels, aswewill show in the paper. Indeed, jumpmodels
have broader descriptive capabilities than HMMs, for example the
sequence of discrete states may not be necessarily generated by a
Markov chain and could be a deterministic function. Moreover, as
stated above, jumpmodels can have rather arbitrarymodel shapes.

After introducing jump models in Section 2 and giving a sta-
tistical interpretation of the loss function in Section 3, we pro-
vide algorithms for fitting jump models to data and to estimate
output values and hidden modes from available input samples
in Section 4, emphasizing differences and analogies with HMMs.
Finally, in Section 5 we show four examples of application of our
approach for regression and classification, using both synthetic and
experimental datasets.

The code implementing the algorithms described in the paper is
available at http://cse.lab.imtlucca.it/~bemporad/jump_models/.

1.1. Setting and goal

We are given a training sequence of data pairs (xt , yt ), t =
1, . . . , T , with xt ∈ X , yt ∈ Y . We refer to t as the time or period, xt
as the regressor or input, and yt as the outcome or output at time t .
The training sequence is used to build a regressionmodel that pro-
vides a prediction ŷt of yt given the available inputs x1, . . . , xt , and
possibly past outputs y1, . . . , yt−1. We are specifically interested
in models where ŷt is not simply a static function of xt , but rather
we want to exploit the additional information embedded in the
temporal ordering of the data. Aswewill detail later, our regression
model is implicitly defined by the minimization of a fitting loss J
that depends on x1, . . . , xt , y1, . . . , yt−1, yt and other variables and
parameters. The chosen shape for J determines the structure of the
corresponding regression model.

Given a production data sequence (x̃1, ỹ1), . . . , thought to be
generated by a similar process that produced the training data, the
quality of the regression model over a time period t = 1, . . . , T̃
will be judged by the average true loss

Ltrue =
1

T̃

T̃∑
t=1

ℓtrue(ŷt , ỹt ) (1)

where ℓtrue : Y × Y → R penalizes the mismatch between ŷt and
ỹt , with ℓ(y, y) = 0 for all y ∈ Y .

2. Regression models

2.1. Single model

A simple form of deriving a regression model is to introduce a
model parameter θ ∈ Rd, a loss function ℓ : X×Y×Rd

→ R∪{+∞},
and a regularizer r : Rd

→ R ∪ {+∞} defining the fitting objective

J(X, Y , θ ) =
T∑

t=1

ℓ(xt , yt , θ )+ r(θ ) (2a)

where X = (x1, . . . , xT ), Y = (y1, . . . , yT ). For a given training
dataset (X, Y ), let

θ ⋆
= argmin

θ

J(X, Y , θ ) (2b)

be the optimal model parameter. By fixing θ = θ ⋆ and exploiting
the separability of the loss J in (2a) we get the following regression
model

ŷt = argmin
y

J(X, Y , θ ⋆) = argmin
y

ℓ(xt , y, θ ⋆)

=: ϕ(xt ) (2c)

where ϕ : X → Y as the regressionmodel, with ties in the argmin
broken arbitrarily. For example, when ℓ(xt , y, θ ) =

y− θ ′xt
2
2 we

get the standard linear regression model ŷt = θ ′xt .
Model (2c) can be enriched by adding output information sets

Yt ⊆ Y that augment the information that is available about yt ,

ŷt = argmin
y∈Yt

ℓ(x, y, θ ⋆) (3)

where Yt = Y if no extra information on yt is given. For example, if
we knowapriori that yt ≥ 0we can setYt equal to the nonnegative
orthant.

2.2. K-models

Let us add more flexibility and introduce multiple model pa-
rameters θs ∈ Rd, s = 1, . . . , K , and a latent mode variable st
that determines the model parameter θst that is active at step t .
Fitting a K-model on the training dataset (X, Y ), entails choosing
the K models by minimizing

J(X, Y , Θ, S) =
T∑

t=1

ℓ(xt , yt , θst )+
K∑

i=1

r(θi) (4)

with respect to Θ = (θ1, . . . , θK ) and S = (s1, . . . , sT ). The optimal
parameters θ ⋆

1 , . . . , θ
⋆
K define the K -model

(ŷt , ŝt ) = argmin
y,s

ℓ(xt , y, θ ⋆
s ). (5)

Note that the objective function in (4) is used to estimate the
model parameters θ ⋆

1 , . . . , θ
⋆
K based on the entire training dataset,

while (5) defines themodel used to infer the output ŷt and discrete
state ŝt given the input xt , as exemplified in the next section.

2.2.1. K-means and piecewise affine models
The standard K -meansmodel (Hastie et al., 2009) is obtained by

setting yt = xt , r(θ ) = 0, and

ℓ(xt , yt , θst ) =
1
2
∥yt − θst ∥

2
2 +

1
2
∥xt − θst ∥

2
2 = ∥xt − θst ∥

2
2 (6)

In this case, minimizing (4) assigns each datapoint xt to the cluster
indexed by s⋆t , and defines θ ⋆

1 , . . . , θ ⋆
K as the centroids of the

http://cse.lab.imtlucca.it/%7Ebemporad/jump%5Fmodels/


A. Bemporad et al. / Automatica 96 (2018) 11–21 13

resulting K clusters. Moreover, the regressionmodel defined by (6)
returns

ŝt = argmin
s
∥x̃t − θ ⋆

s ∥
2
2, ŷt = θŝt (7)

that is the index ŝt of the centroid θ ⋆
ŝt
which is closest to the given

input xt , and sets ŷt = θ ⋆
ŝt
as the best estimate of xt .

More generally, by setting

ℓ(xt , yt , θst ) =
yt − θ ′y,st

[
xt
1

]2
2
+ ρ∥xt − θx,st ∥

2
2 (8)

with θst = (θy,st , θx,st ) and ρ > 0, we obtain a piecewise affine
(PWA) model over the piecewise linear partition generated by the
Voronoi diagram of (θ ⋆

x,1, . . . , θ
⋆
x,K ), i.e., the regression model (5)

becomes

ŝt = argmin
s
∥xt − θ ⋆

x,s∥
2
2, ŷt = (θ ⋆

y,ŝt )
′

[
xt
1

]
(9)

The hyper-parameter ρ in (8) trades off between fitting the output
yt and clustering the inputs (x1, . . . , xt ) based on their mutual
Euclidean distance.

A more general PWA model can be defined by setting

ℓ(xt , yt , θst ) =
yt − θ ′y,st

[
xt
1

]2
2

+ ρ

K∑
j=1
ȷ̸=st

max
{
0, (θx,j − θx,st )

′

[
xt
1

]
+ 1

}2 (10)

where maxs
{
θ ′x,s

[ x
1
]}

defines a piecewise linear separation func-
tion that induces a polyhedral partition of the input space (Bennett
& Mangasarian, 1994; Breschi et al., 2016b). In this case it is
immediate to verify that the regression model induced by (5) is

ŝt = argmax
s

{
(θ ⋆

x,s)
′

[
xt
1

]}
, ŷt = (θ ⋆

y,ŝt )
′

[
xt
1

]
. (11)

2.3. Jump model

The models introduced above do not take into account the
temporal order in which the samples (xt , yt ) are generated. To this
end, we add amode sequence loss L in the fitting objective (4)

J(X, Y , Θ, S) =
T∑

t=1

ℓ(xt , yt , θst )+
K∑

k=1

r(θk)+ L(S), (12)

where S = (s0, s1, . . . , sT ) is the mode sequence. We define L :
KT+1

→ R ∪ {+∞} in (12) as

L(S) = Linit(s0)+
T∑

t=1

Lmode(st )+
T∑

t=1

Ltrans(st , st−1) (13a)

where K = {1, . . . , K }, Linit
: K → R ∪ {+∞} is the initial mode

cost, Lmode
: K → R ∪ {+∞} is the mode cost, and Ltrans

: K2
→

R ∪ {+∞} is the mode transition cost. We discuss possible choices
for L in Sections 2.3.1 and 3.

With a little abuse of notation, we write

J(X, Y , Θ, S) = ℓ(X, Y , Θ, S)+ r(Θ)+ L(S) (13b)

where

ℓ(X, Y , Θ, S) =
T∑

t=1

ℓ(xt , yt , θst ), r(Θ) =
K∑

k=1

r(θk). (13c)

Aswith anymodel, the choice of the fitting objective (13) should
trade off between fitting the given data and prior assumptions we
have about the models and the mode sequence. In particular, the

mode sequence loss L in (13a) takes into account the temporal
structure of the mode sequence, for example that the mode might
change (i.e., st ̸= st−1) rarely.

A jumpmodel can be used for several tasks beyond inferring the
values ŷt . In anomaly identification, we are interested in determin-
ing times t for which the jump model does not fit the data point
yt well. In model change detection we are interested in identifying
times t for which ŝt ̸= ŝt−1. In control systems jump models can
be used to approximate nonlinear/discontinuous dynamics and
design model-based control policies, state estimators, and fault-
detection algorithms.

2.3.1. Mode loss functions
We discuss a few options for choosing the mode loss functions

Linit, Lmode, Ltrans defining the mode sequence loss L in (13a). As
we assume that the number K of possible modes must be fixed, K
must be chosen as a trade off between fitting the model to data (K
large) and limit the complexity of the model and avoid overfitting
(K small). The best value is usually determined after performing
cross-validation.

As mentioned above, the case L(S) = 0 leads to a K -model. By
choosing Ltrans(i, j) = λ for all i ̸= j, Lmode(i) = Ltrans(i, i) = 0,
one penalizes mode transitions equally by λ ≥ 0, where λ → ∞

leads to regression of a single model on the data (that is, st ≡ s0),
whileλ→ 0 leads again to aK -model. Note that choosing the same
constant λ for all transitions makes the fitting problem exhibit
multiple solutions, as indexes i, j can be arbitrarily permuted. The
mode loss Lmode can be used to break such symmetries. For exam-
ple, smaller values for st will be preferred by making Lmode(i) <

Lmode(j) for i < j. The shape of the increasing finite sequence
{Lmode(i)}Ki=1 can be used to reduce the number of possible modes:
larger increasing values of Lmode(i) will discourage the use of an
increasing number of modes.

The initial mode cost Linit summarizes prior knowledge about
the initial mode s0. For example, Linit(s0) ≡ 0 if no prior infor-
mation on s0 is available. On the contrary, if the initial mode s0 is
known and say equal to j, then Linit(s0) = 0 for s0 = j and +∞
otherwise.

Next Section 3 suggests criteria for choosing L in case statis-
tical assumptions about the underlying process that generates st
are available. Alternative criteria are discussed in Section 4.4 for
choosing L directly from the training data.

3. Statistical interpretations

Let Y = (y1, . . . , yT ), X = (x1, . . . , xT ), S = (s0, . . . , sT ),
Θ = (θ1, . . . , θK ). We provide a statistical interpretation of the
loss functions for the special case in which the following modeling
assumptions are satisfied:

A1. The mode sequence S, the model parameters Θ and the
input data X are statistically independent, i.e.,

p(S|X, Θ) = p(S), p(Θ|S, X) = p(Θ)

A2. The conditional likelihood of Y is given by

p(Y |X, S, Θ) =
T∏

t=1

p(yt |X, S, Θ) =
T∏

t=1

p(yt |xt , θst )

where p(yt |xt , θst ) is the likelihood of the outcome yt given
xt and θst ;

A3. The priors on the model parameters θ1, . . . , θK are all equal
to p(θ ), i.e.,

p(θ1) = · · · = p(θK ) = p(θ )
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and themodel parameters are statistically independent, i.e.,

p(Θ) =
K∏

k=1

p(θk)

A4. The probability of being in mode st given s0, . . . , st−1 is
p(st |st − 1) = πst ,st−1 (Markov property);

A5. The initial mode s0 has probability p(s0) = πs0 .

Proposition 1. Let Assumptions A1–A5 be satisfied and define

ℓ(xt , yt , θst ) = − log p(yt |xt , θst ) (14a)

r(θk) = − log p(θk) (14b)

Ltrans(st , st−1) = − logπst ,st−1 (14c)

Linit(s0) = − logπs0 (14d)

Lmode(st ) = 0. (14e)

Thenminimizing J(X, Y , Θ, S) as defined in (12)–(14)with respect to
Θ and S is equivalent to maximizing the joint likelihood p(Y , S, Θ|X).

Proof. Because of the Markov property (Assumption A4), the
likelihood of the mode sequence S is

p(S) = p(s0)
T∏

t=1

p(st |st−1). (15)

From (15) and Assumptions A1–A3, we have:

p(Y , S, Θ|X) = p(Θ|X)p(Y , S|X, Θ)
= p(Θ|X)p(S|X, Θ)p(Y |S, X, Θ)
= p(Θ)p(S)p(Y |S, X, Θ)

=

K∏
k=1

p(θk)p(s0)
T∏

t=1

p(st |st−1)p(yt |xt , θst )

whose logarithm is

log p(Y , S, Θ|X) =
K∑

k=1

log p(θk)+ log p(s0)

+

T∑
t=1

log p(st |st−1)+
T∑

t=1

log p(yt |xt , θst ).

(16)

By defining the loss functions ℓ, r , Ltrans, Linit, and Lmode as
in (14), the minimization of the fitting objective J(X, Y , Θ, S) as
in (12)–(13) with respect to Θ and S is equivalent to maximizing
the logarithm of the joint likelihood p(Y , S, Θ|X), and therefore
p(Y , S, Θ|X). ■

The following proposition provides an inverse result, namely
a statistical interpretation of minimizing a given generic J(X, Y ,
Θ, S) defined as in (13).

Proposition 2. Define the probability density functions

p(yt |xt , θst ) =
e−ℓ(xt ,yt ,θst )

ν(θst , xt )
(17a)

p(S, Θ|X) =
ν(S, Θ, X)e−L(S)−r(Θ)∑

S̄∈KT+1
∫
Rd×Kν(S̄, Θ, X)e−L(S)−r(Θ)dΘ

(17b)

where

ν(θst , xt ) =
∫
Y
e−ℓ(xt ,y,θst )dy (18a)

ν(S, Θ, X) =
T∏

t=1

ν(θst , xt ) (18b)

and assume that the outputs Y are conditionally independent given
(S, X, Θ), i.e., p(Y |S, X, Θ) =

∏T
t=1p(yt |xt , θst ). Then the following

identity holds

argmin
S,Θ

J(X, Y , Θ, S) = argmax
S,Θ

log p(Y , S, Θ|X) (19)

Proof. Since

p(Y , S, Θ|X) = p(Y |S, X, Θ)p(S, Θ|X) (20)

by substituting (18) in (20) we get

p(Y , S, Θ|X) =∏T
t=1 e

−ℓ(xt ,yt ,θst )∏T
t=1 ν(θst , xt )

ν(S, Θ, X)e−L(S)−r(Θ)∑
S̄∈KT+1

∫
Rd×Kν(S̄, Θ, X)e−L(S̄)−r(Θ)dΘ

=
e−

∑T
t=1 ℓ(xt ,yt ,θst )−L(S)−r(Θ)∑

S̄∈KT+1
∫
Rd×Kν(S̄, Θ, X)e−L(S̄)−r(Θ)dΘ

(21)

As the denominator in (21) does not depend on S andΘ , maximize
p(Y , S, Θ|X) is equivalent to maximize

e−
∑T

t=1 ℓ(xt ,yt ,θst )−L(S)−r(Θ),

or, equivalently, to minimize
T∑

t=1

ℓ(xt , yt , θst )+ L(S)+ r(Θ)

The identity (19) thus follows from the definition of J(X, Y , Θ, S)
in (13). ■

The following corollary provides a set of probabilistic interpre-
tations of the loss function J(X, Y , Θ, S), some of which are well
known in Bayesian estimation.

Corollary 1. Let ν(θst , xt ) in (18a) be a constant. Then the following
statements hold:

1. The quadratic regularization r(Θ) = ρ
∑K

k=1∥θk∥
2
2 corresponds

to assuming a Gaussian prior on θk, namely p(θk) = ce
−
∥θk∥

2
2

2σ2
θ

with σθ =

√
1
2ρ .

2. The quadratic penalty on the prediction error

ℓ(xt , yt , θst ) = c∥yt − θ ′st xt∥
2
2 (22)

correspond to assuming the probabilistic model of the output
yt ∼ N(θ ′st xt , σ

2
y I), with σy =

√
1
2c .

3. Setting Ltrans
= 0 is equivalent to assuming that the modes st

are i.i.d., with

st ∼ p(st ) =
e−L

mode(st )∑K
k=1 e−L

mode(k)

Furthermore, setting L(S) = 0 corresponds to assuming that
p(st ) = 1

K for all t = 0, . . . , T , while setting Linit(s) =
Lmode(s) = s, s = 1, . . . , K , corresponds to assuming p(s) =
(e−1)
1−e−K

e−s.
4. Under the assumption p(S|Θ, X) = p(S) = p(s0)

∏T
t=1p(st |

st−1), the case Lmode
= Linit

= 0 and Ltrans(i, j) = λ for i ̸= j
and 0 for i = j, corresponds to assume that

p(s0)=
1
K

, p(st |st−1)=

⎧⎪⎨⎪⎩
e−λ

1+ (K − 1)e−λ
if st ̸= st−1

1
1+ (K − 1)e−λ

if st = st−1
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Proof. As ν(θst , xt ) does not depend on θst and X , p(S, Θ|X) in (17b)
can be written as p(S, Θ|X) = p(S)p(Θ), where

p(S) =
e−L(S)∑
S̄∈KT+1e−L(S) , p(Θ) =

e−r(Θ)dΘ∫
Rd×K e−r(Θ)dΘ

(23)

The results follow straightforwardly from the above expressions of
p(S) and p(Θ) and the definition of L(s) in (13a). ■

4. Algorithms

We provide now algorithms for fitting a jump model to a given
dataset and to infer predictions ŷt , ŝt from it.

4.1. Model fitting

Given a training sequence X = (x1, . . . , xT ) of inputs and
Y = (y1, . . . , yT ) of outputs, for fitting a jump K -model we need
to attempt minimizing the cost J(X, Y , Θ, S) with respect to Θ

and S. A simple algorithm to solve this problem is Algorithm 1,
a coordinate descent algorithm that alternates minimization with
respect to Θ and S. If ℓ and r are convex functions, Step 1.1 can
be solved globally (up to the desired precision) by standard convex
programming (Boyd&Vandenberghe, 2004). Step 1.2 can be solved
to global optimality by standard discrete dynamic programming
(DP) (Bellman, 1957) with complexity O

(
TK 2

)
. This is achieved

by computing the following matrices M ∈ RK×(T+1) of costs and
U ∈ K× RT of indexes

M(s, T ) = Lmode(s)+ ℓ(xT , yT , θs) (24a)
Us,t = argmin

j
{M(j, t + 1)+ Ltrans(j, s)},

t = 1, . . . , T − 1 (24b)

M(s, t) = Lmode(s)+ ℓ(xt , yt , θs)+M(Us,t , t + 1)
+ Ltrans(Us,t , s) (24c)

M(s, 0) = Linit(s)+min
j
{M(j, 1)+ Ltrans(j, s)} (24d)

backwards in time, and then reconstructing the minimum cost
sequence S forward in time by setting

s0 = argmin
j

M(j, 0) (24e)

st = Ust−1,t , t = 1, . . . , T . (24f)

Note that if the time order of operations in (24) is reversed, the DP
iterations (24) become Viterbi algorithm (Rabiner, 1989, p. 264):

M(s, 0) = Linit(s) (25a)
Us,t = argmin

j
{M(j, t − 1)+ Ltrans(j, s)},

t = 1, . . . , T (25b)

M(s, t) = Lmode(s)+ ℓ(xt , yt , θs)+M(Us,t , t − 1)
+ Ltrans(Us,t , s) (25c)

followed by the backwards iterations

sT = argmin
j

M(j, T ) (25d)

st = Ust+1,t , t = 0, . . . , T − 1. (25e)

Since at each iteration the cost J(X, Y , Θ, S) is non-increasing and
the number of sequences S is finite, Algorithm 1 always terminates
in a finite number of steps, assuming that in case of multiple
optima one selects the optimizers in Steps 1.1 and 1.2 according to
some predefined criterion. However, there is no guarantee that the
solution found is the global one, as it depends on the initial guess
S0. To improve the quality of the solution, wemay run Algorithm 1

Algorithm 1 Jump model fitting
Input: Training dataset X = (x1, . . . , xT ), Y = (y1, . . . , yT ),

number K of models, initial mode sequence S0 = {s00, . . . , s
0
T }.

1. iterate for k = 1, . . .

1.1. Θk
← argminΘ ℓ(X, Y , Θ, Sk−1)+ r(Θ);

(model fitting)

1.2. Sk ← argminS ℓ(X, Y , Θk, S)+ L(S);
(mode sequence fitting)

2. until Sk = Sk−1.

Output: Estimated model parameters Θ⋆
= Θk and mode

sequence S⋆
= Sk.

N times from different random initial sequences S0 and select the
best result. Our experience is that a small N , say N = 5, is usually
enough.

During the execution of Algorithm 1 it may happen that a mode
s does not appear in the sequence Sk−1. In this case, the fitting
loss ℓ(X, Y , Θ, Sk−1) does not depend on θs, and the latter will be
determined in Step 1.1 based only on the regularizer r(Θ).

In case L(S) = 0, the ordering of the training data becomes
irrelevant and Algorithm 1 reduces to fitting K models to the
dataset. If in addition ℓ and r are specified as in (6) and Y = X ,
Algorithm 1 is the standard K -means algorithm,where the starting
sequence S0 is the initial clustering of the data points (x1, . . . , xT ),
Step 1.1 computes the collectionΘk of cluster centroids at iteration
k, and Step 1.2 reassigns data points to clusters by updating their
labels skt .

When again L(S) = 0 and the mode loss in (10) is used for
getting a PWA model, the cost function minimized in Step 1.1
of Algorithm 1 is separable with respect to θy,s, θx,s. Then the
minimization with respect to θx,s produces the piecewise linear
separation function maxs

{
θ ′x,s

[ x
1
]}

that defines the polyhedral
partition of the input space (Breschi et al., 2016b), while Step 1.2
looks for the optimal latent variables st that best trade off between
assigning the corresponding data point xt to the polyhedron {x ∈
X : θ ′x,st

[ x
1
]
≥ θ ′x,j

[ x
1
]
, ∀j ̸= st , j ∈ K}andmatching the predicted

output yt ≈ θ ′y,st

[ xt
1
]
.

Finally, we remark that Algorithm 1 is also applicable to the
more general case in which the mode loss L also depends on Θ ,
by simply replacing Steps 1.1 and 1.2 with

Θk
← argmin

Θ

ℓ(X, Y , Θ, Sk−1)+ r(Θ)+ L(Sk−1, Θ) (26a)

Sk ← argmin
S

ℓ(X, Y , Θk, S)+ L(S, Θk). (26b)

This would cover the case in which L contains parameters to be
estimated.

4.2. Inference

4.2.1. One-step ahead prediction
Assume that themodel parametersΘ⋆ have been estimated and

that new production data X̃t = (x̃1, . . . , x̃t ) and outputs Ỹt−1 =

(ỹ1, . . . , ỹt−1) are given. Because of the structure of the mode loss
function L defined in (13a), the estimates ŷt and ŝ0, . . . , ŝt do not
depend on future inputs x̃j and modes ŝj for j > t .

The same fitting objective (12) can be used to estimate ŷt and
Ŝt = (ŝ0, . . . , ŝt ),

(ŷt , Ŝt ) = argmin
y,St

Jt (X̃t , Ỹt−1, y, Θ⋆, St )

s.t. y ∈ Yt

(27)
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Algorithm 2 Inference

Input: Model set Θ⋆, production dataset X̃t = (x̃1, . . . , x̃t ), past
outputs Ỹt−1 = (ỹ1, . . . , ỹt−1).

1. Ŝt ← argmin
St

⎧⎨⎩L(St )+
t−1∑
j=1

ℓ(x̃j, ỹj, θ ⋆
sj )

+min
y∈Yt

ℓ(x̃t , y, θ ⋆
st )

⎫⎬⎭;

2. ŷt ← argminy∈Yt ℓ(x̃t , y, θ ⋆
ŝt
);

Output: Estimated output ŷt and mode sequence Ŝt .

where Yt ⊆ Y is a possible additional output information set and

Jt (X̃t , Ỹt−1, y, Θ⋆, St ) = ℓ(x̃t , y, θ ⋆
st )+

t−1∑
j=1

ℓ(x̃j, ỹj, θ ⋆
sj )

+Linit(s0)+
t∑

j=1

Lmode(sj)+
t∑

j=1

Ltrans(sj, sj−1).

Algorithm 2 attempts at solving problem (27) at every t of
interest. Step 1 is solved again by the DP iterations (24) over the
time span [0, t], with the only difference that in (24a) we set the
terminal penalty equal to M(s, t) = Lmode(s) + miny{ℓ(x̃t , y, θs)},
since the last output yt is determined later at Step 2.

Note that open-loop prediction, that is the task of predicting ŷt
and ŝt without acquiring Ỹt−1, can be simply obtained by replacing
Ỹt−1 = (ỹ1, . . . , ỹt−1) with Ŷt−1 = (ŷ1, . . . , ŷt−1). Arbitrary
combinations of one-step ahead and open-loop predictions are
possible to handle the more general case of intermittent output
data availability.

4.2.2. Recursive inference
When Ltrans

= 0, problem (27) becomes completely separable
and simplifies to

(ŷt , ŝt ) = argmin
y,s

ℓ(x̃t , y, θ ⋆
s )+ Lmode(s) s.t. y ∈ Yt . (28)

For example, in the case of K -means (6) (L(s) = 0), the estimate
obtained by (28) is given by (7).

When themode transition loss functionLtrans
̸= 0, the simplifi-

cation in (28) does not hold anymore. Nonetheless, an incremental
version of (27) can be still derived as described in Algorithm 3,
where Lt : K → R is the arrival cost recursively computed by
the algorithm from the initial condition L0(s0) = Linit(s0), for all
s0 ∈ K. Clearly, while producing exactly the same results, the for-
mulation in Algorithm 3 is much more efficient than Algorithm 2,
as the number of computations does not increase with t and thus
can be used for online inference.

4.2.3. Smoothing
The same approach described in Section 4.2.1 can be general-

ized to other inference tasks than one-step ahead or open-loop
prediction, such as smoothing. Assume ỹk is only known at steps
k ∈ Tt ⊆ {1, . . . , t}. Steps 1–2 of Algorithm 2 are replaced by

Ŝt ← argmin
St

{
L(St )+

∑
j∈Tt

ℓ(x̃j, ỹj, θ ⋆
sj )

+

∑
j∈T̄t

min
yj∈Yj

ℓ(x̃j, yj, θ ⋆
sj )
}

(30a)

Algorithm 3 Recursive inference
Input: Model Θ⋆, current input x̃t , past input/output pair

(x̃t−1, ỹt−1), arrival cost Lt−1.

1. Update

Lt (st ) ← Lmode(st )+min
st−1

{
ℓ(x̃t−1, ỹt−1, θst−1 )

+Lt−1(st−1)+ Ltrans(st , st−1)
}

(29a)

2. Compute

(ŷt , ŝt )← argmin
y,s

ℓ(x̃t , y, θs)+ Lt (s) s.t. y ∈ Yt (29b)

Output: Estimated output ŷt andmode ŝt , updated arrival cost Lt .

yj ← argmin
y∈Yj

ℓ(x̃j, y, θ ⋆
ŝj
), ∀j ∈ T̄t (30b)

where T̄t = {1, . . . , t} \ Tt . Note that complexity of the inner
minimization in (30a) depends on the shape of the loss function ℓ.
In the quadratic case, the minimum can be expressed analytically.

4.2.4. Pure mode estimation
In case we are interested in estimating only the latent mode ŝt

given x̃1, . . . , x̃t , ỹ1, . . . , ỹt−1 and also ỹt , we can keep using (29) by
simply changing (29b) to

ŝt = argmin
s

ℓ(x̃t , ỹt , θs)+ Lt (s) (31)

This allows reconstructing the mode sequence ŝ1, . . . , ŝT̃ recur-
sively from the available dataset, whichmay be useful for example
to detect changes in the relation between the input x̃t and the
output ỹt .

4.3. Relation with hidden Markov models

Jump models have several common features with hidden
Markov models (HMMs) (Rabiner, 1989). First, both models con-
sider the presence of discrete latent states st . While HMMs assume
that the sequence S of such states satisfies the Markov property

p(st |st−1, . . . , s0) = p(st |st−1)

in jump models the particular form chosen in (13a) for the mode
sequence loss L makes estimating ŝt incrementally as in (29) pos-
sible.

Second, in HMMs the observed outputs are such that

p(yt |xt , . . . , x1, yt−1, . . . , y1, st , . . . , s0) = p(yt |xt , st ).

Similarly, in jump models ŷt is a unique function of a given pair
(xt , st ), as (29b) becomes

ŷt = argmin
y∈Yt

ℓ(xt , y, θst ).

Indeed, an HMM is a special case of a jump model. Consider
the case in which the output observation yt is discrete, that is
Y = {1, . . . , L}. An HMM is characterized by the set of discrete
probabilities

p(st+1 = i|st = j) = πi,j, i, j ∈ K (32a)
p(s0) = πs0 (32b)

p(yt = v|st = j) = βj,v, v ∈ Y. (32c)

Let us set xt = 1, θs = s, and define the loss function ℓ as

ℓ(x, y, θs) = − log(βθs,y). (33)
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Similarly to (14), by also setting r(θ ) = 0, Ltrans(st , st−1) =
− logπst ,st−1 , L

init(s0) = − logπs0 , and Lmode(s) = 0, the jump
model defined by the inference rule (27)–(28) returns the mode
sequence Ŝt that best matches the observed sequence Ỹt of outputs
and that sets the output ŷt equal to the value v ∈ Y thatmaximizes
the probability βŝt ,v . An extension to HMMs with continuous ob-
servation densities can be obtained by properly redefining the loss
function ℓ in (33).

In case the probabilities βs,y are not given, but rather must
be estimated from a training dataset, we can set instead θs =
[βs,1 . . . βs,L]

′ along with the loss function ℓ

ℓ(y, θs) = − log(e′yθs) (34)

where ey is the yth column of the identity matrix of size L. If the
initial probability distribution πs0 and the state transition prob-
abilities πi,j are unknown, they can be estimated by minimizing
J(X, Y , Θ, S) in (12) with Ltrans(st , st−1) and Linit(s0) as in (14c)
and (14d), respectively. This implies that the unknown model
parameterΘ should also includeπs0 andπi,j, leading to the general
case of having the mode sequence loss L also dependent on Θ as
in (26).

The well-known Expectation–Maximization (EM) algorithm
(Dempster et al., 1977) determines the parameters of an HMM by
maximizing the log-likelihood

LHMM(Θ|X, Y ) = log p(Y |X, Θ)= log
∑

S∈KT+1

p(Y , S|X, Θ)

with respect toΘ . Instead, as shownbyProposition 1, our approach
maximizes log p(Y , S, Θ|X) with respect to Θ and S.

The case of HMMs in which the observations y are a mode-
dependent linear function of x rather than discrete has been dealt
with for example in Fridman (1994), under the assumption that
such a linear relation between input and output samples is per-
turbed by Gaussian noise. This is a special case of our jump model
framework, obtained by setting ℓ as in (22), Ltrans as in (14c), Linit

as in (14d), Lmode(s) = 0, and r(θ ) = 0. The training algorithm
described in Fridman (1994), however, completely relies on the
probabilistic assumptions made about the normal distribution of
output noise and the Markovian nature of mode transitions.

In conclusion, jump models are more descriptive than HMMs.
The sequence of modes may not be generated by a Markov chain,
such as in the case of PWA models (10) and (11), where the mode
st is a deterministic function of xt . In addition, the loss and mode
loss functions can have rather arbitrary shapes. For example, we
may choose ℓ(x, y, θs) as the Huber function of y − θ ′sx for robust
regression, which is still a convex loss.

4.4. Selecting the mode sequence loss from data

Selecting the right mode sequence loss L may not be obvi-
ous and require several attempts that involve fitting and cross-
validation. A simple approach to choose L directly from the
training data is to update the mode loss function L after executing
Algorithm 1 based on the best sequence S⋆ found so far, and run
Algorithm 1 again, executing the algorithm N times in total.

Assuming Lmode
= 0 and given a set of relative weights

τ0, τ1, . . . , τK , we update Ltrans, Linit from one run of Algorithm 1
to another by setting

µj ←
#{t ∈ {1, . . . , T } : s⋆t−1 = j}

T
(35a)

µij ←
#{t ∈ {1, . . . , T } : s⋆t = i, s⋆t−1 = j}

T
(35b)

Ltrans(i, j) ← −τi

log
(

µij
µj

)
∑K

j=1 log
(

µij
µj

)

i, j = 1, . . . , K (35c)

µ0
j ←

#{t ∈ {0, . . . , T } : s⋆t = j}
T

(35d)

Linit(j) ← −τ0
log
(
µ0

j

)∑K
j=1 log

(
µ0

j

) (35e)

where # denotes the cardinality (number of elements) of a set and
S⋆
= (s⋆0, . . . , s

⋆
T ). The choice in (35) preserves the relative weight

between the losses L, ℓ, and r , as

τi =

K∑
j=1

Ltrans(i, j), i = 1, . . . , K

τ0 =

K∑
j=1

Linit(j)

remains the same each time Linit(j) and Ltrans(i, j) are updated
as in (35). Choosing L as in (35) is motivated by the statistical
interpretation (14c)–(14d) and used routinely for estimating state
probabilities in HMMs (Rabiner, 1989). Clearly, (35) are well de-
fined only if µij, µj, µ0

j > 0 for all i, j = 1, . . . , K . If the latter
condition is not satisfied, one may consider adding the following
Laplace smoothing (Manning, Raghavan, & Schütze, 2008, Ch. 13):

µj ←
1+ #{t ∈ {1, . . . , T } : s⋆t−1 = j}

T + K
(36a)

µij ←
1+ #{t ∈ {1, . . . , T } : s⋆t = i, s⋆t−1 = j}

T + K 2 (36b)

µ0
j ←

1+ #{t ∈ {0, . . . , T } : s⋆t = j}
T + K

(36c)

when estimating µj, µij and µ0
j .

Computing L according to (35) after the training step has been
foundespecially useful for improving the quality of inference, both
when using (28) or (29b).

5. Examples

We test the algorithms proposed in the previous sections on
various problems of regression and classification using jumpmod-
els. In all the examples, convex optimization methods are used
to solve the problem at Step 1.1 of Algorithm 1, while dynamic
programming is used to compute the global optimum at Step 1.2.
As the DP computation also provides the optimal cost V k ≜
J(X, Y , Θk, Sk), when running the tests we replace the termination
criterion in Step 2 with

V k−1
− V k

≤ ϵV (37)

where ϵV is a small tolerance. In all the exampleswe set ϵV = 10−8.
Furthermore, after the end of the training step, the loss L is

updated as in (35) before making inference.
All tests were run on a MacBook Pro 3 GHz-Intel i7 in MATLAB

R2016b. The test code is available for download at http://cse.lab.
imtlucca.it/~bemporad/jump_models/.

5.1. Jump linear model regression

We consider a dataset of T = 10000 training data and T̃ =
10000 production data generated by the following jump linear
model with K = 3 modes

yt = θst xt + ζt

with yt ∈ R, xt ∈ R20, xt,i ∼ N (0, 1) for all i = 1, . . . , 20, ζt ∼
N (0, σ 2

y ). The coefficients of the parameter vectors θi are randomly
selected from the normal distribution N (0, 1). The true mode st

http://cse.lab.imtlucca.it/%7Ebemporad/jump%5Fmodels/
http://cse.lab.imtlucca.it/%7Ebemporad/jump%5Fmodels/
http://cse.lab.imtlucca.it/%7Ebemporad/jump%5Fmodels/
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has probability π = 5% of being different from st−1, starting from
s0 = 1.

We consider the loss functions

ℓ(xt , yt , θst ) = ∥yt − θ ′st xt∥
2
2

r(θk) = 10−5∥θk∥22

Ltrans(st , st−1) =
{
−τ log(1− (K − 1)π ) if st = st−1
−τ logπ if st ̸= st−1

Linit(s0) = 0
Lmode(st ) = 0

where τ is treated as a hyper-parameter to be tuned. Algorithm1 is
executed N = 5 times from different random initial guesses. Each
execution is limited to kmax = 1000 iterations.

We run Algorithm 1 on the training data for different mag-
nitudes σy of output noise and values of the hyper-parameter τ .
The resulting model coefficients Θ⋆ are then used in Algorithm 3
for recursive inference on the production data. For assessing the
quality of inference we use the true loss Ltrue defined in (1) with
ℓtrue(ŷt , ỹt ) = ∥ŷt − ỹt∥

2
2. In addition, assuming the latent modes

s̃t are available only for validation purposes, we consider the fol-
lowing mode-mismatch figure

ℓtrues =
100

T̃

T̃∑
t=1

δŝt ,s̃t (38)

where δi,j is the Kronecker delta function. The results are summa-
rized in Fig. 1.

By recalling (22) and (14c), in order tominimize− log p(yt |xt , θ )
−logπst ,st−1 one should set ℓ(xt , yt , θst ) =

1
2σ2

y
andLtrans(st , st−1) =

− logπst ,st−1 , or equivalently ℓ(xt , yt , θst ) = 1, Ltrans(st , st−1) =
−τ ⋆ logπst ,st−1 with τ ⋆

= 2σ 2
y . Fig. 1 also reports the value of τ ⋆

(dashed line) corresponding to different values of σy. As expected,
the best value for τ obtained by cross validation, corresponding to
the minimum of the plotted curves, corresponds to the theoretical
one τ ⋆ that would be obtained if σy were known. For large values of
τ the percentage of mode mismatch becomes close to K−1

K ≈ 66%
(not shown in the figure), that is the value one gets when the
mode ŝt is assigned randomly. The average CPU time for executing
Algorithm 1 is 342 ms, with the longest execution requiring 93
iterations. Algorithm 3 requires 0.89 µs per data point on average
to make one-step ahead inference.

Fig. 2 shows the percentage of misclassified modes when pure
mode estimation, as presented in Section 4.2.4, is employed in-
stead of one-step ahead prediction. In this case, the latent mode
ŝt is reconstructed based not only on the observations x̃1, . . . , x̃t ,
ỹ1, . . . , ỹt−1 but also ỹt , using Algorithm 1 with (29b) replaced
by (31). As expected, compared to Fig. 1, taking into account the
current observation ỹt in estimating ŝt reduces the number of
misclassified modes.

Finally, the Expectation–Maximization algorithm for HMM re-
gression in Fridman (1994) is implemented and comparedwith our
method, with the hyper-parameter τ chosen, for each different σy,
as the best value observed in cross-validation. In EM the sequence
of latent modes is inferred in a batch way from the production
dataset by using Viterbi algorithm (Viterbi, 2010). In our approach,
the mode sequence is estimated using Algorithm 1 with (29b)
replaced by (31). Table 1 summarizes the results of the comparison,
showing that our approachprovides a slightly better, although very
similar, mode mismatch figure ℓtrues (38).

5.2. Jump binary classification

We consider T = 10000 training data and T̃ = 10000 produc-
tion data generated by the following jump linearmodelwithK = 3

Fig. 1. Jump linear model fit and validation using recursive one-step ahead predic-
tion: true loss L̃true (left) and mode mismatch ℓtrues (right), optimal theoretical value
τ ⋆
= 2σ 2

y (dashed line).

Fig. 2. Jump linear model fit and validation using pure mode estimation: mode
mismatch ℓtrues (right), optimal theoretical value τ ⋆

= 2σ 2
y (dashed line).

Table 1
Jump linear model validation, smoothing results: mode mismatch ℓtrues achieved
by the Expectation–Maximization (EM) algorithm for HMM regression (Fridman,
1994) and by the approach discussed in this paper (Algorithms 1 and 2).

ℓtrues %

EM Algorithms 1–2

σy = 0.00 0.00 0.00
σy = 0.01 0.12 0.06
σy = 0.05 0.40 0.23
σy = 0.10 1.24 0.59
σy = 0.20 1.84 0.88

modes

yt = sign(θst xt + ζt )

with

[
θ1 θ2 θ3

]
=

⎡⎢⎢⎢⎢⎢⎣
−1 −1 −1

1.1812 −0.5587 0.8003
−0.7585 0.1784 −1.5094
−1.1096 −0.1969 0.8759
−0.8456 0.5864 −0.2428
−0.5727 0.8759 0.6037
−0.5587 −0.2428 1.7813
0.1784 0.1668 1.7737

⎤⎥⎥⎥⎥⎥⎦
and yt ∈ {−1, 1}, xt ∈ R8, xt,i ∼ N (0, σ 2

x ) for all i = 1, . . . , 8 with
σx = 10, ζt ∼ N (0, σ 2

y ), σy = 0.1. The true mode st changes every
500 samples during the generation of the data, covering all modes.
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Fig. 3. Jump binary classifier: percentage of misclassified labels (left) and mode
mismatch (right) on training and production data.

We want to train a binary classifier defined by the following
losses

ℓ(xt , yt , θst ) = max(1− ytθ ′st xt , 0)

r(θk) = 10−5∥θk∥22
Ltrans(st , st−1) = τ (1− δi,j)

Linit(s0) = 0
Lmode(st ) = 0.

Fig. 3 shows the results obtained for different values of the hyper-
parameter τ . We consider the mismatch between the true labels
yt and the estimated labels y⋆

t = sign((θ ⋆
s⋆t
)′xt ) returned by Algo-

rithm 1 on the training data, and also between the true labels ỹt
and the labels ŷt = sign((θ ⋆

ŝt
)′x̃t ) returned by Algorithm 3 on the

production data. In addition, we consider the detection of model
changes, comparing the true modes st , s̃t and their corresponding
estimates s⋆t , ŝt . Good values for τ are in the range 1–10, for
which model changes are correctly detected on both training and
production data.

The CPU time for executing Algorithm 1 ranges between 4.24
and 80.76 s, with Step 1 computed using the QP solver of GUROBI
7.02 (Gurobi Optimization, Inc., 2017). Algorithm 1 requires be-
tween 15 and 199 iterations. Algorithm 3 takes an average of
0.57 µs per data point for inference.

5.3. Markov jump linear dynamical system

We consider the Markov jump linear dynamical system with
K = 4 modes

xt+1 = Ast xt + Bstut + ζt

where xt , ζt ∈ R8, ut ∈ R2 takes random values in {−1, 1}2, ζ j
t ∼

N (0, σy) for all j = 1, . . . , 8, the matrix pairs (Ai, Bi) are random
stable systems for all i = 1, . . . , K . The modes st are randomly
generated according to an (unknown) transition probabilitymatrix
Π ∈ R4×4. The goal is to estimate the system matrices (Ai, Bi),
i = 1, . . . , K , and the transition probability Π from T = 50000
data pairs (xt , ut ) available for training, and validate the results on
T̃ = 50000 new samples.

Algorithm 1 is executed N = 5 times on the training data
with loss function ∥xt+1 − Ast xt − Bstut∥

2
2, uniform mode transi-

tion loss Ltrans(i, j) = τ , zero losses Linit, Lmode, and regularization
r(θk) = 10−5∥θk∥22. Note that, since the output sample yt = xt+1 is
multidimensional, we cannot train a model for each component of
y independently, as they are linked by the common mode st .

After training and before performing inference via (29), the
transition probability matrix Π̂ is reconstructed using (35) on the
estimated mode sequence S⋆ returned by Algorithm 1.

The results are reported in Fig. 4. The coefficients of the models
(Ai, Bi) are estimated with an error of 10−8 (σy = 0), 10−3 (σy =

0.01), and 10−2 (σy = 0.05), respectively, while the transition
probability matrix with error ∥Π − Π̂∥2 of 0.01 for all values of
σy. The average CPU time for executing Algorithm 1 is 68 ms (the
longest execution takes 134 iterations), while Algorithm 3 takes
0.57 µs per data point on average for inference.

5.4. Experimental example: PWA dynamical model

We consider the problem of modeling the dynamics of a place-
ment process of electronic components in a pick-and-place ma-
chine described in Juloski, Heemels, and Ferrari-Trecate (2004).
The process consists of a mounting head carrying the electronic
component which is placed on a printed circuit board, and then re-
leased. This process is characterized by twomain operatingmodes,
the free and the impact mode. In free mode the machine carries the
electronic component in an unconstrained environment, i.e., with-
out being in contact with the circuit board. In impact mode the
mounting headmoves in contact with the circuit board. Because of
its switching behavior, this process has been used as a benchmark
to assess the performance of several identification algorithms for
hybrid dynamical systems (Bemporad et al., 2005; Juloski Heemels,
Ferrari-Trecate, Vidal et al., 2005; Ohlsson & Ljung, 2013).

A data record over an interval of 15 s is gathered from an
experimental bench (see Juloski, Heemels, & Ferrari-Trecate, 2004
for details), with a sampling frequency of 400 Hz. We denote by u
the voltage applied to the motor driving the mounting head and
by y the vertical position of the mounting head. The data record is
split in two disjoint subsets: a training set with T = 4800 samples,
which consist of the observations gathered in the first 12 s of the
experiments, and a test set with T̃ = 1200 samples, which consist
of the observations gathered in the last 3 s.

Wewant to fit a PWAmodel as defined in (10)–(11) with K = 2
discrete modes. Each regression model is given by yt = θ ′y,st

[ xt
1
]
,

where xt = [yt−1 yt−2 ut−1 ut−2]′.
Algorithm 1 is executed N = 5 times on the first 4400 samples

of the training set with loss function ℓ(xt , yt , θst ) as in (10), mode
sequence loss L = 0 and regularization r(Θ) =

∑K
k=1r(θy,k),

with r(θy,k) = 10−5∥θy,k∥22. The remaining 400 samples are used
to tune the hyper-parameter ρ in (10), leading to an optimal value
ρ = 2.15 · 10−4. The average CPU time for executing Algorithm 1
for a fixed value of ρ is 156 ms. In the worst case, Algorithm 1
terminates after 25 iterations.

Fig. 5 shows the outputs ỹt collected from the production
dataset, the open-loop prediction ŷt of the output reconstructed
by feeding the same inputs ũt to the estimated PWA model, and
the sequence of estimated modes ŝt . The resulting best fit rate

BFR = 100

(
1−

√∑T̃
t=1∥ỹt−ŷt∥

2∑T̃
t=1∥ỹt−ȳ∥

2

)
% is equal to 83%, where ȳ

denotes the average of the outputs ỹ1, . . . , ỹT̃ . The evolution of
the reconstructed mode sequence shows that mode 1 is active at,
roughly, y ≥ 15. From the physical knowledge of the system and
of the experimental setup, we can associate modes 1 and 2 to the
impact and to the free mode, respectively.

For comparison, the same fitting problem is solved by using
the cluster-based algorithm for PWA regression in Ferrari-Trecate
et al. (2003), using the Hybrid Identification Toolbox (HIT) tool-
box (Ferrari-Trecate, 2005). The Proximal Support Vector Classifier
(PSVC) (Fung & Mangasarian, 2005) is employed to compute the
polyhedral partition of the regressor space. The same training and
production datasets are considered, with the hyper-parameters
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Fig. 4. Markov jump linear dynamical system: true loss L̃true (left) and mode
mismatch ℓtrues (right).

Fig. 5. Pick-and-place machine: simulated and actual output (top), mode sequence
estimated using our approach (middle), and using the cluster-based algorithm
(Ferrari-Trecate et al., 2003) (bottom).

characterizing the PWA regression algorithm (Ferrari-Trecate et
al., 2003) tuned via cross-validation on the last 400 samples of the
training set. The open-loop predicted output ŷt is shown in Fig. 5,
along with the estimatedmode sequence. The achieved BFR is 75%,
which is slightly worse than what we obtained using our approach
(83%), although very similar. The average CPU time required by the
HIT toolbox to train the PWA model for fixed hyper-parameters is
159 s, which is about 1000×slower than the method proposed in
this paper.

6. Conclusions

We have presented a new framework for fitting a jump model
to a temporal sequence of data. Overall, the approach is able to
fit models with latent discrete variables and provides an efficient
(and more general) alternative to existing methods, such as the
expectation–maximization algorithm for the estimation of hidden
Markov models and cluster-based heuristics for the identification
of switching and PWA models.

A main strength of the approach is its versatility in describing a
large class of parametric models, as the shape of themodel and the
way it jumps depends on the shape of the loss functions used for
fitting the model parameters and for inference. Such a generality
of the approach stimulates future research to address auto-tuning

strategies, where the loss functions are chosen automatically from
data. We expect that several instances of our approach will be
investigated, using different loss functions and in various applica-
tions.

Another strength of the proposed approach is its numerical
efficiency, due to using a simple coordinate-descent optimization
algorithm for fittingmodel parameters and a recursive formulation
for inferring outputs and latent modes. Although there is no guar-
antee of converging to the global optimum, numerical evidence
shows the effectiveness of the method.

Future research will also address an incremental version of the
fitting algorithm, so to updatemodels and infer output/mode pairs
when data are streaming on-line.
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