
1

Fast Path Planning
Through Large Collections of Safe Boxes

Tobia Marcucci, Parth Nobel, Russ Tedrake, and Stephen Boyd

Abstract—We present a fast algorithm for the design of smooth
paths (or trajectories) that are constrained to lie in a collection
of axis-aligned boxes. We consider the case where the number of
these safe boxes is large, and basic preprocessing of them (such
as finding their intersections) can be done offline. At runtime we
quickly generate a smooth path between given initial and terminal
positions. Our algorithm designs trajectories that are guaranteed
to be safe at all times, and it detects infeasibility whenever
such a trajectory does not exist. Our algorithm is based on two
subproblems that we can solve very efficiently: finding a shortest
path in a weighted graph, and solving (multiple) convex optimal
control problems. We demonstrate the proposed path planner
on large-scale numerical examples, and we provide an efficient
open-source software implementation, fastpathplanning.

Index Terms—Motion and Path Planning, Optimization and
Optimal Control, Collision Avoidance, Convex Optimization.

I. INTRODUCTION

Path planning is a problem at the core of almost any
autonomous system. Driverless cars, drones, autonomous air-
craft, robot manipulators, and legged robots are just a few
examples of systems that rely on a planning algorithm to
navigate in their environment. Path planning problems can be
challenging on many fronts. The environment can be dynamic,
i.e., change over time, or uncertain because of noisy sensor
measurements [1]–[4]. Computation might be subject to strict
real-time requirements [5]–[7]. Interactions between multiple
robots without central coordination can lead to game-theoretic
problems [8]–[11]. In this paper we consider problems in
which a single smooth path needs to be found through an
environment that is fully known and static, but potentially very
large and complicated to navigate through. For example, this is
the case for a drone or a legged robot inspecting an industrial
plant, or for a mobile robot transporting packages in a large
warehouse.

Similarly to previous methods [12], [13], we assume that
the environment is described as a collection safe sets, through
which our system or robot can move freely without colliding
with obstacles. We consider the case where the safe sets are
axis-aligned boxes and very large in number (thousands or
tens of thousands). Our problem is to find a smooth path
that is contained in the union of the safe boxes, and connects
given initial and terminal points. Focusing on box-shaped safe
sets allows us to substantially accelerate multiple parts of our
algorithm (see §VII).

T. Marcucci and R. Tedrake are with the Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. P. Nobel and S. Boyd are with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305, USA. Corresponding
author is T. Marcucci: tobiam@mit.edu.

Fig. 1. Path planning problem for a quadrotor flying through a village.
Top. The village, composed of buildings, trees, and bushes. The free space is
decomposed using more than ten thousand safe boxes. Bottom. A snapshot of
the quadrotor flight. The smooth path connects two opposite corners of the
village and is guaranteed to be collision free at all times. The online planning
time is less than four seconds.

Our algorithm is composed of an offline and an online part.
In the offline preprocessing we construct a graph that stores
the intersections of the safe boxes, and we solve a convex
optimization problem to label the edges of this graph with ap-
proximate distances. These computations are done only once,
since the environment is static, and require from a fraction of
a second to a few tens of seconds depending on the problem
size. In the online part we first use the graph constructed offline
to design a polygonal curve of short length that connects the
given initial and terminal points. Then we solve a sequence of
convex optimal control problems to transform the polygonal
curve into a smooth path that approximately minimizes a given
objective function. The online runtimes of our algorithm are
dominated by these control problems which, however, are
solvable in a time that increases only linearly with the number
of boxes traversed by our path [14]. This leads to online
planning times of a few hundredths of a second for medium
size problems, and of the order of a second for very large
problems. Consider that, for a problem like the one in figure 1,
previous approaches required hundreds of seconds to design
a path through less than ten polytopic regions [12], while our
method takes a few seconds to find a path through more than

2

ten thousand boxes.
The proposed planning algorithm is complete, which means

it is guaranteed to find a safe smooth path connecting the
initial and final positions if such a path exists, and to certify
infeasibility of the planning problem otherwise. In addition, by
using Bézier curves for the path parameterization, our method
designs smooth paths that are guaranteed to be safe at all times,
and not only at a finite number of sample points.

Through numerical experiments, we show that the runtimes
of our algorithm increase very mildly with the number of
safe boxes, and that our method can quickly find high-quality
solutions of problems that are well beyond the reach of
previous approaches, such as the one in figure 1. The methods
of this paper are implemented in a companion open-source
package, fastpathplanning.

A. Related work

A wide variety of path planning algorithms have been
developed over the last fifty years. An excellent overview of
the techniques available in the literature is [15, Part 2]. Here
we review the methods that are most closely related to ours.

The closest approach to the one presented in this paper
is trajectory optimization with GCS (graphs of convex sets)
from [13]. Similarly to the method we propose here, GCS
designs smooth paths through collections of safe sets that are
preprocessed to form a graph. Leveraging the optimization
framework from [16], it formulates a tight convex relaxation of
the planning problem and it recovers a collision-free trajectory
using a rounding strategy. Thanks to this workflow, GCS
also provides tight optimality bounds for the trajectories it
designs. However, by trying to solve the planning problem
through a single convex program, GCS has a few limitations.
First, only rough approximate costs on the path acceleration
and higher derivatives can currently be enforced with GCS.
Secondly, GCS does not scale to the very large numbers of
safe sets considered here. The algorithm we present in this
paper uses fast graph search to solve the discrete part of the
planning problem approximately and, only at a later stage, it
uses convex optimization to shape the continuous path. This
division sacrifices the optimality guarantees but retains the
algorithm completeness, and it allows us to find high-quality
paths for extremely large planning problems very quickly.

The idea of reformulating a planning problem with
collision-avoidance constraints as the problem of designing a
path through safe sets comes from [12]. That work considers a
statement of the path planning problem that, except for the use
of boxes as safe sets, is essentially the same as the one in this
paper. However, the algorithm proposed in [12], which is based
on mixed integer optimization, is computationally expensive
and limited to small problems (see the comparison in §VI-D).

More commonly, path planning problems with collision-
avoidance constraints are solved using either local nonconvex
optimization [17]–[20] or sampling-based algorithms [21]–
[23]. The former methods scale to high-dimensional spaces
and can handle kinematic and dynamic constraints. However,
they suffer from local minima and can often fail in finding a
feasible trajectory, especially if the environment is cluttered

with obstacles. Sampling-based algorithms, on the other hand,
can be more reliable when moving in complex environments,
but they do not scale equally well to high dimensions and are
less suitable for the design of smooth paths. Similar to [13], the
approach we propose here can be thought of as a generalization
of sampling-based algorithms, where collision-free samples
are substituted with collision-free sets. Instead of sampling the
environment densely, we fill it with a few large safe boxes.
This reduces the combinatorial complexity to the minimum
and allows us to plan through the open space using efficient
convex optimization [24].

A variety of algorithms are available for the approximate
convex decomposition of a nonconvex space [25]–[28], and
also practical methods tailored to the configuration spaces
of kinematic trees have been recently developed [29]–[32].
Simple modifications of these algorithms can be used to
efficiently decompose complex robot environments into safe
boxes, as required by our algorithm.

In this paper we parametrize continuous paths using Bézier
curves. These have a variety of very useful properties for path
planning, and have been widely used in this area in the recent
years [13], [33]–[37].

B. Outline

This paper is organized as follows. In §II we state the
path planning problem and give a high-level overview of our
algorithm. The algorithm can be broken down into three parts,
one offline and two online. The offline preprocessing, which
does not use either the endpoints of the path or the specific
objective function, is described in §III. The first online phase,
illustrated in §IV, finds a polygonal curve that is contained in
the safe boxes and connects the given endpoints of the path.
The second online phase, described in §V, finds a smooth
path between the endpoints that (approximately) minimizes
the objective function. In §VI we analyze the performance
of our algorithm through multiple numerical experiments. In
conclusion, in §VII, we describe some extensions of our
method to more general planning problems.

II. PATH PLANNING

In this section we state the path planning problem and we
describe at a high-level the components of our algorithm.

A. Path planning problem

We consider the design of a smooth path in Rd from a given
initial point pinit ∈ Rd to a given terminal point pterm ∈ Rd.
We represent the path as the function p : [0, T] → Rd, where
T is the time taken to traverse the path. In addition to the
initial and terminal point constraints,

p(0) = pinit, p(T) = pterm,

we require that the path stay in a given set S ⊆ Rd of safe
points:

p(t) ∈ S, t ∈ [0, T].

3

We will assume that the safe set S is a union of K axis-aligned
boxes,

S =

K⋃
k=1

Bk,

with

Bk = {x ∈ Rd | lk ≤ x ≤ uk}, k = 1, . . . ,K.

Here the inequalities are elementwise, and the box bounds
satisfy lk < uk for k = 1, . . . ,K.

We considers paths with D continuous derivatives, and we
take our objective to be a weighted sum of the L2 norm
squared of these derivatives,

J =

D∑
i=1

αi

∫ T

0

∥p(i)(t)∥22 dt, (1)

where p(i) denotes the ith derivative of p, and αi are nonneg-
ative weights.

The path planning problem is

minimize J
subject to p(0) = pinit, p(T) = pterm,

p(t) ∈ S, t ∈ [0, T].
(2)

The optimization variable is the path p. The problem data are
the objective weights αi, the traversal time T , the initial and
terminal points pinit and pterm, and the safe set S (specified
by the box bounds lk and uk). Note that in this formulation we
specify the initial and terminal positions, but do not constrain
the initial and terminal derivatives. A simple variation on our
method can handle that case.

The path planning problem (2) is infinite dimensional, but
we will restrict candidate paths to piecewise Bézier curves,
which are parametrized by a finite set of control points.

B. Safety map

The path planning problem (2) has convex quadratic objec-
tive, two linear equality constraints, and the safety constraint,
which, in general, is not convex. The safety constraint is an
infinite collection of disjunctive constraints, that force the
point p(t), for each t ∈ [0, T], to lie in at least one of the
boxes Bk. Ensuring safety of a path p is equivalent to finding
a function s : [0, T] → {1, . . . ,K} for which

p(t) ∈ Bs(t), t ∈ [0, T].

The value s(t) ∈ {1, . . . ,K} represents the choice of a safe
box for the path at time t, and the overall function s can be
thought of as a safety map for our path.

Our safety maps will have a finite number of transitions,
i.e., will be of the form

s(t) =


s1 t ∈ [t0, t1]

s2 t ∈ (t1, t2]
...
sN t ∈ (tN−1, tN],

(3)

where 0 = t0 < t1 < · · · < tN = T . We refer to t1, . . . , tN−1

as the safety transition times. Note that at these times we have
p(tj) ∈ Bsj ∩ Bsj+1

.

In terms of the safety map, the path planning problem is

minimize J
subject to p(0) = pinit, p(T) = pterm,

ls(t) ≤ p(t) ≤ us(t), t ∈ [0, T],
(4)

where the variables are the path p and the safety map s. We
observe that if the safety map s is fixed, problem (4) reduces
to a convex optimal control problem with single variable p,
quadratic objective, and linear constraints.

C. Feasibility

We will say that a safety map of the form (3) is feasible if
it satisfies

pinit ∈ Bs1 , pterm ∈ BsN ,
Bsj ∩ Bsj+1

̸= ∅, j = 1, . . . , N − 1.
(5)

The path planning problem (4) is feasible if and only
if a feasible safety map exists. To see this, we note that
for any path and safety map that are feasible for (4), the
safety map is feasible according to definition (5). Conversely,
suppose a safety map is feasible, with pj ∈ Bsj ∩ Bsj+1 ,
j = 1, . . . , N − 1. Then the polygonal curve with nodes
pinit = p0, p1, . . . , pN = pterm is entirely contained in the safe
set S. We will construct a feasible path that has D continuous
derivatives, and moves along the polygonal curve (and so is
safe). Choose any times 0 = t0 < t1 < · · · < tN = T .
Choose a parametrization of the polygonal curve that satisfies
the interpolation conditions p(tj) = pj , j = 0, . . . , N , as well
as p(i)(tj) = 0, i = 1, . . . , D and j = 1, . . . , N − 1. While
the polygonal curve has kinks, the path p is differentiable D
times since it comes to a full stop at each kink. By pairing this
path with the feasible safety map, we have a feasible solution
to the path planning problem (4).

D. Method outline

We give here a high-level description of our path planning
algorithm, with the details illustrated in future sections. Our
method has three main phases, summarized below. The first is
done offline, before we have specified the initial and terminal
points or the objective coefficients; the second and third phases
are done whenever a path is to be found.

Offline preprocessing: Offline preprocessing is done us-
ing only the safe set, i.e., the collection of safe boxes. In
this phase we construct a weighted graph with each vertex
associated to a point in the intersection of two boxes, and
with each edge corresponding to a pair of points that lie in
the same safe box. Note that this graph, when considered as
a subset of Rd, lies entirely in the safe set S. We refer to the
points associated with the graph vertices as representatives.

Polygonal phase: Here we find a polygonal curve C that
starts at pinit, ends at pterm, is entirely contained in the safe
set S, and has small length. The curve is initialized by solving
a shortest path problem in the graph constructed offline. Then
it is shortened through an iterative process, where we alternate
between minimizing the curve length for a fixed sequence of
safe boxes, and updating the sequence of safe boxes for a fixed
polygonal curve. The former is a small convex optimization
problem and the latter only involves negligible computation.

4

Smooth phase: In this phase the sequence of safe boxes
s1, . . . , sN identified in the polygonal phase, and traversed by
the polygonal curve C, is fixed. Through a simple heuristic,
we use C also to estimate initial transition times t1, . . . , tN−1.
Then we alternate between optimizing the smooth path p and
improving the transition times. As noted above, the first step
is a convex optimal control problem, since we are solving
problem (4) for a fixed safety map s, defined as in (3). For
the update of the transition times we use a heuristic that is
also based on convex optimization.

Summary: Overall, the online part of our method can be
summarized as follows:

1: procedure FAST PATH PLANNING (high-level outline)
2: # polygonal phase
3: find initial box sequence s1, . . . , sN and safe polygo-

nal curve C connecting pinit to pterm

4: while not converged do
5: fix box sequence and shorten polygonal curve
6: fix polygonal curve and improve box sequence
7: end while
8: # smooth phase
9: freeze box sequence

10: estimate transition times t1, . . . , tN−1

11: while not converged do
12: fix transition times and optimize path p
13: fix path and optimize transition times
14: end while
15: end procedure

The proposed method is approximate, but it finds paths that
have typically low cost and that are guaranteed to be safe at
all instants of time (as opposed to only at a finite number of
sample points). In addition, the algorithm is complete, i.e., it
is guaranteed to find a feasible path whenever problem (2) is
feasible, and to detect infeasibility otherwise.

III. OFFLINE PREPROCESSING

In this section we describe the offline part of our algorithm.
The steps below are also illustrated through a simple example
at the end of the section.

A. Line graph

We start by computing the line graph associated with the
safe boxes. The vertices of this graph are pairs of safe boxes
that intersect, and the edges connect pairs of intersections that
share a box. Formally, the line graph is an undirected graph
G = (V, E) with vertices

V = {{k, l} ⊆ {1, . . . ,K} | Bk ∩ Bl ̸= ∅, k ̸= l},

and edges

E = {{v, w} ⊆ V | v ∩ w ̸= ∅, v ̸= w}.

The name line graph is motivated by the fact that G can be
equivalently defined as the line graph of the intersection graph
of our collection of boxes.

The line graph allows us to efficiently construct polygonal
curves that are guaranteed to be safe (i.e., contained in the

safe set S). Consider a path in the line graph. For each vertex
in this path, choose a point in Rd in the corresponding box
intersection. Then form the polygonal curve passing through
these points. Each line segment in this curve is associated with
an edge in the line graph, and therefore with a safe box. By
construction, this safe box contains the line segment entirely.
It follows that the whole polygonal curve is safe.

Since computing the intersection of two boxes is a trivial
operation, we can construct the line graph G very efficiently,
even when the number K of boxes is very large. Our imple-
mentation is based on the technique from [38, §2].

B. Representative points

Our next step is to choose a representative point for each
vertex of the line graph, i.e., for each pair of intersecting
boxes. As a heuristic method to shorten the polygonal curves
constructed as described above, we position these points close
to their neighbors in the line graph. More formally, denoting
with yv ∈ Rd the representative point of vertex v ∈ V , we
minimize the sum of the Euclidean distances between all pairs
of representative points that are connected by an edge:

minimize
∑

{v,w}∈E ∥yv − yw∥2
subject to yv ∈ Bk ∩ Bl, v = {k, l} ∈ V. (6)

Here the variables are the representative points yv , v ∈ V .
Each of these points is constrained in the corresponding box
intersection, which is itself an axis-aligned box. This is a
convex optimization problem that can be represented as a
second-order cone program (SOCP) and efficiently solved [24,
§4.4.2] [39]. We also note that this problem only needs to be
solved to modest, or even low, accuracy.

After optimizing the position of the representative points yv
as in (6), each edge {v, w} ∈ E of the line graph is assigned
the weight ∥yv − yw∥2.

C. Example

We illustrate the preprocessing steps on a small path plan-
ning problem that will serve as a running example throughout
the paper. This problem has K = 9 safe boxes in d = 2
dimensions and is depicted in figure 2. The left figure shows
the safe boxes, and the center left figure shows their inter-
sections (with some overlapping when more than two boxes
intersect). These intersections correspond to the |V| = 11
vertices of the line graph. In the center right figure, we
show the |E| = 20 edges of the line graph as line segments
connecting the centers of the box intersections. The right figure
shows the optimized representative points, which minimize the
total Euclidean distance over the edges of the line graph, i.e.,
a solution of (6). Note that some of the 20 edges overlap in
this figure. Observe also that the line graph, considered as a
subset of R2, is entirely contained in the safe set, since each
edge is in at least one safe box.

IV. POLYGONAL PHASE

We now describe the first online phase of our algorithm,
where we design a safe polygonal curve C of short length that

5

Fig. 2. Offline preprocessing of the safe boxes. Left. Safe boxes. Center left. Pairwise intersections of the safe boxes. Center right. Line graph, with vertices
in the box intersections and edges connecting intersections that share a box. Right. Line graph with optimized representative points.

connects pinit to pterm. An illustration of the steps below can
be found at the end of the section, where we continue our
running example.

A. Shortest path problem

We use the line graph G to initialize the polygonal curve C.
We augment the line graph with two new vertices with repre-
sentative points pinit and pterm. An edge is added between pinit

and all the intersections of safe boxes that contain pinit, i.e., all
the vertices {k, l} ∈ V such that pinit ∈ Bk or pinit ∈ Bl. An
analogous operation is done for pterm. As for the other edges
in the line graph, these new edges are assigned a weight equal
to the Euclidean distance between the representative points
that they connect. We then find a shortest path from the initial
point to the terminal point, and we recover an initial polygonal
curve C by connecting the representative points along this path.
As noted above, this curve is safe because each of its line
segments is contained in at least a safe box.

This shortest path step determines whether or not our
path planning problem is feasible. If there is no path in the
augmented line graph between the vertices associated with
pinit and pterm, i.e., the distance between them is ∞, then
the path planning problem (4) is infeasible. Conversely, if
there is a path between these two vertices, the original path
planning problem is feasible, since a feasible trajectory can be
constructed as in §II-C.

The problem of identifying the safe boxes that contain
the initial and terminal points is known as stabbing problem
and, given the precomputations done to construct the line
graph, this takes negligible time [38]. Using an optimized
implementation of Dijkstra’s algorithm (e.g., the one provided
by scipy [40]), the search for a shortest path is also very
fast.

B. Shortening of the polygonal curve

Thanks to the optimization of the representative points
in (6), our initial polygonal curve C is typically of short length.
However, the online knowledge of the initial and terminal
points, which were unknown during the preprocessing stage,
allows us to shorten this curve further. This is done iteratively:
we alternate between solving a convex optimization problem

that minimizes the curve length for a fixed box sequence, and
improving the box sequence for a fixed polygonal curve.

Optimization of the polygonal curve: Denote with C be
the curve at the current iteration (initialized with the solution
of the shortest path problem). Let N be the number of
segments in C, and z0, . . . , zN ∈ Rd be the curve nodes,
with z0 = pinit and zN = pterm. For j = 1, . . . , N , let also
sj ∈ {1, . . . ,K} be the index of the safe box that covers the
line segment between zj−1 and zj . We fix the boxes sj that the
curve C traverses, and we optimize the position of the nodes
zj so that the length of the curve is minimized. This leads to
the problem

minimize
∑N

j=1 ∥zj − zj−1∥2
subject to z0 = pinit, zN = pterm,

zj−1, zj ∈ Bsj , j = 1, . . . , N,

(7)

with variables z0, . . . , zN . This is a small SOCP with banded
constraints that can be solved very efficiently, in time that is
only linear in the number N of segments [14].

Improvement of the box sequence: After solving prob-
lem (7) the nodes zj minimize the curve length for the given
box sequence, but the insertion of a new box in the sequence
can potentially give us room to further shorten the current
curve (see, e.g., the example at the end of this section). In
our second step we seek a new box sequence that contains the
current curve and that is guaranteed to result in a shorter curve.
Thanks to the fact that our safe sets are boxes, this step will
only involve negligible computations and will be extremely
fast.

For each node zj in our curve, we consider inserting
between the indices sj and sj+1 in our box sequence a third
safe box Bk that contains zj . (As mentioned above, given our
offline computations, the stabbing problem of finding all the
boxes that contain a given point can be solved very efficiently.)
Without loss of generality, we assume that the points zj−1,
zj , and zj+1 are distinct, since if two nodes coincide we can
eliminate one. In §A we show that this box insertion leads to
a reduction of the curve length if and only if the optimal value
of the following problem is larger than one:

minimize ∥λ∥2
subject to L1λ ≥ L1λ1, U1λ ≤ U1λ1,

U2λ ≥ U2λ2, L2λ ≤ L2λ2.
(8)

6

Fig. 3. Polygonal phase of the algorithm. Left. Line graph augmented with pinit and pterm, shown as black disks. Center left. Shortest path from pinit to
pterm. Center right. The safe box sequence is fixed and the polygonal curve is shortened via convex optimization. Right. A new box (shown in green) is
inserted in the sequence and the curve is shortened a second time. Since no further shortening is possible, the polygonal phase converges in one iteration.

Here the variable is λ ∈ Rd. The vectors λ1, λ2 ∈ Rd are
defined as

λ1 =
zj − zj−1

∥zj − zj−1∥2
, λ2 =

zj+1 − zj
∥zj+1 − zj∥2

.

The matrices L1 and U1 select the indices of the inactive
inequalities in the box constraint zj ∈ Bsj ∩ Bk (L1 for the
lower bounds and U1 for the upper bounds). Similarly, L2 and
U2 select the inactive inequalities in zj ∈ Bk ∩ Bsj+1

.
We observe that problem (8) can be solved in closed form in

negligible time. In fact, since L1, U1, L2, and U2 are selection
matrices, each inequality in (8) is simply a bound on a subset
of the entries of the variable λ. The constraints in (8) can then
be expressed as

l ≤ λ ≤ u,

for two suitable vectors l ∈ (R∪{−∞})d and u ∈ (R∪{∞})d.
Problem (8) is then an orthogonal projection onto an axis-
aligned box, and its minimizer λ⋆ can be computed explicitly
as

λ⋆ = min{u,max{l, 0}},

where the minimum and maximum are elementwise.
For each index j = 1, . . . , N − 1 such that the norm of

λ⋆ is greater than one, we insert a new box in our sequence.
If multiple boxes satisfy this condition for the same index
j, we select one for which the norm of λ⋆ is largest. (This
heuristic is motivated in §A.) After updating the box sequence,
the distance minimization problem (7) is solved again. This
process is repeated until the condition above fails for every
curve node j and every box k.

C. Example

Figure 3 continues our running example, and illustrates
the construction of the polygonal curve. The initial position
pinit and terminal position pterm are shown as black disks in
the bottom left and bottom right, respectively. The left figure
shows the augmented line graph, where these two points are
connected to their adjacent vertices. The initial point pinit has
two adjacent vertices, while the terminal point pterm has only
one. The center left figure shows the shortest path from the
initial point to the terminal point. In the center right figure, we

fix the boxes that the curve must traverse, and we minimize
the curve length by solving the SOCP (7). In the right figure,
a new box is inserted in the box sequence and the curve nodes
are optimized again. In this small example the polygonal phase
converges in a single iteration.

V. SMOOTH PHASE

We now describe the final phase of our algorithm, which
starts from the polygonal curve C computed in the previous
phase, and constructs a smooth path p that is feasible for our
planning problem, and has small objective value.

In this phase the sequence s1, . . . , sN of safe boxes tra-
versed by the curve C is frozen. Our first step is to find an
initial estimate for the transition times t1, . . . , tN−1. This gives
us an initial safety map s, that is then improved by alternating
between two convex optimization problems. The first is an
optimal control problem, where we fix the safety map and we
optimize the path. The second is a re-timing problem, where
we improve the transition times for a fixed path.

The optimal control problems we solve are infinite dimen-
sional. To solve them numerically we parametrize our path as
a piecewise Bézier curve, i.e., a sequence of Bézier curves that
connect smoothly. (Sometimes this is also called a composite
Bézier curve.) We start this section by reviewing the basic
properties of this family of curves.

A. Bézier curves
A Bézier curve is constructed using Bernstein polynomials.

The Bernstein polynomials of degree M are defined over the
interval [a, b] ⊂ R (with b > a) as

βn(t) =

(
M

n

)(
t− a

b− a

)n (
b− t

b− a

)M−n

, n = 0, . . . ,M.

For t ∈ [a, b] the Bernstein polynomials are nonnegative and,
by the binomial theorem, they sum up to one. Therefore, the
scalars β0(t), . . . , βM (t) can be thought of as the coefficients
of a convex combination. Using these coefficients to combine
a given set of control points γ0, . . . , γM ∈ Rd, we obtain a
Bézier curve:

γ(t) =

M∑
n=0

βn(t)γn.

7

γ0= γ(a)

γ1

γ2

γ3

γ4= γ(b)

γ(t)

Fig. 4. Bézier curve with control points γ0, . . . , γM , with M = 4. The
curve starts at γ(a) = γ0, ends at γ(b) = γM , and is entirely contained in
the convex hull of the control points, shown shaded.

The Bézier curve γ : [a, b] → Rd is a polynomial function of
degree M .

An example of a Bézier curve is shown in figure 4, for
d = 2 and M = 4. Below we list some important properties
that we will use later in this section.

Endpoints: A Bézier curve starts at its first control point
and ends at its last control point, i.e.,

γ(a) = γ0, γ(b) = γM . (9)

Control polytope: Since each point on a Bézier curve
is a convex combination of the control points, the curve is
contained in the convex hull of the control points, i.e.,

γ(t) ∈ conv{γ0, . . . , γM}, (10)

for t ∈ [a, b]. This convex hull is called the control polytope
of the Bézier curve γ. It follows that if all control points lie
in a box, then so does the Bézier curve.

Derivatives: The derivative γ(1) of a Bézier curve γ is
also a Bézier curve. It has degree M−1 and its control points
are linear combinations of the ones of γ:

γ(1)
n =

M

b− a
(γn+1 − γn), n = 0, . . . ,M − 1. (11)

Iterating this, we see that the derivatives of any order of
a Bézier curve are also Bézier curves, and their control
points are related to the ones of γ through linear constraints.
Combining this observation with the endpoint property (9),
we see that the requirement that a piecewise Bézier curve has
D continuous derivatives can be expressed as a set of linear
equality constraints on the control points of the Bézier curves
that compose it (see (15) and (16)).

L2 norm squared: The square of the L2 norm of a Bézier
curve can be expressed as a convex quadratic function of the
control points [41, §3.3]:∫ b

a

∥γ(t)∥22 dt =
b− a

2M + 1

M∑
m=0

M∑
n=0

(
M
m

)(
M
n

)(
2M
m+n

) γT
mγn. (12)

This allows us to express the L2 norm squared of any
derivative of the curve γ, which is itself a Bézier curve, as
a convex quadratic function of its control points.

B. Initialization of the transition times

The first step of the smooth phase is the estimation of the
transition times t1, . . . , tN−1. For j = 1, . . . , N−1, we simply

let tj be the time at which we reach node zj by traveling along
the polygonal curve C at constant speed, with total traversal
time T . Thus the time window Tj = tj − tj−1 allocated for
box Bsj is proportional to the distance between the nodes zj−1

and zj . We combine these initial transition times with the box
sequence of the curve C as in (3). This defines our initial safety
map s.

C. Optimization of the path shape

As observed before, given a safety map, problem (4) reduces
to a convex optimal control problem. To solve this problem
numerically we parametrize a path p as a piecewise Bézier
curve.

Given the transition times t1, . . . , tN−1, we divide the path
p into N subpaths,

pj : [tj−1, tj] → Rd, j = 1, . . . , N.

Each subpath pj is a Bézier curve of degree M , with control
points pj,0, . . . , pj,M ∈ Rd and domain [tj−1, tj]. Leveraging
the endpoint property (9), the boundary conditions in our path
planning problem are enforced simply as

p1,0 = pinit, pN,M = pterm. (13)

Property (10) tells us that a Bézier curve lies within its control
polytope. Therefore, to ensure that each subpath pj is entirely
contained in the corresponding safe box Bsj , it is sufficient to
constrain the control polytope of pj to lie in the box:

lsj ≤ pj,n ≤ usj , j = 1, . . . , N, n = 0, . . . ,M. (14)

This implies that each subpath is safe, pj(t) ∈ Bsj for all
t ∈ [tj−1, tj], and that the whole path p is safe, p(t) ∈ S for all
t ∈ [0, T]. The subpath derivatives p

(i)
j are themselves Bézier

curves. As in (11), the control points of these derivatives are
defined recursively by the linear difference equation

p
(i)
j,n =

M − i+ 1

Tj

(
p
(i−1)
j,n+1 − p

(i−1)
j,n

)
,

i = 1, . . . , D, j = 1, . . . , N, n = 0, . . . ,M − i, (15)

where Tj = tj − tj−1 is the duration of the subpath pj . Using
this, the continuity and differentiability of our path is simply
enforced as a set of linear equality constraints:

p
(i)
j,M−i = p

(i)
j+1,0, i = 0, . . . , D, j = 1, . . . , N − 1. (16)

(Note that initial and terminal values for any derivative of our
path can be specified using the control points p(i)1,0 and p

(i)
N,M−i

as in (13).)
Using the formula in (12), each term in our objective func-

tion (1) can be expressed as the following convex quadratic
function of the control points:

Ji,j =

∫ tj

tj−1

∥p(i)j (t)∥22 dt

=
Tj

2(M − i) + 1

M−i∑
m=0

M−i∑
n=0

(
M−i
m

)(
M−i
n

)(
2(M−i)
m+n

) (
p
(i)
j,m

)T

p
(i)
j,n.

(17)

8

Overall, we then have the optimization problem

minimize J =
∑D

i=1 αi

∑N
j=1 Ji,j

subject to (13), (14), (15), and (16).
(18)

The variables are the control points p
(i)
j,n for i = 0, . . . , D,

j = 1, . . . , N , and n = 0, . . . ,M − i. Since the objective
J is convex quadratic and all the constraints are linear,
this is a quadratic program (QP) [24, §4.4]. The difference
equations (15) couple only the control points of consecutive
subpaths. These QPs have then the structure of optimal control
problems with banded constraints. This allows us to solve them
in time that scales only linearly in N [14].

Of course, the QP (18) is an approximation of the origi-
nal infinite dimensional path planning problem. Nonetheless,
piecewise Bézier curves give us an excellent finite dimensional
basis for the infinite dimensional space of paths that are
continuously differentiable D times. In addition, the solution
of (18) is guaranteed to be safe at all times.

Choice of degree: If the degree of the Bézier curves is
chosen so that M ≥ 2D+1, then the QP (18) is guaranteed to
be feasible. This degree condition ensures that each subpath
can be a line segment, with the first D derivatives equal to zero
at the endpoints. The overall path p can then take the form
of the polygonal curve C, while satisfying the differentiability
constraints.

While this minimum degree guarantees feasibility, we have
found that curves of smaller degree almost always yield
feasible QPs. In any case, the degree must be at least D + 1
(i.e., D + 2 control points), since the continuity of the path
derivatives in (16) is a set of D+1 linear equality constraints.

D. Re-timing

The last piece of our algorithm addresses the question of
how to improve the transition times t1, . . . , tN−1 for a fixed
path p, obtained when solving the QP (18).

To obtain a new tentative timing, we solve a convex opti-
mization problem where we imagine scaling the duration Tj of
each subpath pj by a constant factor ηj > 0, for j = 1, . . . , N .
We note immediately that this scaling does not preserve the
feasibility of our path. In fact, by scaling the duration of two
adjacent subpaths pj and pj+1 by different factors ηj and ηj+1

we break the path differentiability at the transition time tj .
Here we will use the factors ηj to guess a new timing, and
a new (feasible) path will be constructed by re-solving the
QP (18).

The effect of the time scaling on the cost of our path is to
multiply each objective term Ji,j , defined in (17), by η1−2i

j .
Our first term in the objective of the re-timing problem is then

J1 =

D∑
i=1

αi

N∑
j=1

Ji,jη
1−2i
j ,

where the terms Ji,j are constant coefficients that have the
value of the corresponding functions before the re-timing. Note
that J1 is a convex function of the factors ηj > 0, since for
i ≥ 1 we have 1− 2i < 0.

The second term in our re-timing objective is a Lagrangian
penalty that approximates (relaxes) the differentiability con-
straints in (16) for small variations of the factors around the
nominal value η1 = · · · = ηN = 1. For i = 1, . . . , D and
j = 1, . . . , N − 1, let νi,j ∈ Rd be the optimal Lagrange
multipliers of the differentiability constraints (16), obtained
when solving the QP (18). We substitute the differentiability
constraints with the cost penalty

D∑
i=1

N−1∑
j=1

νTi,j

(
p
(i)
j,M−i − p

(i)
j+1,0

)
.

Note that, since the multipliers νi,j are optimal, the optimal
solution of the QP (18) is unchanged after this substitution.
Expressing this penalty as a function of our re-timing variables
ηj , we obtain

D∑
i=1

N−1∑
j=1

wi,j(η
−i
j − η−i

j+1),

where wi,j = νTi,jp
(i)(tj) and p is the fixed path found

by solving (18). Since the latter expression is, in general,
not convex in the scaling factors, we linearize it around the
nominal point η1 = · · · = ηN = 1. This yields our second
cost term,

J2 =

D∑
i=1

N−1∑
j=1

iwi,j(ηj+1 − ηj),

where all the constants have been dropped.
The first constraint in our re-timing problem is a linear

equality that ensures that the total duration of our path is
unchanged after re-timing:

N∑
j=1

ηjTj = T.

Finally, similarly to a gradient type method, we use a trust
region constraint to explicitly control the mismatch between
the subpath derivatives. Specifically, we limit the maximum
change in adjacent scaling factors as |ηj+1 − ηj | ≤ κ, where
κ > 0.

Overall, our re-timing problem is then

minimize J1 + J2
subject to

∑N
j=1 ηjTj = T,

|ηj+1 − ηj | ≤ κ, j = 1, . . . , N − 1.

(19)

The variables are the factors η1, . . . , ηN , which are subject to
the implicit constraint ηj > 0. The re-timing problem (19) is
convex, since the objective is convex, the first constraint is
linear, and the second constraint can be expressed as 2(N −
1) linear inequalities. More precisely, it can be verified that
problem (19) is representable as an SOCP [39, §2.3]. Given
that this problem has only N variables and sparse structure,
it can be solved extremely quickly.

After solving problem (19) and updating the transition times
t1, . . . , tN−1, the QP (18) is solved again and a new (fully
differentiable) path is obtained. If the optimal objective value
decreases, compared to its value before re-timing, we accept
the new times and update our path. Otherwise we keep the

9

10%
0.06

27%
2.77

8%
0.30

9%
4.16

3%
2.96

43%
1.80 9%

0.04

24%
1.98

7%
0.18

10%
0.56

7%
0.23

44%
0.12 14%

0.01

27%
0.55

10%
0.17

14%
0.21

7%
0.06

28%
0.03

Fig. 5. Smooth phase of our algorithm. The shaded sets are the control polytopes of the Bézier curves. The labels show the relative time duration (top)
and the cost (bottom) of each Bézier subpath. Left. The curve obtained in the polygonal phase of the algorithm with the corresponding sequence of safe
boxes. Center left. The transition times are estimate using the polygonal curve and an initial smooth path is optimized. Center right. The transition times are
improved using convex optimization and the path is optimized a second time. Right. The path at the last (sixth) iteration.

previous times and path. Independently of the success of the
iteration, we then decrease the value of κ. This process is
repeated until κ becomes smaller than a fixed tolerance ε > 0.

We decrease κ using

κ =
1

ω
max

j=1,...,N−1
|η⋆j+1 − η⋆j |,

where η⋆1 , . . . , η
⋆
N is the solution of (19) and ω > 1 is a

parameter. Note that in case of an unsuccessful update of the
transition times, ω > 1 guarantees that at the next iteration
the factors η⋆1 , . . . , η

⋆
N are infeasible for the new re-timing

problem (19) with the updated value of κ.
We have found that for most problems the value of κ can

be simply initialized to one. Small values of ω (e.g., ω =
2) tend to work well when the initial transition times from
§V-B are inaccurate, while larger values of ω (e.g., ω = 5)
are more effective otherwise. In the numerical experiments
illustrated below we use ω = 3. For the termination tolerance
a reasonable choice is ε = 10−2.

E. Example

We conclude our running example by illustrating the smooth
phase of the path planning algorithm. We seek a path that is
D = 3 times continuously differentiable, and take objective
weights α3 = 1 and α1 = α2 = 0, i.e., our objective is
the L2 norm squared of the third derivative (or jerk) of the
path. We use Bézier curves of degree M = 2D+1 = 7, which
ensure feasibility of the QP (18) and success of our algorithm.
Given the objective weights of this problem, the choice of the
traversal time T does not affect the shape of our path, but only
scales its cost. Therefore, to simplify the analysis, we select
T so that the global minimum of the problem is equal to one.

Figure 5 illustrates the smooth phase of our algorithm. The
blue shaded areas are the Bézier control polytopes within
each box. Each box traversed by the path is labeled with
two numbers: the percentage on top is the ratio between the
duration Tj of the subpath pj paired with the box and the total
traversal time T ; the number at the bottom is the cost J3,j of

the subpath pj . The left figure shows the curve computed in
the polygonal phase, with the corresponding sequence of safe
boxes. In the center left figure, we show the path obtained by
solving the QP (18), with the initial transition times computed
as in §V-B. We solve problem (19) to update the transition
times, and we then solve the QP (18) a second time. The
resulting path is depicted in the center right figure. After six
iterations the smooth phase converges, with the resulting path
depicted in the right figure.

The initial path (center left) has total cost 12.04. The path
after the first iteration (center right) has cost 3.13, which is
74% smaller than the initial one. The final path (right) has cost
1.04, which is 91% cheaper than the initial one, and within
only 4.0% of the global minimum (which has unit value). We
also observe that our simple heuristic to initialize the transition
times was quite inaccurate. However, our algorithm fixes this
in very few iterations.

VI. NUMERICAL EXPERIMENTS

In this section we illustrate our method with numer-
ical experiments. Every experiment was carried out us-
ing the default values in our software implementation
fastpathplanning, which we briefly describe below. The
computations were carried out on a computer with 2.4 GHz
8-Core Intel Core i9 processor and 64 GB of RAM. For code
readability and fast prototyping, the current (initial) version
of fastpathplanning uses CVXPY [42] to construct the
convex optimization problems and pass them to the solver.
This introduces an overhead that, in some cases, can be
significant. Since by communicating directly with the solver
this overhead can be made negligible, the time spent within
CVXPY has been eliminated from the runtimes reported in this
paper.

A. Software package

The algorithm presented in this paper is implemented in the
open-source Python software package fastpathplanning,
which is available at https://github.com/cvxgrp/

https://github.com/cvxgrp/fastpathplanning

10

fastpathplanning. For the graph computations (e.g., the
construction of the line graph) we use NetworkX [43]. For
the solution of the shortest path problem in the line graph
we use scipy [40]. The convex optimization problems are
specified using CVXPY [42], and solved with the Clarabel
solver [44].

The following is a basic example of the usage of
fastpathplanning.

1 import fastpathplanning as fpp
2
3 # offline preprocessing
4 L = ... # lower bounds of the safe boxes
5 U = ... # upper bounds of the safe boxes
6 S = fpp.SafeSet(L, U)
7
8 # online path planning
9 p_init = ... # initial point

10 p_term = ... # terminal point
11 T = 1 # traversal time
12 alpha = [1, 1, 5] # cost weights
13 p = fpp.plan(S, p_init, p_term, T, alpha)
14
15 # evaluate solution
16 t = 0.5 # sample time
17 p_t = p(t)

The matrices L and U contain the lower bound lk and the
upper bound uk of each safe box Bk, k = 1, . . . ,K. These
have dimension K × d, and are not explicitly defined in the
code above. In line 6 they are used to instantiate the safe set S
(as the object S). This line is where the offline preprocessing
is done, i.e., we construct the line graph and optimize the
representative points. In line 13 the function plan finds a
smooth path p, given the safe set, intial and terminal points,
traversal time, and objective coefficients. The number D of
continuous derivatives that our path will have is equal to the
length of the list alpha. By default, the degree of the Bézier
curves is set to M = 2D+1. The path object p can be called
like a function by passing a time t ∈ [0, T] as in line 17. (It
also contains other attributes such as the list of Bézier control
points and the safe boxes s1, . . . , sN that the path traverses.)

B. Scaling study

In our first example we consider path planning problems
in d = 2 dimensions, and analyze the performance of our
algorithm as a function of the number K of safe boxes.

We generate an instance of the path planning problem (2) as
follows. We construct a square grid with P 2 points with integer
coordinates {1, . . . , P}2. We let each point in this grid be the
center of a safe box Bk. Each box elongates either horizontally
or vertically, with equal probability. The short and long sides
of a box are drawn uniformly at random from the intervals
[0, 0.5] and [0, 2], respectively.

We use this procedure to generate six feasible path planning
problems with grids of side P = 5, 10, 20, 40, 80, 160. The
number of boxes in these problems is then

K = P 2 = 25, 100, 400, 1,600, 6,400, 25,600.

The traversal time is taken to be T = P and the cost weights
are α1 = 0 and α2 = α3 = 1. The path is continuously

Fig. 6. Largest problem instance in the scaling study, with K = 25,600 safe
boxes and final path shown.

Total boxes K 25 100 400 1,600 6,400 25,600
Vertices |V| 38 179 804 3,298 12,816 52,308

Edges |E| 127 708 3,583 15,613 58,351 241,348
Path boxes N 7 12 35 53 113 241

TABLE I
PROBLEM INSTANCE DIMENSIONS.

differentiable D = 3 times and the Bézier curves have degree
M = 2D + 1 = 7 (which ensures that our algorithm will
succeed). The initial position is the center of the bottom-left
box, pinit = (1, 1), and the terminal position is the center of
the top-right box, pinit = (P, P). The largest of these instances
(K = 25,600) is depicted in figure 6.

The computation times are shown in figure 7, broken
down into offline preprocessing, polygonal phase, and smooth
phase. For the largest problem instance (figure 6) the offline
processing time is 31 seconds, and a smooth path is generated
online in 2.3 seconds. Accounting for some fixed overhead,
we can see that the preprocessing times grow approximately
linearly with the number of boxes K (unit slope in the log-
log plot), while the online runtimes grow even more slowly.
For each problem instance in this analysis, table I shows the
number of vertices |V| and edges |E| in the line graph G, and
the number of boxes N traversed by the final path.

For both the polygonal and the smooth phase the number
of iterations is essentially unaffected by the size of the prob-
lem. In the polygonal phase the number of iterations ranges
between 1 and 4, in the smooth phase between 4 and 6.

C. Large example

In our second example we plan a path for a quadrotor in
an environment with a very large number of obstacles. The
configuration space of a quadrotor is six dimensional: three

https://github.com/cvxgrp/fastpathplanning

11

101 102 103 104 105

Number of boxes K

10−3

10−2

10−1

100

101

102
C

om
pu

ta
tio

n
tim

es
(s

)

Offline preprocessing
Polygonal phase
Smooth phase

Fig. 7. Computation times for the scaling study, broken down into offline
preprocessing, polygonal phase, and smooth phase.

coordinates specify the position of the center of mass, and
three coordinates specify the orientation. However, given any
path for the center of mass that is differentiable four times, a
dynamically feasible trajectory for the quadrotor’s orientation,
together with the necessary control thrusts, can always be
reconstructed [45]. This very convenient property is called
differential flatness, and it allows us to plan the flight of a
quadrotor by solving a path planning problem in only d = 3
dimensions.

The quadrotor environment is shown at the top of figure 1,
and it resembles a village with multiple buildings and dense
vegetation. This village is constructed over a square grid
with P 2 = 502 = 2,500 points, which divide the ground
into (P − 1)2 square cells of unit side. The cell indexed by
(i, j) ∈ {1, . . . , P−1}2 has bottom-left coordinate (i, j) ∈ R2

and top-right coordinate (i + 1, j + 1) ∈ R2. Each cell
contains one of the following obstacles: a building, a bush,
or a tree. There are a total of 92 = 81 buildings. The cells
that each building occupies are identified through a random
walk of length 5 that starts in the cell with index (i, j) ∈
{5, 10, . . . , 40, 45}2. Therefore each building can cover up
to six cells, and neighboring buildings can potentially be
connected. The buildings are constructed so that the quadrotor,
whose collision geometry is overestimated with a sphere of
radius 0.1, cannot collide with them while flying in another
cell. The height of each building is equal to 5.0. In the cells
that are not occupied by a building we have either a bush or a
tree, with equal probability. Bushes and trees are positioned in
the center of their cells. A bush has square base of side chosen
uniformly at random between 0.2 and 0.7, and its height is
twice the side of its base. The foliage of a tree is represented
as a cube of side 0.8. The center of the foliage has height that
is drawn uniformly at random from [1.0, 4.5]. The trunk of a
tree has square section with side 0.2.

To construct the safe set S we decompose the free space
in each cell independently using axis-aligned boxes. The
buildings occupy their cells entirely, so for these cells we
do not need any safe box. The free space around a bush is

decomposed using five safe boxes: four around the bush and
one on top. Similarly, for a tree we have four safe boxes
around the trunk and one safe box on top of the foliage.
These boxes are appropriately shrunk to take into account
the collision geometry of the quadrotor. The total number of
safe boxes needed to decompose the environment in figure 1
using this method is K = 10,150. The resulting line graph
has |V| = 70,907 vertices and |E| = 1,022,782 edges.

As shown in [45], a natural objective function when plan-
ning the path of a quadrotor is the L2 norm squared of the
fourth derivative (or snap). Thus we set our cost weights to
α4 = 1 and α1 = α2 = α3 = 0. We design a path that is
continuously differentiable D = 4 times, and we use Bézier
curves of degree M = 2D+1 = 9. The traversal time is taken
to be T = P = 50. The quadrotor takes off at the bottom
left of the environment pinit = (1, 1, 0), and lands in the top
right pinit = (P, P, 0). In [45] it is also shown that for the
quadrotor to start and stop horizontally, with zero translational
and angular velocity, the following boundary conditions are
necessary:

p(i)(0) = p(i)(T) = 0, i = 1, . . . , 3.

These constraints are easily handled by our algorithm as
mentioned in §V-C.

The offline preprocessing of the safe boxes takes 110
seconds, with the representative points in (6) computed using
the commercial solver MOSEK 10.0. The polygonal phase
takes 0.39 seconds, and it converges in 5 iterations. The
smooth phase takes 3.50 seconds and 6 iterations. The number
of boxes in the final path is 133. The bottom of Figure 1
shows the quadrotor flying along the path generated by our
algorithm. A video of the path can be found at https:
//youtu.be/p1xlcNiER0o.

In this example, as well as in any other problem where we
only penalize the path snap, the initial transition times from
§V-B yield an initial trajectory with very high cost. However,
the first iteration of the smooth phase is already sufficient to
reduce the cost by 92.1%, and the final trajectory has a cost
that is 99.4% smaller than the initial one.

D. Comparison with mixed integer optimization

Among the existing algorithms for path planning, a very
natural approach to solving problem (2) is mixed integer
(global) optimization [12]. We conclude our experiments with
a short comparison of our method with these techniques. As
a benchmark we use our simple running example illustrated
in figures 2 to 5 (since on larger instances the mixed integer
approach quickly becomes completely impractical).

To solve problem (2) with mixed integer optimization,
we parametrize a path as a piecewise Bézier curve with N
subpaths of equal duration. The degree of each subpath is
M = 2D + 1 = 7. We write a mixed integer quadratic
program (MIQP) that is essentially identical to the QP (18),
except for the safety condition (14) that is substituted with
a disjunctive constraint. This disjunctive constraint requires
that each subpath pj is contained in at least one safe box
Bk, and is encoded using the binary variables σj,k ∈ {0, 1},

https://youtu.be/p1xlcNiER0o
https://youtu.be/p1xlcNiER0o

12

10−2 10−1 100 101 102

Planning time (s)

0

1

2

3

4

5

6
P

at
h

co
st

5

6

7 8
9 10 11

12

13
14 15

Proposed method
MIQPs
MIQP trade-off curve

Fig. 8. Comparison of the proposed path planner with mixed integer
optimization. The number attached to each MIQP solution is the number N
of subpaths used in the trajectory parameterization.

j = 1, . . . , N and k = 1, . . . ,K. Since our safe sets are axis-
aligned boxes, this constraint takes the following simple form:

K∑
k=1

lkσj,k ≤ pj,n ≤
K∑

k=1

ukσj,k,

j = 1, . . . , N, n = 0, . . . ,M,

where the binary variables are also subject to the “one-hot”
condition

K∑
k=1

σj,k = 1, j = 1, . . . , N.

The MIQPs are solved with the commercial solver
MOSEK 10.0. We highlight that, since in the worst case
the solver has to enumerate all the KN possible assignments
of binary variables, the runtimes of this approach can grow
exponentially with N .

The path designed by our method for the running example
is illustrated in the right of figure 5 and has cost 1.04. (We
recall that the data of this problem are chosen so that the
global minimum is equal to one.) The offline preprocessing
(figure 2), the polygonal phase (figure 3), and the smooth
phase (figure 5) of our algorithm take 2.4, 3.7, and 12.6
milliseconds, respectively. The sum of these three times (18.7
milliseconds) and the cost of our path are reported in figure 8
with a green star. Using mixed integer optimization, we design
a sequence of trajectories with increasing number of subpaths,
N = 5, . . . , 15, and we mark the associated runtimes and
costs with red dots in figure 8. Close to each dot we show the
corresponding number N of subpaths.

Mixed integer optimization requires N = 7 subpaths and
1.09 seconds to find a path that has cost comparable to ours.
As shown by the trade-off curve, the best mixed integer path
is obtained for N = 15. This has cost 1.01 and requires 124
seconds to be found. Compared to ours, this is a decrease in
cost of only 2.7% and an increase in runtime by a factor larger
than 6,000.

VII. EXTENSIONS

We conclude by briefly mentioning how the techniques
presented in this paper can be extended to tackle some more
general path planning problems.

Convex safe sets: The assumption that the safe sets are
axis-aligned boxes is very convenient in the offline part of our
algorithm, since the pairwise intersections between a collection
of boxes can be found very efficiently [38]. We also leveraged
this assumption in the polygonal phase, specifically in the
multiple stabbing problems and in the improvement of the box
sequence in §IV-B. In case of more generic convex safe sets
these computations are more demanding and can significantly
slow down our algorithm. For example, checking if two convex
sets intersect requires solving a convex optimization problem,
e.g., a linear program when the sets are polyhedra. However, if
each convex safe set is equipped with an axis-aligned bounding
box, part of the efficiency of our approach can be recovered.

Unspecified traversal time: In some applications speci-
fying a fixed traversal time T is not straightforward, and it
is preferable to let the planning algorithm select this value
automatically. In these cases, we also add a penalty on T (e.g.,
a linear cost θT with fixed weight θ > 0) that prevents our
original objective J from making the traversal time arbitrarily
large. Our approach can be extended to these problems very
naturally. In the initialization of the transition times in §V-B,
we now require an initial guess for the total duration of
the path. This guess is then improved by solving the re-
timing problem (19), where we let the traversal time T be an
optimization variable and we add the duration penalty (e.g.,
θT) to the cost function. Note that even with these changes
problem (19) is still representable as an SOCP.

Constraints on the path derivatives: Convex constraints
on the path derivatives can also be incorporated in our frame-
work very easily. In fact, the derivatives of the path designed
by our method are piecewise Bézier curves, and, similarly to
the safety constraints in (14), these derivatives can be forced
to lie in a convex set at all times simply by constraining their
control points. If the traversal time T is fixed, the addition
of these constraints breaks the completeness of our algorithm.
Specifically, the feasibility argument in §II-C does not hold
anymore, and the optimization of our piecewise Bézier path
in (18) might be infeasible even if the original path planning
problem is feasible. However, if we let T be an optimization
variable as described above, then the algorithm completeness is
recovered. This because any derivative constraint (that contains
the origin in its interior) can be satisfied by travelling along a
path sufficiently slowly.

Multiple waypoints: In some path planning problems
we need to design a single smooth path that interpolates or
passes through a given sequence of intermediate waypoints in
order. To extend our approach to these problems, the steps
in the polygonal phase are repeated to connect each pair
of consecutive waypoints, yielding a single polygonal curve
that satisfies all the interpolation constraints. Similarly, in
the smooth phase, we concatenate multiple problems of the
form (18) into a single QP, where each piecewise Bézier curve
has fixed endpoints and is constrained to connect smoothly

13

with its neighbors. The time at which the overall path vis-
its each waypoint is then automatically selected by our re-
timing technique. Finally, periodic trajectories that visit all
the waypoints can be generated by asking our path to satisfy
p(i)(0) = p(i)(T), i = 0, . . . , D. These conditions translate
immediately to linear constraints on the control points of the
Bézier subpaths p1 and pN .

ACKNOWLEDGMENTS

This research was supported by the Office of Naval Re-
search (ONR), Award No. N00014-22-1-2121. Indeed, this
work is a direct consequence of the collaboration fostered by
this grant.

Parth Nobel was supported in part by the National Science
Foundation Graduate Research Fellowship Program under
Grant No. DGE-1656518. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Stephen Boyd was partially supported by ACCESS (AI Chip
Center for Emerging Smart Systems), sponsored by InnoHK
funding, Hong Kong SAR, and by Office of Naval Research
grant N00014-22-1-2121.

REFERENCES

[1] S. LaValle and R. Sharma, “On motion planning in changing, partially
predictable environments,” The International Journal of Robotics Re-
search, vol. 16, no. 6, pp. 775–805, 1997.

[2] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics research,
vol. 17, no. 7, pp. 760–772, 1998.

[3] S. Petti and T. Fraichard, “Safe motion planning in dynamic envi-
ronments,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2005, pp. 2210–2215.

[4] N. Du Toit and J. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28, no. 1,
pp. 101–115, 2011.

[5] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,” Journal of guidance, control, and dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[6] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on control systems technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[7] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and
future research directions,” Transportation Research Part C: Emerging
Technologies, vol. 60, pp. 416–442, 2015.

[8] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and systems, vol. 2. Ann Arbor, MI, USA, 2016, pp. 1–9.

[9] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates
for collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[10] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 884–897, 2019.

[11] R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager,
“A real-time game theoretic planner for autonomous two-player drone
racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403,
2020.

[12] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs
in cluttered environments,” in 2015 IEEE International Conference on
Robotics and Automation. IEEE, 2015, pp. 42–49.

[13] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” arXiv preprint
arXiv:2205.04422, 2022.

[14] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on control systems technology, vol. 18,
no. 2, pp. 267–278, 2009.

[15] S. LaValle, Planning algorithms. Cambridge university press, 2006.
[16] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths

in graphs of convex sets,” arXiv preprint arXiv:2101.11565v4, 2021.
[17] F. Augugliaro, A. Schoellig, and R. D’Andrea, “Generation of collision-

free trajectories for a quadrocopter fleet: A sequential convex pro-
gramming approach,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 1917–1922.

[18] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[19] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feed-
back motion planning,” The International Journal of Robotics Research,
vol. 36, no. 8, pp. 947–982, 2017.

[20] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 972–983, 2020.

[21] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[22] S. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” TR 98-11, Computer Science Department, Iowa State University,
1998.

[23] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[25] J.-M. Lien and N. Amato, “Approximate convex decomposition of
polygons,” in Proceedings of the twentieth annual symposium on Com-
putational geometry, 2004, pp. 17–26.

[26] N. Ayanian and V. Kumar, “Abstractions and controllers for groups
of robots in environments with obstacles,” in 2010 IEEE International
Conference on Robotics and Automation, May 2010.

[27] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate con-
vex decomposition using relative concavity,” Computer-Aided Design,
vol. 45, no. 2, pp. 494–504, 2013.

[28] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Founda-
tions of Robotics XI. Springer, 2015, pp. 109–124.

[29] A. Amice, H. Dai, P. Werner, A. Zhang, and R. Tedrake, “Finding
and optimizing certified, collision-free regions in configuration space
for robot manipulators,” in Algorithmic Foundations of Robotics XV.
Springer, 2022, pp. 328–348.

[30] M. Verghese, N. Das, Y. Zhi, and M. Yip, “Configuration space
decomposition for scalable proxy collision checking in robot planning
and control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
3811–3818, 2022.

[31] H. Dai, A. Amice, P. Werner, A. Zhang, and R. Tedrake, “Certified
polyhedral decompositions of collision-free configuration space,” arXiv
preprint arXiv:2302.12219, 2023.

[32] M. Petersen and R. Tedrake, “Growing convex collision-free regions
in configuration space using nonlinear programming,” arXiv preprint
arXiv:2303.14737, 2023.

[33] M. Flores, Real-time trajectory generation for constrained nonlinear
dynamical systems using non-uniform rational b-spline basis functions.
California Institute of Technology, 2008.

[34] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning for
mobile robots using splines,” in 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2009, pp. 2427–2433.

[35] M. Elbanhawi, M. Simic, and R. Jazar, “Continuous path smoothing for
car-like robots using b-spline curves,” Journal of Intelligent & Robotic
Systems, vol. 80, pp. 23–56, 2015.

[36] F. Koolen, “Balance control and locomotion planning for humanoid
robots using nonlinear centroidal models,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2020.

[37] N. Csomay-Shanklin, A. Taylor, U. Rosolia, and A. Ames, “Multi-
rate planning and control of uncertain nonlinear systems: Model
predictive control and control Lyapunov functions,” arXiv preprint
arXiv:2204.00152, 2022.

[38] A. Zomorodian and H. Edelsbrunner, “Fast software for box intersec-
tions,” in Proceedings of the sixteenth annual symposium on computa-
tional geometry, 2000, pp. 129–138.

14

[39] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,” Linear algebra and its applications,
vol. 284, no. 1-3, pp. 193–228, 1998.

[40] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[41] R. Farouki and V. Rajan, “Algorithms for polynomials in Bernstein
form,” Computer Aided Geometric Design, vol. 5, no. 1, pp. 1–26, 1988.

[42] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[43] A. Hagberg, D. Schult, and P. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman,
Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[44] P. Goulart and Y. Chen, “Clarabel solver documentation,” 2023.
[Online]. Available: https://oxfordcontrol.github.io/ClarabelDocs/stable/

[45] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 2520–2525.

APPENDIX A
DERIVATION OF BOX UPDATE FORMULA

In this appendix we derive problem (8), which is used in
the polygonal phase of our algorithm to improve the sequence
of boxes that the curve C must traverse. We consider three
consecutive nodes zj−1, zj , and zj+1, obtained by solving
problem (7). As observed, these can be assumed to be distinct,
and node zj lies in the intersection of Bsj and Bsj+1

. Let Bk

be a third box that contains zj . Here we answer the question
of whether inserting this box between the boxes sj and sj+1

gives us room to shorten our polygonal curve.
To simplify the notation, just for this appendix, let a = zj−1,

b = zj+1, and z = zj . In addition let l and u be the lower
and upper bound that delimit the axis-aligned box Bsj ∩Bsj+1

.
Similarly, let l1 and u1 delimit the box Bsj ∩ Bk, and l2 and
u2 delimit the box Bk ∩Bsj+1 . To answer the question above,
we need to compare the optimal value of two optimization
problems. The first problem is

minimize ∥z − a∥2 + ∥b− z∥2
subject to l ≤ z ≤ u,

where the only variable is z. The second problem is

minimize ∥z1 − a∥2 + ∥z2 − z1∥2 + ∥b− z2∥2
subject to l1 ≤ z1 ≤ u1, l2 ≤ z2 ≤ u2,

(20)

where the variables are z1 and z2. The insertion of the box
k is length decreasing if and only if the optimal cost of the
second optimization is less than the one of the first.

Let z⋆ be the solution of the first problem, which is known
to us since we have solved (7). Observe that the solution
z1 = z2 = z⋆ is feasible for the second problem. This
implies that the insertion of box k is length decreasing if
and only if z1 = z2 = z⋆ is not optimal for the second
problem. To check the optimality of this variable assignment,
we look for Lagrange multipliers of problem (20) that satisfy
complementary slackness and are dual feasible.

Complementary slackness reads

λ1 = (z⋆ − a)/∥a− z⋆∥2, (z⋆ − l1)
T ν+1 = 0,

λ2 = (b− z⋆)/∥b− z⋆∥2, (z⋆ − l2)
T ν+2 = 0,

(u1 − z⋆)T ν−1 = 0,
(u2 − z⋆)T ν−2 = 0.

Here the multipliers λ1, λ2 ∈ Rd are paired with the first
and last objective terms in (20), ν+1 , ν−1 ∈ Rd with the lower
and upper limits in the first box constraint, and ν+2 , ν−2 ∈ Rd

with the second box constraint. The constraints of the dual of
problem (20) are

∥λ∥2 ≤ 1, λ− λ1 + ν+1 + ν−1 = 0, ν+1 ≥ 0,
∥λ1∥2 ≤ 1, λ2 − λ+ ν+2 + ν−2 = 0, ν+2 ≥ 0,
∥λ2∥2 ≤ 1, ν−1 ≤ 0,

ν−2 ≤ 0,

where the multiplier λ ∈ Rd is paired with the second cost
term in (20).

Let L1 and U1 be the matrices that select the entries where
l1 < z⋆ and z⋆ < u1, respectively. Let L2 and U2 be
defined similarly but for the limits l2 and u2. After a few
manipulations, the two sets of conditions above reduce to

∥λ∥2 ≤ 1, L1λ ≥ L1λ1, U1λ ≤ U1λ1,
U2λ ≥ U2λ2, L2λ ≤ L2λ2.

Here the only variable is λ, as the values of λ1 and λ2 are
fixed (and known) by the complementary slackness conditions.
This set of conditions gives problem (8).

Finally, we also observe that the norm of λ can be inter-
preted as the force exchanged by the points z1 and z2. This
motivates our heuristic of inserting the box that maximizes
the optimal value (8), when multiple box insertions are length
decreasing.

Tobia Marcucci received the B.S.E. and M.S.E. in
Mechanical Engineering from the University of Pisa
in 2013 and 2015, respectively. From 2015 to 2017
he was Ph.D. student at the Research Center “E. Pi-
aggio” and the Istituto Italiano di Tecnologia (IIT).
Since 2017 he is at the Computer Science and
Artificial Intelligence Laboratory (CSAIL), MIT, to
continue his Ph.D. studies. Since 2022 he is also
a graduate visiting researcher in the Department
of Electrical Engineering at Stanford University.
His research lies at the intersection of convex and

combinatorial optimization, with applications to robotics, motion planning,
and optimal control.

Parth Nobel is a a Ph.D. student at Stanford Uni-
versity in Electrical Engineering and, since 2022,
a Visiting Scholar at UC Berkeley in Electrical
Engineering and Computer Science. He earned his
B.S. in Electrical Engineering and Computer Science
from UC Berkeley in 2021. His research centers on
applying convex optimization and randomized nu-
merical linear algebra to statistics, signal processing,
and various other application areas.

https://oxfordcontrol.github.io/ClarabelDocs/stable/

15

Russ Tedrake is the Toyota Professor of Electri-
cal Engineering and Computer Science, Aeronautics
and Astronautics, and Mechanical Engineering at
MIT, the Director of the Center for Robotics at
CSAIL, and the leader of Team MIT’s entry in
the DARPA Robotics Challenge. Russ is also the
Vice President of Robotics Research at the Toyota
Research Institute. He is a recipient of the NSF
CAREER Award, the MIT Jerome Saltzer Award for
undergraduate teaching, the DARPA Young Faculty
Award in Mathematics, the 2012 Ruth and Joel Spira

Teaching Award, and was named a Microsoft Research New Faculty Fellow.
Russ received his B.S.E. in Computer Engineering from the University of
Michigan, Ann Arbor, in 1999, and his Ph.D. in Electrical Engineering and
Computer Science from MIT in z004, working with Sebastian Seung. After
graduation, he joined the MIT Brain and Cognitive Sciences Department as
a Postdoctoral Associate. During his education, he has also spent time at
Microsoft, Microsoft Research, and the Santa Fe Institute.

Stephen Boyd (Fellow, IEEE) received the A.B.
degree in Mathematics from Harvard University,
Cambridge, MA, USA, in 1980, and the Ph.D. de-
gree in Electrical Engineering and Computer Science
from the University of California, Berkeley, Berke-
ley, CA, USA, in 1985. He is currently the Samsung
Professor of Engineering, and Professor of Electrical
Engineering at Stanford University, Stanford, CA,
USA. He is a member of US National Academy
of Engineering (NAE), a foreign member of the
Chinese Academy of Engineering (CAE), and a

foreign member of the National Academy of Engineering of Korea (NAEK).
His current research focus is on convex optimization applications in control,
signal processing, machine learning, and finance.

	Introduction
	Related work
	Outline

	Path planning
	Path planning problem
	Safety map
	Feasibility
	Method outline

	Offline preprocessing
	Line graph
	Representative points
	Example

	Polygonal phase
	Shortest path problem
	Shortening of the polygonal curve
	Example

	Smooth phase
	Bézier curves
	Initialization of the transition times
	Optimization of the path shape
	Re-timing
	Example

	Numerical experiments
	Software package
	Scaling study
	Large example
	Comparison with mixed integer optimization

	Extensions
	References
	Appendix A: Derivation of box update formula
	Biographies
	Tobia Marcucci
	Parth Nobel
	Russ Tedrake
	Stephen Boyd

