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Abstract

In this paper, the non-convex control-relevant experi-
ment design developed in earlier works is transformed
to a semidefinite program with linear matrix inequal-
ity constraint. As a result, the computational burden
is greatly reduced. An example is presented to demon-
strate that the reduced computation time may be ob-
tained without the cost of degraded performance.

1 Introduction

In recent years, both researchers and practitioners have
increasingly pointed to the data generation (i.e., plant
test) stage as the most crucial in the system identifica-
tion process. Indeed, it is the only stage that requires
interactions with the process, and as a result it tends
to be the dominant factor influencing the time and cost
associated with the system identification process.

Clearly, minimizing the impact of the data gener-
ation stage on normal plant operations is highly desir-
able. This translates into two objectives: 1) gathering
the most useful data in the allotted experiment time and
2) insuring that the product manufactured during the
plant test meets quality specifications. Meeting these

objectives using only experience and intuition is often
difficult.

Developing a rigorous framework for meeting the
above-mentioned objectives requires a mathematical def-
inition of “most useful data” and a mathematical expres-
sion of the acceptable operating window. Undoubtedly,
the usefulness of a set of data depends on the intended
application of the identified model. In this paper, we
will restrict our attention to generating data for models
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to be used in model-based controller design.

Cooley and Lee [2] recently developed a rigorous
framework for generating data containing the most use-
ful information for designing a model-based controller.
The key 1dea is to choose the test signal such that the ex-
pected value of a closed-loop performance index is min-
imized. While the work in [2] rigorously addresses de-
signing test signals for controller performance and incor-
porates operating window constraints, the resulting de-
sign procedure is computationally burdensome. In this
paper, we seek to address these computational aspects
by approximating the problem using a first-order Taylor
series expansion. The resulting optimization problem is
a linear matrix inequality (LMI) which is more easily
solved.

This paper is arranged as follows. In Section 2, the
experiment design problem is developed. In Section 3,
we present the main result, a computationally efficient
solution to the experiment design problem. In Section 4,
we demonstrate the usefulness of the approach through
a numerical example. Finally, in Section 5 we offer our
conclusions.

2 Problem Formulation

In this section, we will briefly develop the control-relevant
experiment design problem for a specific choice of con-
troller performance measure and model structure. For
a more complete development of the experiment design
problem, the interested reader is referred to [2].

We assume that the underlying system may be de-
scribed as the following multivariable linear time invari-
ant system:

y(t) = G (g) u(t) + d(1) (1)

In the above, y € N™v is the output, u € R"+ is the
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In the above, J is a measure of closed-loop performance,
Z is the information vector consisting of all a priori infor-
dmation such as the prior distribution of the plant and
the disturbance characteristics, and Ealb denotes the
condtional expectation of a with respect to b. P [a]
ig the probability that event ¢ will occur. The sets Y
apd Y are mathematical descriptions of the input and

Figure 1: The closed-loop system.

input, and G is the system transfer function. ¢ is the
forward shift operator (i.e., ¢~ u(t) = u(t—1)). We take
d € R™v to be a random sequence representing noise /
disturbance effects.

In this paper, we are concerned with designing ex-
periments for identifying models to be used in model-
based control schemes. That is, we will assume a model
structure and identify a set of parameters (©) to obtain
a model of the plant (G(q,(:))) Based on that model,
a controller will be designed. Note that in general the
control depends on the model and the disturbance / ref-

erence signal characteristics through a mapping c:

C(q) = ¢(G(q,0)) (2)

The resulting closed-loop system is depicted in Figure 1.

It is only natural that the data used to generate
the model will influence the model quality, and thus,
the resulting controller performance. What we desire is
a method to design the experiment such that the best
performance is achieved.

At the time the experiment is designed, the plant,
the model (and therefore the controller), and the distur-
bance characteristics are unknown. The experimenter
may have some prior knowledge about the disturbance
characteristics and the plant. For practical and com-
putational reasons, it is convenient to formulate the in-
put design problem in a statistical framework. Here, we
treat the plant, model, and controller as random vari-
ables and minimize the expectation of the performance
index conditional to any prior knowledge available. The
minimization is performed with respect to any input
constraints that may exist. Although the plant is un-
known, we can also add output constraints by satisfying
them at a specified probability x. Thus, the input design
problem becomes:

u(l)f«r-l-i,li(zv) ELJ11} )
u(t)eu t:l,--',N (4)
Plyt)eVzp t=1,---,N (5

output constraints and are typically characterized by
magnitude and rate bounds. N is the number of data
collected.

The above formulation is intuitively appealing for
iterative designs in which the model is updated between
successive experiments and the next experiment is de-
signed based on the updated model. In such a situation,
(3)-(5) become:

i E{J|T 6
a2, o { k| Zx} (6)
uk(t)e‘ylk t:]-;‘)N (7)

Plye(t) €Vl > pp t=1,--- N (8)

where the index k has been introduced to denote the k*P
experiment (e.g., Zy is the a priori information available
for designing the k" experiment). This idea is easily
extendible to an adaptive design framework, in which
the model is updated at every {or every few) sampling
instants, and the experiment is re-computed in receding
horizon fashion {2].

While there are many ways to measure controller
performance, in this paper we will restrict our attention
to mean squared error as the performance measure:

Je = E{eTe| G, Cu(Gr), @ } = trace (E { eeT| G, C(Gr), @y

©)

In the above, € is the difference between the output and
the reference signal, as depicted in Figure 1. Note that
the mean squared error is computed for a given plant,
controller, and disturbance / reference signal character-
istic. This is why the conditional expectation is used in
(9). It is straightforward to show the following,.

T

1
Fe=5-]

(10)

In the above, Sy = (I + GxCx)~! is the so-called nomi-
nal sensitivity function, expressing the closed-loop rela-
tionship (based on the model Gk) between the output
error e and the disturbance d / the reference signal r,
and Hy = GrCi(I + GiCr)™! is the complementary
sensitivity function (i.e., Sk + He = I). ®, is the spec-
trum of the combined reference and disturbance signal
(n = r —d) and {-}* denotes the complex conjugate
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transpose (A™* is the inverse of A*). The above expres-
sion is an explicit relationship between model error and
performance.

Notice that Ji depends on the unknown plant G,
the unknown model G, and the unknown controller Cy
contained in the sensitivity function S, and in the com-
plementary sensitivity function Hy. We treat the un-
knowns as stochastic quantities and take the conditional
expectation of the performance index with respect to the
information available prior to the experiment:

™

E{JklIk}:%/

-

(1+@G- Gk)c},;lérk)_* S

AP

In the above, Iy is the information vector available at
the start of the k' experiment

It is difficult to solve the optimization in (6) with
J expressed as in (11) because 1) Sy and Hy may have
complex dependence upon G and 2) the expectation is
difficult to evaluate with respect to Gy. However, by

trace [E {S‘k (I + (G- Gk)églﬁk)

Given the above assumptions and an a priori esti-
mate Ok _; and covariance X _;, we can obtain unbiased
estimates of the parameter matrix © via least squares.

N
O = i (Z d()y" (1) + E;jlé)k_l) (16)

. t=1 »
T = (}: ()T () + 2;11) (17)
t=1

In the above Oy is the updated estimate. Similarly, ¥4
is the updated covariance matrix. We may compute the

fo ]ngigg expectation:

-1

E{ (ék - e) (ci)k - e)T zk} = (EN: d()eT () + zk_l) i
i=1

(18)

The above expectation may be used to compute the fol-
lowing frequency domain expectation:

E{(Gute™) = G(e)) (Ga(e™) - G(e*)) | T} = A"

restricting the controller design to be direct synthesis (19)
(ie., Sk is determined a priori) and linearizing e with Aq(eiv)
respect to G about Gk_1, we obtain the following. A(ej“’) _
~ 1 " & G & A -1 7 [T % F1—* A * Crk An(;sj“’)
E{JT) ~ o= /_1r trace [$,@,5; + S4B { (G - G) [G2, e, 1 Gi7,] (Gi - G) |22} 5] do 50
(12) where the Ag, k= 1,--- n are the frequency response

Equation (12) is much easier to use in (6) than (10) be-
cause the only unknown is Gy -G (all the other matri-
ces are contained in Z), which is treated as a stochastic
variable whose distribution depends on the test signal
(and the identification procedure). Given a relationship
between the test signal and the distribution of G —G, it
will be possible to formulate the optimization problem
in (6)-(8) using the performance measure approximation

in (12).

For the purposes of this paper, we assume that the
underlying system may be described by a finite expan-
sion in a set of orthonormal basis functions fi(g) [5]:

y(t) =D O fu(@){u(t)} + d(t) = ©T (1) + d(t) (13)

k=1
o7 =[ 0 - 0] (14
fi(g){u(®)}
o(t) = : (15)

fal@){u(®)}

with 8; representing the (real-valued) expansion coeffi-
cient matrices. For ease of exposition, we take {d(t)} to
be a zero-mean i.i.d. random sequence with the identity
matrix as its covariance.

of the corresponding basis function f;. For example,
if fi(g) = ¢7F, then Ag(e/¥) 2 e~JwE[, . The above
expression holds because G = @TA, and it is an explicit
relationship between the test signal (which appears in
the matrix X) and the expectation on the left hand side
of (19) (which we will loosely refer to as the “frequency
domain error covariance”).

Based on (12), we present the following result.

Theorem 1 The approrimate control-relevant experi-
ment design problem defined by (3)-(5) with E{J|Ty}
gwen in (12) with prior estimate ©y1, covariance Ye—1,
and disturbance / reference signal spectrum ®, corre-
sponds to the following “weighted trace optimal” exper-
iment design problem:

min  trace(W;Xy) (21)
u(1), -, u(N)

subject to the constraints of (4)-(5). Ty is given by (17),
and the weighting matriz Wy, s given by

e
Wi = % / trace (578 ) AGHL iy, H; G2 A du
(22)

Proof: A proof is presented in [2].
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3 The Main Result

3.1 Reduction of Computational Burden

While the proposed experiment design technique has
been rather simply formulated as the optimization in
(3)-(5) using the linearized performance index in (12),
there are several issues associated with solving the op-
timization problem. Perhaps foremost among the diffi-
culties is the fact that the nonconvexity of the objective
function leads to local solutions and a large computa-
tional burden. However, we notice the following:

rrl}in [trace(WXg)] (23)
Y
min [trace(Z)] (24)
5., [ “ kalv—l ] >0 (25)

where P, = X!, The optimization defined by (24) and
(25) would be a semidefinite program with linear matrix
inequality (LMI) constraint if P; were an affine func-
tion of the test signal. Unfortunately, Py is a quadratic
function of the test signal. If we are willing to accept
another approximation, P, may be transformed into an
affine function of Uy by performing a first order Taylor’s
expansion about a given test signal:

N ny

dP,
Py = Pilg, +ZZ du](kt)

t=1j=1

uj(t) — @;(t))  (26)

where U}, is a nominal test signal and u;(t) is the value
of the j* input at time t. The optimization problem
defined by (24)-(26) is a LMI, for which there are very
efficient methods of solution (for more on LMI’s, see
[1]). Thus, the computational burden is greatly reduced
at the expense of providing a good nominal test signal.
For purposes of designing experiments offline, this im-
plies an iterative approach in which an initial condition
is provided, the LMI solved, and the solution is used as
the initial condition for re-solving the experiment design
problem. Such a procedure would proceed until the ob-
jective function converged to within a certain tolerance.
An on-line approach is easily amenable to a receding
horizon implementation, in which only the first input
move is implemented and the remainder are discarded.
The discarded input moves can be used as the nominal
test signal for the next optimization.

3.2 Output Constraints

In order to insure that the plant remains safe and prof-
itable during experimentation, it is desirable to include

output constraints in the experiment design framework.
However, since the model is a stochastic quantity, hard
constraints cannot be placed on the outputs. Instead,
the constraints are satisfied with a given probability
specified by the user. Once the probability level is spec-
ified, {ellipsoidal} confidence intervals may be drawn
based on the probability distribution of the model pa-
rameters [3]:

vec(© — ;) TS vec(© — ©4) < Xf{(p) (27)

where 7 is the confidence level, p = ny -ny -n is the num-
ber of parameters, qu, (p) is the chi-square percentile for
confidence 4 and p degrees of freedom. The operator
vec(-) stacks the columns of a vector into a matrix. The
output constraints must hold for all parameters in the
set (27). One ends up with extra linear inequality con-
straints that must be satisfied for parameters within an
ellipsoid. With (24)-(25), this can be shown to be a
convex problem (second order cone programming [4]).

In the next section, we will demonstrate how this
particular formulation improves the performance of model-
based controllers derived from identified models.

4 Numerical Example

4.1 Preliminaries

In this section, we will consider the following system:

1 0.2031

oo —0.1452
v =737 | 01952

—0.2404 ] u(t)  (28)

The above system was sampled with a sampling
time of T, = 1 and modeled via a finite impulse re-
sponse model with 5 coefficient matrices (n = 5). An
initial mode! was developed using 100 data points cor-
rupted with noise of covariance (0.3)212. Based on this
initial model, experiments consisting of 100 input moves
and output data points corrupted with noise of covari-
ance (0.3)2], were designed using both the nonconvex
optimization in (6)-(7) and the LMI-based approach in
(24)-(25) along with the constraint (7) and the approx-
imation (26). In each case, the input moves were con-
strained to have magnitude less than 0.1. The experi-
ments were designed based on ®, equal to the spectrum
of an integrating system, and § as follows:

I (29)

Once the models were identified and the controllers
designed, the performance was tested by subjecting the
closed-loop systems to a setpoint change from r = [0 0]
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Table 1: Simulation results

Computation Mean-squared

time error
LMI-based approach 608 11.17
Non-convex optimization 10171 10.68

tor=[1 —1]T. The performance was measured by the
sum of the squared errors.

Table 1 presents the computation time and perfor-
mance results of the two experiments. Clearly, the LMI-
based solution has greatly reduced the time required for
computing the test signal with only a slight increase in
mean-squared error of the resulting controller.

5 Conclusions

This paper provides a computationally efficient (Lin-
ear Matrix Inequality) procedure for designing experi-
ments. The procedure is based on an earlier developed
nonconvex optimization. An example is presented to
demonstrate the computational advantages of the ap-
proach and to show that the approximation made to
arrive at the LMI do not cause dramatic reductions in
the effectiveness of the experiment design procedure.
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