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Stochastic Control With Affine Dynamics and
Extended Quadratic Costs

Shane Barratt

Abstraci—An extended quadratic function is a quadratic
function plus the indicator function of an affine set, i.e.,
a quadratic function with embedded linear equality con-
straints. In this article, we show that, under some technical
conditions, random convex extended quadratic functions
are closed under addition, composition with an affine func-
tion, expectation, and partial minimization, i.e., minimiz-
ing over some of its arguments. These properties imply
that dynamic programming can be tractably carried out for
stochastic control problems with random affine dynamics
and extended quadratic cost functions. While the equations
for the dynamic programming iterations are much more
complicated than for traditional linear quadratic control,
they are well suited to an object-oriented implementation,
which we describe. We also describe a humber of known
and new applications.

Index Terms—Convex optimization, dynamic program-
ming (DP), stochastic control.

[. INTRODUCTION

ANY practical problems can be modeled as stochastic
Mcontrol problems. Dynamic programming (DP), pio-
neered by Bellman in the 1950s [1], provides a solution method,
at least in principle [2]. DP relies on the cost-to-go, value,
or Bellman function (on the state space), which is computed
by an iteration involving a few operations such as addition,
expectation over random variables, and minimization over the
allowed actions or controls. The cost-to-go function can be
tractably represented, and these operations can be carried out
tractably in only a few special settings.

1) Finite state and control spaces: In this case, the cost-
to-go function and the control policy can be explicitly
represented by lookup tables.

2) Vector-valued states and controls, linear dynamics, and
convex quadratic cost: This is the famous linear quadratic
control or regulator (LQR) problem. In this case, the cost-
to-go function is a convex quadratic form, represented by
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a matrix, and the control policy is linear, represented by
a gain matrix [3].

Despite the special forms of these two cases, they are very
widely applied. There are a few other very specialized cases
where DP is tractable, such as the optimal consumption prob-
lem [4].

For cases where exact DP is intractable, many methods
have been developed to approximately solve the problem, such
as approximate DP, reinforcement learning, and many others.
These methods can be very effective in practice, depending on
the approximations or algorithms used, which can vary across
applications. There is a vast literature on these methods; see,
e.g., [5]-[12], and the many references in them.

Our focus in this article is to identify a class of stochastic
control problems that, like the two special cases mentioned
above, can be solved exactly. Our class is a generalization of
the classic LQR problem. The class of problems, which we
formally describe in the following section, has a state with a
vector-valued and finite part (which we call the mode), a vector-
valued control, random mode-dependent affine dynamics, ran-
dom mode-dependent extended quadratic cost, and state/control-
independent Markov chain dynamics for the mode. Extended
quadratic functions, which we define formally in the section,
are quadratic functions that include linear and constant terms,
as well as implicit linear equality constraints. Many special cases
of our general problem class have been noted and solved in the
literature, e.g., so-called jump-linear quadratic control [13], [14]
and LQR with random dynamics [15]. We unify these problems
under one common problem description and solution method; in
addition, our class includes problems that, to the best of authors’
knowledge, have not been addressed in the literature.

While DP for our class of problems can be carried out exactly
(modulo how expectation is carried out), the equations that
characterize the cost-to-go function and the policies are not
simple, and in particular, are far more complex than those for
LQR, which are well known. Our approach is to develop an
object-oriented solution method. To do this, we identify the key
functions and methods that must be carried out, and describe
how to implement them; DP simply uses these methods, without
expanding the equations and formulas. This approach has sev-
eral advantages. First, it can be immediately implemented (and
indeed, has been). Second, it focuses on the critical ideas without
getting bogged down in complicated equations, as the traditional
approach would. Third, its generality and compositional form
allows it to apply to a wide variety of problems; in particular,
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components can be rearranged to solve other problems not
described here.

A. Related Work

Stochastic control has applications in a wide variety of areas,
including supply chain optimization [16], [17], advertising [18],
finance [4], [19], dynamic resource allocation [20], [21], and tra-
ditional automatic control [22]. DP is by far the most commonly
employed solution method for stochastic control problems. DP
was pioneered by Bellman in the 1950s [1]; for a modern treat-
ment and its applications to stochastic control see the textbooks
by Bertsekas [2], [23], [24] and the many references in them.

The linear-quadratic Gaussian (LQG) stochastic control prob-
lem traces back to Kalman in the late 1950s [25] and was
studied heavily throughout the 1960s (see [26] and its many
references). Since then, many tractable extensions of LQG have
been proposed. Two of the most notable extensions that have
been formulated (and solved) are jump linear quadratic control
(jump LQR) and random LQR, which we now describe.

One special case of the class of problems described in this
article is jump LQR, where the dynamics are linear but suddenly
change according to a fully observable Markov chain process.
The optimal policy for this problem in continuous time was
first identified by Krasovsky and Lidsky in 1961 [14] and
Florentin [13], and discovered independently by Sworder in
1969 [27]. The problem was then solved in discrete time [28],
where the authors found that the cost-to-go functions are
quadratic for each mode and that the optimal policy is linear for
each mode. These results were extended to the infinite-horizon
case by Chizeck et al. [29] and to have equality constraints in
the cost by Costa et al. [30]. (See [31] and the references therein
for a comprehensive overview of jump LQR.) Jump LQR was
applied early on to robust control system design [32], later to
reliable placement of control systems components [33], and also
to distributed control with random delays [34].

The other important special case is random LQR. In random
LQR, the goal is to control a system that has random affine
dynamics and quadratic stage cost. This problem was first iden-
tified and solved by Drenick and Shaw in 1964 [15] and then in
continuous time by Wonham in 1970 [35]. For a more modern
treatment in discrete time, see the paragraph “Random System
Matrices” in [2, pg. 123—124]. The random LQR problem was
extended to have (jointly) random quadratic stage cost and
equality constraints in [36], and has been applied to finance
in [37]-[39]. All of these works have (somewhat independently)
derived that the cost-to-go functions are quadratic and that the
optimal policies are an affine function of the state.

B. Contributions

To the best of the author’s knowledge, no one has combined
the jump and random LQR problems into a single general
stochastic control problem class and identified the form of the
solution. This article can be viewed as a unification of these two
problem classes, while maintaining the familiar tractability of
LQR. We also present a number of extensions and variations of
the problem class, which to the best of authors’ knowledge, have

not appeared in the literature. In addition, this article provides an
object-oriented implementation of extended quadratic functions,
which powers the solution methods we present for the problem
class. The code and all presented examples are freely available
online.'

[I. PROBLEM STATEMENT

We consider discrete-time dynamical systems, with dynamics
described by

Tip1 = [ (@, up,we), t=0,1,...

ey

S¢4+1 = ¢ with probability 1I; ;; if s, = j, t=0,1,...

where ¢ indexes time. Here, x; € R" (the set of real n-vectors)
is the state of the system at time ¢, s; € {1,..., K} is the mode
of the system at time ¢, u; € R™ is the control or input to the
system at time ¢, w; € W, is a random variable corresponding
to the disturbance attime ¢, f : R™ x R™ x W, — R" are the
state transition functions at time ¢ when the system is in mode
s, and 11; is the mode switching probability matrix at time t.

In this article, we consider state transition functions that are
affine in z and w, i.e.,

fts(l'vuaw) = Af(w)x+Bf(w)u+C§(w)v t=0,1,...

where A7 : W, — R™" (the set of real n x n matrices) is the
dynamics matrix at time ¢ when the system is in mode s, By :
W, — R™ ™ is the input matrix at time ¢ when the system is
in mode s, and ¢} : W, — R" is the offset at time ¢ when the
system is in mode s.

Because the disturbances w; and the modes s; are random
variables, this makes z; and u; random variables. We assume
that w; is independent of x;, u, s;, and wy for t' # t. We often
have that f;, II;, and the distribution of w; do not depend on
t, in which case the dynamics are said to be time-invariant. In
some applications, the dynamics matrix, the input matrix, or the
offset do not depend on wy, i.e., they are deterministic.

At time ¢, we choose u; given knowledge of the previous
states xg, . . . , ¥+ and modes s, . . . , S¢, but no knowledge of the
disturbance w;. For the problem, we consider it can be shown
that there is an optimal policy that only depends on the current
state and mode [2], i.e., we can express an optimal policy as

Ut:(ﬁft(l't), t:O,].,

where ¢7 : R™ — R™ is called the policy at time ¢ for mode s.
When we refer to ¢; without the superscript, we are referring to
the collection of policies at that time step. If ¢; do not depend on
t, then the policy is said to be time-invariant and is denoted ¢.

A. Finite-Horizon Problem

In the finite-horizon problem, our objective is to find a se-
quence of policies ¢, . . . , ¢ that minimize the expected cost
over a finite time horizon, given by

T-1
E > g (w1, 7 (w0), w) + 657 (1) )
t=0

"https://github.com/cvxgrp/extquadcontrol
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subject to the dynamics (1), where T is the horizon length,
the expectation is over wy,...,wr_; and Sg,...,S7_1, and
g7 :R" X R"™ x W, = RU {+co} is the stage cost function
for time ¢ when the system is in mode s, and g5 : R™ — R is
the final stage cost function.

In this article, we consider stage cost functions of the form

T
x x
g5 (z,u,w) = 5 |u G (w) |u
1 1

0 Fz+Hfu+hi=0

+00 otherwise

where G5 : W, — S™T™ 1 (8" denotes the set of real symmet-
ric n x n matrices), F¥ € RP”*", Hf € RP*™, and h{ € R”.
Stage cost functions that have this form are extended quadratic
functions of z and w, which are quadratic functions with
embedded linear equality constraints, discussed in much greater
detail in Section III. Including the embedded linear equality
constraints is equivalent to a constraint on the system that at time
t,if s; = s, the system should satisfy FPx; + Hu, + hi = 0.
We consider a final stage cost function of the form

1 T
gr(@) = 3 H G t“"

where G5 € S™*!, which is an extended quadratic function of .

+o00 otherwise

{0 Fix+h =0

B. Infinite-Horizon Problem

In the infinite-horizon problem, we assume that the dynamics
and cost are time-invariant. Our goal is to find a time-invariant
policy ¢ that minimizes the expected cost over an infinite-time
horizon, given by

T

. t st St
7ll_r)r;oE ;79 (w¢, ¢° (w4), wy) 3

subject to the dynamics (1), where v € (0, 1] is the discount
factor, the expectation is taken over w; and s;, and g° : R™ x
R™ x W, — RU {400} is the stage cost function indexed by
s. We consider stage cost functions that are extended quadratic
functions of x and u. One can recover the undiscounted infinite-
horizon problem by letting v = 1.

We call the abovementioned problems extended quadratic
control problems.

C. Problem Data Representation

Throughout this article, we assume that we have, at a bare
minimum, access to an oracle that provides independent samples
of the random quantities

A7 (w), Bi(w), ¢i(w), G (w)

for all ¢, s. The samples can be given in batch, e.g., a sample of
N dynamics matrices A; for time ¢ would resultinan N x K X
n x nmatrix. We will see later that, in some cases (namely, when

the cost-to-go function is a non-extended quadratic function),
additional knowledge of the distributions (in particular, their first
and second moments) can be used to derive analytic expressions
for expectations of quadratic functions.

In addition, we assume that we have access to the (determin-
istic) quantities

Hta Ftsa Htsv hfy G%a F’is“a h;"

for all ¢, s. These could be represented by matrices, e.g., II; for
time ¢t would be a K’ x K matrix.

D. Pathologies

There are several pathologies that can (and often do) occur
in our formulation, depending on the exact problem data and
distributions.

1) Infinite cost: This happens if, e.g., the equality constraints
are impossible to satisfy or the expectation is +oo for all
policies.

2) Cost that is unbounded below: There exist policies that
achieve arbitrarily low cost.

3) Cost that is undefined: The expectations in (2) or (3) do
not exist.

Many of these pathologies are discussed in great detail in [24]
and [23].

In this article, we do not focus on analyzing when these
pathologies occur in the class of problems that we consider,
but rather on the practical application and implementation of
these methods. Also, in well posed practical problems, these
pathologies rarely occur. Nevertheless, the algorithms that we
describe are capable of catching many of these pathologies and
reporting the nature of the pathology.

E. Results

In the absence of the pathologies described earlier, we show
in this article that there is an optimal policy in the finite-horizon
problem that is an affine function of =, meaning the policy has
the form

¢;(x) = Kjw + ki 4)

where K] € R™*" is the input gain matrix and ki € R™ is the
input offset matrix. For the infinite-horizon problem, there is
a policy that is a time-invariant affine function of x. Also, the
cost-to-go functions are extended quadratic functions of = for
each mode s.

When kf € R(K}) (the range of the matrix K), we can
express the policy in the following more interpretable form:

¢; () = K (z = (¢7)7)

where (v%); = —(K;)k{. Here, (K;)! denotes the Moore—
Penrose pseudoinverse. This has a convenient interpretation; to
select u;, we calculate the difference between x and our desired
state (z*)7 and then multiply that difference by the input gain
matrix. We can then interpret the policy as regulating the state
toward the desired state.
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[Il. EXTENDED QUADRATIC FUNCTIONS

In this section, we describe extended quadratic functions,
which are quadratic functions with embedded linear equality
constraints. We explain how to verify attributes like convexity,
how they can be combined or precomposed with an affine
function, and how to carry out partial minimization, where we
minimize over a subset of the variables.

An extended quadratic function f:R"™ — RU {400} has
the form

T
€T

1

P q

v

+Zrg(v)

2

1
f) =3 L

where P € §",q € R",r € R,and I 4 is the indicator function
of the linear equality constraint Fx + g = 0

0 Fr+g=0
Irq(x) =
Fal ) {+oo otherwise

where F' € RP*™ and g € RP. An extended quadratic function
is specified by P, g, r, F, and g. We refer to the function

:

as the quadratic part of f, and we refer to Zr 4 () as the embed-
ded equality constraints in f. We refer to n as the dimension of
(the argument of) f. We allow p = 0, i.e., the case when there
are no embedded equality constraints in f. In this case, we refer
to f as a (nonextended) quadratic function.

T
€T

1

P q

T

1
2 q r

A. Special Cases and Attributes of Extended Quadratic
Functions

An extended quadratic function f is proper [40] if there exists
x with f(z) < +o0, i.e., the embedded equality constraints
are feasible. An extended quadratic function f is an extended
quadratic form if ¢ =0, r =0, and g = 0 (or p = 0); in this
case, it is homogeneous of degree two. If in addition there are
no equality constraints, i.e., ¢ =0, 7 =0, and p=0, f is a
quadratic form. It is extended affine if P = 0, and affine if in
addition there are no constraints. An extended quadratic function
f is extended constant if P = 0 and ¢ = 0.

B. Free Parameter Representation of Equality
Constraints

The representation of the embedded equality constraints by
F and g is evidently not unique. For example, if 7' € RP*? is in-
vertible, F = TFand j = Ty give another representation of the
same constraints, i.e., Ir , = 7.5 To resolve this nonunique-
ness, and for other tasks as well, it will be convenient to express
the equality constraints in free parameter form, parametrized by
xo € R" and V5 € R™, with | = n — rank(F)

{#|Fz+g=0}={Vaz 4120 | 2 €R'}. (5)

Here, x( is any particular solution of Fzz + g = 0,and R(V3) =
N (F) (i.e., the nullspace of F'). Without loss of generality, we

can assume that Vi Vo = I. (We will explain the subscript in V5
shortly.)

We can determine whether the constraints are feasible, and
if so, find such a free parameter representation using the (full)
singular value decomposition (SVD) of F'

T
L

F= [Ul UQ} 8

where ¥ € R**® contains the positive singular values of F', with
s = rank(F). Then, Fx + gis feasible if and only if U] g = 0,
and we can take 29 = —V; X "1U{'g = —F'g, where F' is the
(Moore—Penrose) pseudo-inverse of F'. We can take V5 as the
matrix in our free parameter representation (5). Finally, we note
that we can replace the representation F' and ¢ with ' = vk
and § = X 'UTg. In this case, F satisfies FFT =1, i.e., its
rows are orthonormal. We refer to a representation of equality
constraints with FFT = I (i.e., with orthonormal rows) as in
reduced form. Reducing an extended quadratic corresponds to
converting its equality constraints to reduced form, which can
be done via the SVD as described earlier.

C. Equality of Constraints

Using the decomposition mentioned above, we can check
whether two descriptions of equality constraints (possibly of
different dimensions p and p) are equal, i.e., Zrpy = Ip 5 Let
xg, V1, Vo and Ty, Vl , ‘72 correspond to the free parameter repre-

sentation above for f and 1. respectively. Clearly we must have
rank(F') = rank(F), and in addition

ViVa=0, Viag+g9=0, V{Voa=0, Viag+g=0.

D. Equality of Extended Quadratics

Two extended quadratics are equal, i.e., f(z) = f(x) for all
x€R" ifand only if Zp, =73 3 (discussed earlier), and in
addition

flxo+Vaz) = f(xog + Vaz) VzeR".

Because Zpg =Zp ;, we can use the same free parameter
representation.

Convexity: Let f be an extended quadratic function with free
parameter representation xg, V5, as described earlier. We have
that f is convex if and only if VQTPVQ > 0 (A = 0 means the
symmetric matrix A is positive semidefinite). It is strictly convex

if and only if V;¥ PV5 = 0 (A = 0 means A is positive definite).

E. Nonnegativity

An extended quadratic is nonnegative if and only if

T
P q

¢

Voo g
0 1

Vo xg
0 1

> 0.

F. Sum

The sum of two extended quadratics of the same dimension,
is also an extended quadratic. The sum can be improper, even
when f and g are not. After adding two extended quadratics,
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we can reduce the equality constraints (which also checks if the
sum is proper).

G. Scalar Multiplication

We define scalar multiplication of an extended quadratic a.f
as the extended quadratic with the same equality constraints,
and quadratic part scaled by «

mﬁw=§r]

xT

+Tr ().
1 aqT ar| |1 F’g()

aP ozq‘|

If f is convex and o > 0, o f is convex. Note that when o < 0,
our definition of o f is not the usual mathematical one, since ours
takes the value +o0o when the equality constraints are violated,
whereas under the usual definition, . f would take the value —oo.

H. Affine Precomposition

Suppose that x = h(z) = Az + b is an affine function of z,
and consider g = f o h,i.e., g(z) = f(Az 4 b). The function g
is extended quadratic, and has the form

T

z{ | P q| |z
mw=L gl 1| T
where
- T
P g |A Db P q|l|A b
g Fl o 1] |¢F r||0 1

F =FA, and g = Fb+ g. The equality constraints can be
reduced. If f is convex, g is convex.

. Partial Minimization

Next we consider partial minimization of an extended
quadratic function, meaning we fix a subset of its variables
and minimize over the other variables. There are two cases to
consider as follows.

1) Strictly convex: When the function is strictly convex in
the variables we are minimizing over, the function of the
remaining variables is always extended quadratic.

2) Convex but not strictly convex: When the function is
convex (but not strictly convex) in the variables we are
minimizing over, and a technical condition holds (which
always holds in the strictly convex case), the function of
the remaining variables is always extended quadratic.

Suppose f is an extended quadratic function of two variables
z € R™ and v € R™, i.e., it has the form

T
x Pew Prw @ |7

1
f($,u):§ U Pu:r Puu qu [ +Ip,g(l',u)
1 la a r][1

where F' = [Fx Fu} Also, suppose that f is convex in u for
all z. The function

g(x) = nf f(z,u)

gives the partial minimization of f over w.

Evaluating inf,, f(x,u) is itself a convex optimization prob-
lem, and for it to be feasible, the (extended quadratic) function
h(u) = f(x,u) must be proper. We have that h is proper if and
only if

vef{z|For+geR(F)} ={z|Fr+j=0}
where F' = (I — F,F})F, and § = (I — F,F}), which is a
linear equality constraint on . We can express g in the equivalent
form

9(x) = nf f(,u) + Tp () ©)

We can convert the equality constraint on x above into its free
parameter representation, parameterized by xo € R and V5 €
R e,

{z|Fr+§=0}={Vaz+x0|2zc R}

Carrying out the partial minimization to find g amounts to
solving the (equality constrained quadratic) optimization prob-

i

¢ =Fax+yg

T / !/
o 1 P q
minimize =

q/T ,r/

u

2|1

subjectto  F,u+g =0
where
P'= Py, ¢ =Py +qu,
and
v =aT Popx + 2% q, + ¢Lx + 7.

We replace = with its free parameter representation xg + V2 z, so
that the optimization problem is guaranteed to be feasible. The
KKT conditions for this problem for * and v* to be optimal [41]

are
Py FE u* _ q/ _ Py Vor— Puzx0+qu
F, 0 v* 9/ F, ’ wa0+g '

This linear system has a solution for all z if and only if

( )= ). @

This is the technical condition that we have been referring to.
This condition is guaranteed to hold if, e.g., f is strictly convex
in u. If the technical condition (7) holds, then we can express a

u* as
i
( >—A:c+b

where A € R"™*" and b € R™. This always satisfies the con-
straint F,x + F,u* 4+ g = 0.

Plugging this u* back into (6), we find that g is an extended
quadratic. (For the sake of brevity, we omitted the form of the
extended quadratic.)

If (7) does not hold, or f is nonconvex in u, then there is at
least one x where g(2) = —oc and ¢ is no longer an extended

P,, FT

u

F, 0

PuaVa
F, Vo

Pummo +qu
szo +9g

P,, FT
F, O

P’UAE
Fy

qu
g

u*:f[l O] x +
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quadratic function of x. We can check the technical condition
(7) by noting that

R(A) D R(B) <= (I — AAHB =

V. DP SoLUTION

In this section, we use DP to show that the solutions to the
problems, we consider in this article have the form (4).

A. Finite Horizon

The cost-to-go (or value) function V?:R"™ — RU
{—00,4+00} is defined as the cost achieved by an optimal
policy starting at time ¢ from a given state and mode, or

zg

subject to the dynamics (1), ; = x, and s; = s. Given a col-
lection of functions V = (V1 ... VE), define the Bellman
operator 7; applied to that collection as

Vi mf E

)7w7’) + g’?T (‘TTwa)‘|

(T:V)*(z) =inf EE [gt (x,u,wy) +V? (ff(x,u,wt))}

where s’ = ¢ with probability II, ;; if s = j. It is well known
that the cost-to-go functions Vp, V1, ..., Vr satisfy the DP re-
cursion [2], [24]

‘/t — 7;‘/;4»17
with V3 (z) = ¢5.(x).

Defining the state-action cost-to-go function Q7 : R™ X
R™ — RU{—00, 400} as

t=T-1,...,0

Qi(w,w) = BE [g5 (e, u,w0) + Vi (£ (2, w,01)

the optimal policies are given by
@7 (x) = argmin Q; (z, u).

We show that, barring pathologies, the cost-to-go functions
V;? are extended quadratic functions of = for ¢t =0,...,T.
Intuitively, this is because the Bellman operator preserves the
“extended quadraticity” of the cost-to-go functions.

We show this by induction. The last cost-to-go function V7
is extended quadratic in x by definition. Suppose, then that
Vi% 1 is extended quadratic in z. Then, QQf must be extended
quadratic in « and v because it is the expectation of an extended
quadratic plus an extended quadratic composed with an affine
function. Because V; is equal to the partial minimization of ()7,
an extended quadratic, V,® will be an extended quadratic function
of z. (If V7 is not an extended quadratic function of z, then the
costis either 400 or —oo, a pathology.) Therefore, the cost-to-go
functions are extended quadratic functions of x.

Because ¢ is equal to the solution of partially minimizing an
extended quadratic function )y, it follows that there exists an
optimal policy that is affine in « for each ¢, s, and has the form
in (4).

B. Infinite Horizon

The cost-to-go function of the infinite-horizon problem, V :
R" — RU {—00, +00}, is given by

va (2, 6% (xy), wtﬂ

subject to the dynamics (1), g = z, sg = s, where the ex-
pectation is over w;. Given a collection of functions H =
(H',...,H¥) for H* : R™ — R, define the Bellman operator
T applied to the collection as

(TH)*(z) =

VE( 1nf E

infEE [ *(z,u,w) +yH® (f2(x,u, w))}

u w s

where s’ = ¢ with probability IT;; if s = j. It is well known that
the cost-to-go function is the unique fixed point of the Bellman
operator [2], [24], or

V=TV
and that
V= lim TV
for any bounded function Vj’ : R" — R.

Defining the state-action cost-to-go function @°:R
R™ — RU{—00, 400} as

Q*(w,u) = BE [g° (2, u,w) + 9V (f* (2w, w))|

n

where s’ = ¢ with probability IT;; if s = j, the optimal policy is
given by

8 (2) = argmin Q° (s ).

We show that the cost-to-go function is an extended quadratic
function of x. If H is extended quadratic in x, so is 7 H by the
same logic as in the finite-horizon case (barring pathologies).
Starting with V (z) = 0, abounded extended quadratic function,
we have that 7%V}, is an extended quadratic function of x for k €
N. Therefore, its limit, the cost-to-go function V, is an extended
quadratic function of x.

We have that () is extended quadratic because V' is extended
quadratic. Therefore, by the same logic as the finite-horizon case,
there exists an optimal policy that is affine in z.

C. Avoiding Pathologies

Pathologies are most likely to manifest when one performs
partial minimization of ), to find V;. If Q; is strictly convex in
the variables one is minimizing over, the partial minimization
will always yield an extended quadratic function of the other
variables. We can enforce this by making g7 (z,u) convex in z
and strictly convex in u, but pathologies can still occur, e.g., the
cost could be infinite. (This is done in LQR, where g(z,u) =
2TQx +uTRuand R > 0.)

If Q; is convex but not strictly convex, then in addition, the
range condition (7) must hold. The best way to check this is to
solve the problem and see (numerically) if the range condition
holds. If it does not, then the problem is ill-posed and the cost
or dynamics should be changed.
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D. Linear Policies

In some problems, e.g., in classical LQR, the policies are
linear functions of x. In this section, we come up with a sufficient
condition on problems that have linear (optimal) policies.

If the dynamics are linear, and the stage cost is a convex
quadratic form with homogeneous equality constraints, then the
optimal policies will be linear. This is because the cost-to-go
functions are quadratic forms with homogeneous equality con-
straints, i.e., they are of the form

T
1|z P 0f |z 0 Fr=0
Vilx) =< +
() 211 0o |l |1 {—|—oo otherwise.

This follows because quadratic forms with homogeneous equal-
ity constraints are closed under the same operations as extended
quadratics. It is easy to show that the solution of partially
minimizing these functions is a linear function of the other
variables, meaning the policies will be linear.

V. IMPLEMENTATION

In this section, we describe how to numerically perform DP to
find the cost-to-go functions, state-action cost-to-go functions,
and policies, in the finite and infinite-horizon problems. One
of the main difficulties in carrying out DP in the general case
is representing the functions of interest. For the problems that
we consider, representation is easy, since we can represent
the cost-to-go functions, state-action cost-to-go functions, and
policies via explicit lookup tables, indexed by time and mode, of
the coefficients in the associated extended quadratic (or affine)
functions.

To perform DP, all we need to do is apply the Bellman
operator. The Bellman operator requires several operations on
extended quadratic functions: addition, scalar multiplication (in
the infinite-horizon case), affine composition, partial minimiza-
tion, and expectation. The first four can be carried out using
elementary linear algebra operations, as described in Section III.
The remaining operation is expectation.

A. Expectation

There are the following two expectations: one over the next
mode and one over the disturbance. The expectation over the
next mode is easy, since there are K possibilities, which we can
enumerate by replacing the expectation by a weighted sum. This
leaves the expectation over wy.

If we only have access to a sampling oracle, we can approx-
imate this expectation using Monte Carlo expectation, i.e., we
sample w1, ...,wy for some large number NN, calculate the
corresponding extended quadratic function for each w;, and
then average those extended quadratic functions. This is, in a
way, the best that we can do given only an oracle that provides
independent samples of the problem data.

When the cost-to-go function is a (nonextended) quadratic
function, i.e., it has no equality constraints, we can exactly
perform expectation if we know the first and second moments of
the dynamics matrices and the first moment of the cost matrix,
and nothing more. If, however, the cost-to-go function contains

Algorithm 1: Finite-Horizon Extended Quadratic Control.

given T, N, K, Aj (w), B} (w), ¢; (w), g; (w), 11}, g7,
and independent samples w'®, . .. w}?®

Set Vi = g5.

fort=T-1,...,0

L Qj(w,u) = £ 30000 30 T (97 (0w, w ) +
Vi (A (i )z + By (wi)u + e (w;*))).

2. Partial minimization. Form V?(z) = inf,, Q3 (z,u)
and ¢7 (z) = Kz + k7.

end for.

LW -

equality constraints, then we need more knowledge than just the
first and second moments of the dynamics matrices, and we need
to fall back to approximating the expectation using the Monte
Carlo procedure explained earlier.

In our implementation, we use Monte Carlo expectation
because it requires nothing more than a sampling oracle,
and is easy to implement. The full version of the finite-
horizon algorithm with Monte Carlo expectations is presented in
Algorithm 1.

B. Infinite Horizon

To perform infinite-horizon DP, we simply call finite-horizon
DP with a final stage cost function of zero, with stage cost
functions multiplied by ~?, and with the time horizon being the
number of times to apply the Bellman operator. One could devise
a more sophisticated termination condition, e.g., terminating
when V; is “close” to V; 1, rather than applying the Bellman
operator a fixed number of times. However, in practice, the
cost-to-go function converges after a small number (e.g., 10-20)
of iterations.

C. Python Implementation

We have developed an open-source Python library that
implements Algorithm 1. The main object is Extend-
edQuadratic, which is initialized by supplying P, g, r,
F, and g. One can perform arithmetic operations on Ex-
tendedQuadratics, as well as perform affine precomposi-
tion, partial minimization, and check equality, convexity, and
nonnegativity. We also provide a function that maps Ex-
tendedQuadratics to cvxpy [42] expressions and vice
versa.

The main methods are dp_finite and dp_infinite,
which implement finite and infinite-horizon DP, respectively.
One supplies a sampling function sample (t, N), which pro-
vides a batch sample problem data (of size N) for time ¢. (For
dp_infinite, the sample function does not take ¢ as an
argument as it should be time invariant.) The functions take two
additional arguments: the number of Monte Carlo samples, the
time horizon (in the infinite-horizon function, this is the number
of times to apply the Bellman operator), and the discount factor
(in the infinite-horizon case). The method returns the cost-to-go
functions V;* (z), the state-action cost-to-go functions Q; (z, u),
and the (optimal) policies (K7, k7).
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D. Runtime

The finite-horizon extended quadratic control algorithm, i.e.,
T applications of the Bellman operator, requires approximately

TK?N max{1, p} max{n, m}?

operations. Our (naive) single-threaded Python implementation
applied to a random moderately sized problem with n = 25,
m = 50, N = 100 (number of Monte Carlo samples), K = 5,
and 7" = 25 Bellman operator evaluations takes about 12.8 s
to calculate the optimal policies on a six-core 3.7 GHz Intel i7.
The bulk of the computational effort lies in calculating the Monte
Carlo expectation, which one could parallelize across multiple
CPUs or GPUs to make the algorithm faster (see the message
passing interface (MPI) implementation as follows).

E. MPI Implementation

We mentioned above that the algorithm could be significantly
sped up with a parallel implementation. We have developed a dis-
tributed implementation using the MPI [43]. MPI is a language-
independent message-passing standard designed for parallel
computing, and is the dominant model in high-performance
computing applications today. Although there are multiple ways
to implement these algorithms in MPI, perhaps the simplest
way is to parallelize the (Monte Carlo) sum over ¢ in line 1
of Algorithm 1. If we have r processors, we can set N to a
multiple of  and have each processor perform a (smaller) Monte
Carlo expectation over N/r samples, and then reduce these
by averaging them. This can provide significant reductions in
runtime, provided NN is substantially greater than the number of
Processors.

F. Measuring Monte Carlo Error

Our calculation of the cost-to-go functions and policies is ap-
proximate, because we use a Monte Carlo expectation instead of
an exact expectation. We can measure the error in our procedure
by running it multiple times with different random seeds and
checking how much the cost-to-go functions and policies vary
across the runs. We could also use this idea to dynamically select
the number of samples used in the Monte Carlo expectations to
get a solution that is within a prescribed error.

VI. APPLICATIONS

In this section, we describe several known and new applica-
tions.

A. Linear Quadratic Control or Regulator

LQR is a classical problem in control theory, first identified
and solved by Kalman in the late 1950s [25]. There are many
variations of LQR; in this example, we focus on the infinite-
horizon LQR problem. The system has a time-invariant linear
state transition function, meaning its dynamics are described by

Ty = Azy + Bug +wy, t=0,1,...

where Ew; = 0 and E[w,w!] = W, and our stage cost is a
quadratic form, i.e.,

g(z,u) = 27 Qx + v’ Ru

where @) = 0 and R > 0.

It is well known that the cost-to-go function is of the form
V(2) = 2T Pz where P = 0 satisfies the algebraic Riccati equa-
tion (ARE)

P=Q+ AT"PA—- ATPB(R+ BTPB) 'BTPA

and that the optimal policy is linear state feedback u; = Ky,
where

K=—(R+B"PB)'BTPA.

Infinite-horizon LQR (and all of its tractable variants) are
instances of the problem that we describe in this article, because
the dynamics are affine and the costis a quadratic form. However,
there is only one mode, the cost, dynamics, and input matrices
do not depend on w;, and the stage cost is a convex quadratic
form, not an extended quadratic. We know, without deriving the
ARE that the cost-to-go function is a (nonextended) quadratic
form and that the optimal policy is linear, and we can efficiently
calculate them using the algorithms described in this article. It is
worth noting that there are many other specialized (and efficient)
methods of exactly solving the ARE, see, e.g., [22] and [44].
LQR serves as a good test of our numerical implementation,
since we can compare the cost-to-go functions and policies that
we find with specialized solvers for the ARE.

B. LQR With Random Dynamics

We can easily extend infinite-horizon LQR to incorporate
random dynamics and input matrices. That is, our dynamics are
described by

Tpp1 = Ay + Brug + e, t = 0,1, ..

where A;, By, and ¢; are (jointly) random, and we have a
quadratic form stage cost. A, By, and ¢; can have any joint
distribution.

This problem was first identified and solved by Drenick and
Shaw in 1964 [15] and then in continuous time by Wonham in
1970 [35]. For a more modern treatment in discrete time, see
the paragraph “Random System Matrices” in [2, pg. 123—-124].
The cost-to-go function in infinite-horizon LQR with random
system matrices can diverge to 4-oo if there is too much noise
in the system; this is referred to as the uncertainty threshold
principle [45], and is a great example of a pathology.

C. Numerical Example

We reproduce the results in the original paper on the uncer-
tainty threshold principle [45]. Here, we have a one-dimensional
system (n = m = 1) with dynamics described by

Ti41 = AT + but

where a ~ N (@, X4,) and b ~ N (b, S ) (Where N (u, o) is the
normal distribution with mean p and standard deviation o), and
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our stage cost is
g(z,u) = 2% + u?.

We solve the finite-horizon problem (with zero final cost),
resulting in cost-to-go functions that have the form

Vi(z) = kea®, t=0,1,...,T.

For all of the following examples, we let a = 1.1, b=1.0,
T = 50, N = 50, and we plot the coefficient k; versus ¢ in the
following three cases.

1) a fixed and b random: We fix ¥,, = 0, and vary

S € {0,0.81,1.44,2.25,2.89, 3.61,4.41,4.84,5.76}.

The results are displayed in Fig. 1(a).
2) a random and b fixed: We fix X, = 0, and vary

Yua € {0,0.25,0.49,0.64,0.81,1.00,1.21}.

The results are displayed in Fig. 1(b).
3) Both a and b random: We fix X, = 0.64, and vary

Sua € {0,0.16,0.25,0.36,0.49, 0.64, .81}.

The results are displayed in Fig. 1(c).

Our results match those of [45], modulo Monte Carlo error.
When the variance gets too large, the cost-to-go functions di-
verge to 400, as predicted by the uncertainty threshold principle,
and numerically checkable by our implementation.

T T T
30 40 50
t

(c)

Random LQR example. (a) X, = 0 and varying X,,. (b) Xqq = 0 and varying ;. (€) Zpp = 0.64 and varying X, .

D. Jump LQR

Jump LQR is LQR with dynamics that jump (or switch)
between modes. In infinite-horizon jump LQR, the dynamics
are

Tep1 = A%z + B¥up +c*, t=0,1,...

S¢+1 = ¢ with probability IL;; if s, = j, t=0,1,....

As in LQR, we adopt a quadratic form stage cost for simplicity.
For this problem, there is an optimal policy that is affine in x
for each mode. We can find this policy using the algorithms
described in this article. When there is no switching (II = 1),
the problem reduces to K separate LQRs (one for each mode).
Depending on the exact problem data and distributions, the
policies found with switching can be substantially different than
the nonswitching policies.

E. Numerical Example

Consider the one-dimensional system, i.e., m = n = 1, with
dynamics described by

s=1

s =2

1.22; + 0.1uy;
O.Sl't — 01ut,

Tt41 =
Ti41 =

and Markov chain switching probabilities given by

- 0.8 0.2 .
0.2 0.8
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Consider the following stage cost function:
1 1
glx,u) = 5.%‘2 + §u2.

We solved the undiscounted (7 = 1) infinite-horizon problem
with 20 applications of the Bellman operator. The optimal policy
for the case with switching is

(@) = {2.54193 s=1

0.919z s =2.

We also solved the problem with no switching, resulting in the

optimal policy
s () = —3.844x
mETT) 0.207a

s=1
s =2.

The two policies are substantially different. The policies, over
100 time steps in the actual system starting at o = (10) and
so = 1,achieve anexpected costof 16.16 and 18.53, respectively
(averaged over 100 simulations with the same random seed). The
policy found taking into account the switching outperforms the
policy that ignores the switching.

F. Multimission LQR

LQR can be extended to handle randomly switching costs. In
multimission LQR, the mode s; corresponds to the current cost
assigned to the controller. The dynamics are the same as LQR,
but the costs depend on the mode, or

T
1 x X
gilwu) =5 |u| G |u
1 1

The algorithms described in this article can be used to solve the
finite or infinite-horizon stochastic control problems, and result
in an affine policy for each “mission.”

G. Numerical Example

We apply the example mentioned above to a tracking mission.
Let p, € R? denote the position and v, € R? denote the velocity
of a point mass in two dimensions. The state is x; = (p¢, v¢)
and the force applied is u; € R%. Suppose the dynamics are
described by

10 005 0 0 0
01 0 005 0 0
T 00 0 098 0 | {oos o |

00 0 098 0 005

For each mission, the point mass’s goal is to navigate to a
target position d, € R? while minimizing control effort, corre-
sponding to a stage cost

9*(z,u) = (1/2)lp — dsll3 + (1/2)]|u]l3

where A > 0.
Suppose we have three targets given by

dy = (—1,.5) dy=(—1,—25) ds=(1,0)

1.0
0.5 1 )
0.0 A ()
[
0.5 1
1.0 : : : :
1.5 1.0 0.5 0.0 0.5 1.0 1.5
(a)
1.0
0.5 1 )
0.5 1
1.0 : — : :
1.5 1.0 0.5 0.0 0.5 1.0 1.5
(b)
Fig. 2. Multimission LQR example. (a) switching policy. (b) Nonswitch-

ing policy.

and mission switching probabilities given by

0.97 0.0075 0.015
0.003 0.97  0.15
0.027 0.0225 0.97

II =

We solved the corresponding (infinite horizon) stochastic control
problem with A = 0.1, T'= 50, N =1, and 7 = 1. A sample
run of the optimal policy for the switching and no switching
problems is shown in Fig. 2. The policy that takes into account
the switching does not go directly toward the targets, knowing
that at any time the mission will switch and it will have to change
course.

H. Fault Tolerant LQR

We extend LQR to the case where control inputs (or actua-
tors) randomly stop affecting the system. Suppose a system is
deterministic and described by the linear dynamics

Ti+1 = Al’t -+ But

and we would like to model input failures, i.e., if input ¢ has
failed, (u;); has no effect on ;.

We associate each mode of the system s; with an actuator
configuration a; C {1,..., m}, which contains the indexes of

Authorized licensed use limited to: Stanford University. Downloaded on March 07,2022 at 20:22:39 UTC from IEEE Xplore. Restrictions apply.



330

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 1, JANUARY 2022

the control inputs that have “failed.” We assume that we know
what actuator configuration we are in. We can then associate each
actuator configuration a; with a corresponding input matrix B°,
where the jth column of B? is defined as

. 0 | € a;
Bi={ ' 7=
b; otherwise

where b; is the jth column of B. We then can define a mode
switching probability matrix II, where II;; is the probability that
the system transitions from actuator configuration a; to actuator
configuration a;. Our system’s dynamics with actuator failures
are described by

Ty = Az + B¥ay

S¢+1 = ¢ with probability II,; if s; = j.

This is an extended quadratic control problem. We also know that
for each actuator configuration, the optimal policy is affine. To
implement this policy, one first identifies which actuators have
failed, and then applies an affine transformation to the state to
get the input.

This exact problem (with quadratic form cost) was first iden-
tified and solved by Birdwell and Athans in 1977 [32] (see also
Birdwell’s thesis [46]), where they derived what they call “a set
of highly coupled Riccati-like matrix difference equations.” As
expected, the cost-to-go functions that they derive are quadratic
and the optimal policy is affine for each actuator configuration.
They used about a page of algebra to show this; we immediately
know this.

I. Numerical Example

We reproduce a slight modification of the example in [32].
Here our dynamics are

2.71 828 0 1.71828 1.71828
Ti41 = Tt + Ut
0 0.36 788 —0.63212 0.63212

The actuator configurations are @), {1}, and {2}, resulting in
control matrices

1| 171828  1.71828 B2 _ 0 1.71828
~|-0.63212 0.63212]° |0 0.63212

and

5 | 171828 0
- |-0.63212 0]’

The mode switching probability matrix is

0.943 0.069 0.026

IT=]0.03 0.854 0.04
0.027 0.077 0.934
We use astage cost g(z, ) = ||z||3 + ||u/|3. The optimal policies

are linear, given by

—0.737

L 0.135
¢ (z) = [—0.74 ]x

—0.136

S 0
o(@) = [1.455 0.003]96
o) = [16462 0.(())02] N

If an actuator does not affect the system, the optimal action
sets this input to zero, since one incurs cost for having its input
not equal to zero. (This is why the first column of B? is zero
and the second column of B? is zero.) If we ignore the fact
that the dynamics switch when an actuator fails, we arrive at a
suboptimal policy.

J. Portfolio Allocation With Multiple Regimes

In this example, we frame the problem of designing an optimal
portfolio allocation in a market that randomly switches between
multiple regimes. We borrow the notation from [47].

K. Holdings

We work in a universe of n financial assets. We let h; € R"
denote the (dollar-valued) holdings of our portfolio in each of
those n assets at the beginning of time period ¢. (We allow
(ht); < 0, which indicates that we are short selling asset 7.) The
total value of our portfolio at time ¢ is vy = 17 h,. Our state is
ht.

L. Trading

At the beginning of each time period, we select a trade vector
u; € R that denotes the dollar value of the trades to be executed.
After making these trades, the investments are held constant until
the next time period. The post-trade portfolio is denoted

hf =hi+uy, t=0,...,7—1

with a total value v;" = 17h;". We have a self-financing con-

straint, i.e., v; = v;L , which can be expressed as

]_T’U,t =0.

M. Market State

We assume that the market is in one of several (fully ob-
servable) market regimes. We assign a mode s; € {1,..., K}
to each regime. Each regime corresponds to a different return
distribution and transaction costs. We use a Markov chain to
model the market regime switching from time ¢ to ¢ + 1.

N. Investing Dynamics

The post-trade portfolio is invested for one period. Assuming
the market is in the mode s;, the portfolio at the next time period
is given by

hiv1 = (I + diag(r;))hy

where 7} € R" is a random vector of asset returns from time ¢
to time ¢ + 1 when the market is in the mode s;. The mean of the
return vector for time ¢ in mode s; is denoted uj* = E[r}*] and
its covariance is denoted ¥7* = E[(r{* — pi*) (" — pi)T).
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O. Transaction Cost

The trading results in a transaction cost (;Sgasde :R" = R (in
dollars), which we assume to be a (diagonal) quadratic form,
ie.,
rade () = utT diag(b;)us

t,s

where (b7); € R is the coefficient of the quadratic transaction
cost for asset ¢ during time period ¢ when the market is in the
mode s.

P Returns

The portfolio return from period ¢ to ¢ + 1 when the market
is in mode s is given by

R} = w1 — v — ¢ (uy)
= 1" (hyy1 — he) — ¢§sr,asde(ut)
= 17 ((I + diag(r})) (he + ug) — he) — O3 (uy)
(r9) e+ 1T + () Tue — G5 (ue)
= (r]) " (e +we) — S ().
The expected return is given by
E[R] = (u)" (ze + ue) — &5 (wy).
The variance of the return is given by

Var[Rf] = (It + ’Z,Lt)TEf(I’t -+ Ut).

Q. Stage Cost Function

Our goal will be to maximize a weighted combination of
the mean and variance of the returns, while satisfying the
self-financing condition. This can be accomplished with the
following (extended quadratic) stage cost function:

s —E[R;] + ¢ (u) + v, Var[RS] 1Tu=0
gt@,u){ [R;] + 67 (u) + 7 Var[R;]

R otherwise
for some parameter v; > 0 that tradesoff return and risk.

The abovementioned problem can be solved with the al-
gorithms described in this article by providing an oracle that
provides samples of 7} for all ¢, s (we can estimate the mean
and covariance from this), the transaction cost vector b; for all
t, s, and the mode switching probability matrix II; for all ¢. The
optimal trade vector when the market is in mode s will be an
affine function of the holdings, i.e.,

s s
Uy = Kttl't +ktt.

It turns out that the optimal policies can be written in the
following more interpretable form:

up = K (hy — (h*);")

where (h*)§* = —(K;*)k;* is the desired holdings vector in the
regime s;. So, to select a trade vector, we calculate the difference
between our current holdings and our desired holding, and then
multiply that difference by a feedback gain matrix.

To the best of authors’ knowledge, this application has not yet
appeared in the literature.

R. Numerical Example

We gathered the daily returns from October 2013 to October
2018 of n = m = 6 popular exchange traded funds (ETFs).

For the market regime, we used the daily rate of change of the
CBOE Volatility Index (VIX), which approximates the market’s
expectation of 30-day volatility. We gathered the daily opening
price of the VIX and calculated its daily rate of change, which
we refer to as dVIX. We segmented dVIX into K = 5 numerical
ranges defined by the endpoints

(—0.09, —0.017, —0.003, 0.003, 0.03, 0.287)

and define the range that it is in at time ¢ as the regime
st € {1,..., K'}. We then calculated the empirical probabilities
of switching between each market regime (values of dVIX),
resulting in the following mode switching probability matrix:

0.159 0.123 0.146 0.189 0.282
0.242 0.291 0.299 0.276 0.197
II= {0.108 0.215 0.201 0.156 0.155
0.357 0.318 0.305 0.319 0.225
0.134 0.054 0.049 0.06 0.141

For each regime, we gathered all of the days where the market
was in that regime and fit a multivariate log-normal distribution
to 1 + r; for the five ETFs.

Using these distributions and mode switching probabilities,
we solved an instance of the portfolio allocation problem with
a time horizon of T =30, N =50, v, =1 x 1071, b= py -
1 x 1077 (where po € R" is the price of the assets at the final
day of the ETF data), and no final cost. We then simulated the
system several times (using different random seeds) starting in
the initial state ho = (1000)1 and sy = 3. Fig. 3 displays various
quantities over time from the simulations.

S. Optimal Retirement

The goal in retirement planning is to devise an investment
allocation and consumption schedule for the rest of ones life
in order to maximize personal utility. In this section, we frame
retirement planning as an extended quadratic control problem,
with the state being the investor’s wealth, the input being the allo-
cation over various financial assets (and an amount to consume),
the cost being negative utility, and the mode corresponding to
whether the investor is alive or deceased.

We let the time period ¢ represent a (calendar) year. At the
beginning of year ¢, the mode s, corresponds to whether the
investor is alive (s; = 1) or deceased (s; = 2). If the investor is
alive at the beginning of year ¢, either they pass away (s;41 = 2)
with probability p;, or they continue to live (s;4; = 1) with
probability 1 — p;. The deceased mode is absorbing, i.e., if the
investor is deceased at year ¢, they stay deceased at year ¢ + 1.
The mode dynamics is given by the mode switching probability
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The investor’s wealth W, € R is the wealth (in dollars) of the
investor at the beginning of year ¢t. We operate in a universe of m
financial assets that the investor may choose to invest in. At the
beginning of year ¢, the investor allocates their wealth across m
financial assets by specifying a holdings vector u; € R™, where
(u¢); is the holdings amount (in dollars) of asset 7 ((ut); < 0
corresponds to shorting the asset). The amount that the investor
does not invest

Ct = Wt - 1TUt

is consumed if the investor is alive and bequeathed (i.e., left
to beneficiaries by a will) if the investor is deceased. If the
investor consumes C; during year ¢, they receive U, (CY) utility,
where U; : R — R is a concave quadratic utility function for
consumption. If the investor bequeaths Cy, they receive B(C})
utility, where B : R — R is a concave quadratic utility function
for bequeathing. (We enforce that all of the investor’s wealth is

bequeathed when they die via the constraint that u = 0 when
s=2.)
The investor’s wealth at year ¢ 4 1 is

riug s=1

Wirr = 0 s=2

where r; € R"" is a random total return vector for the financial
assets over year t, with E[r;] = y; and Cov[ri] = ;. The
variance of the investor’s wealth at year ¢ + 1, assuming they
are alive, is

Var(Wt+1) = utTEtut.

Our goal is to maximize utility, while minimizing risk, result-
ing in the stage cost functions

gt(W,u) = —U(C) + yu" S

0 u=20

2
g: ( ) ©) 400 otherwise.

We ignore transaction costs.
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It is worth noting that this problem is small enough to be
discretized and solved exactly (with up to 5 or 6 assets) with any
dynamics and cost. So this example is just an illustration, and
it is only sensible to use extended quadratic control when there
are many assets.

T. Numerical Example

We gathered inflation-adjusted yearly returns for m = 3 as-
sets: the S&P 500, 3-month treasury bills, and 10-year treasury
bonds over the past 81 years (1938 — 2018) [48]. We fit a
multivariate log-normal distribution to the returns.

The mean and covariance of r, are roughly

1.09 0.0316 0.0008 0
E[r,] = |1.00], Covlr] = |0.0008 0.0014 0.0014
1.02 0  0.0014 0.0067

For mortality rates, we use the Social Security actuarial life
table [49], which gives the death probability (probability of
dying in one year) for each age, averaged across the United
States’s population.

We use the utility functions

1
Uy(C) = —5(0.2)02 +200, B(C)= —%(0.002)02 +4C.

Here, U;(0) = B(0) = 0, the maximum of U; is at 100 where
U:(100) = 1000, and the maximum of B is at 2000 where
B(2000) = 4000. The utility functions were designed so that
the investor ideally consumes $100 k every year, and bequeaths
$2 m. We use a risk aversion parameter v = 1 x 1072,

The optimal policy has the form

Uy = KtW—Fkt

where K; € R*! and k, € R3. Therefore, the consumption
amount during year ¢ is equal to

C,= W, —1Tu;
= W, —15(K,W, + k)
= 1 -1T"K)W; — 17k,
We can rewrite this in the more interpretable form
up = ft(Wy —2000) + g;.

Here, (W, — 2000) is the deficit or excess wealth the investor
has as compared to the optimal bequest amount, f; is unit-less,
and ¢, is in units thousands of dollars.

Fig. 4 shows f; versus t and Fig. 5 shows g; versus ¢, starting
from age 60.

We simulated (the remainder of) an investor’s life, starting
at age 60 with $3 m, using the optimal policy found by our
algorithm, over 500 random seeds. Fig. 6 shows wealth versus
age over the first 10 random seeds. Fig. 7 shows the fraction
of the investor’s wealth invested in the S&P 500 over age, over
the same 10 random seeds. It appears that the investor seeks a
riskier allocation as they age, which is counter-intuitive, since
one would expect the opposite.

0.022 -
0.020
0.018

= 0.016
0.014 1
0.012 -

0.010 1

0.008

Fig. 4.  f; versus age.

98 1

97 1

96 1

93 1
92 1

91 A

90 4

Fig. 5. ¢; versus age.

3000 A

2500 1

2000 1 o

wealth

1500 4

1000 4

age

Fig. 6.  Random simulations of wealth versus age.

Fig. 8 shows a histogram of consumption amounts, over all
500 random seeds. The investor rarely consumes over 100 k;
if they do, this is likely because they do not want to be-
quest too much (this is a limitation of quadratic utility func-
tions). Fig. 9 shows a histogram of bequest amounts, over all
500 random seeds. The median bequest amount was $1.747
m.
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VIl. CONCLUSION

Ithas been about 60 years since the invention of LQR. Since its
invention, everyone has known that LQR problems can be solved
exactly. Many extensions, some which maintain tractability, and
some that do not, have been proposed over the years. In this
article, we have collected the tractable extensions, unified them
as a single general class of problems, and proven the form of

the solution. There is no clean expression for the optimal policy,
however computing it can be reduced to iteratively performing
several simple linear algebraic operations on the coefficients
of extended quadratic functions. We have also developed an
implementation that exactly solves (modulo how expectation
is performed) these problems using these operations defined on
extended quadratics, given access only to a sampling oracle.
We demonstrate the usefulness of such an approach via many
applications, some of which, to the best of authors’ knowledge,
have not appeared yet in the literature.
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