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Abstract

Principal components analysis (PCA) is a well-known technique for ap-
proximating a tabular data set by a low rank matrix. Here, we extend
the idea of PCA to handle arbitrary data sets consisting of numerical,
Boolean, categorical, ordinal, and other data types. This framework
encompasses many well known techniques in data analysis, such as
nonnegative matrix factorization, matrix completion, sparse and ro-
bust PCA, k-means, k-SVD, and maximum margin matrix factoriza-
tion. The method handles heterogeneous data sets, and leads to coher-
ent schemes for compressing, denoising, and imputing missing entries
across all data types simultaneously. It also admits a number of inter-
esting interpretations of the low rank factors, which allow clustering
of examples or of features. We propose several parallel algorithms for
fitting generalized low rank models, and describe implementations and
numerical results.

M. Udell, C. Horn, R. Zadeh and S. Boyd. Generalized Low Rank Models.
Foundations and Trends R• in Machine Learning, vol. 9, no. 1, pp. 1–118, 2016.
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1
Introduction

In applications of machine learning and data mining, one frequently
encounters large collections of high dimensional data organized into
a table. Each row in the table represents an example, and each col-
umn a feature or attribute. These tables may have columns of di�erent
(sometimes, non-numeric) types, and often have many missing entries.

For example, in medicine, the table might record patient attributes
or lab tests: each row of the table lists test or survey results for a
particular patient, and each column corresponds to a distinct test or
survey question. The values in the table might be numerical (3.14),
Boolean (yes, no), ordinal (never, sometimes, always), or categorical (A,
B, O). Tests not administered or questions left blank result in missing
entries in the data set. Other examples abound: in finance, the table
might record known characteristics of companies or asset classes; in
social science settings, it might record survey responses; in marketing,
it might record known customer characteristics and purchase history.

Exploratory data analysis can be di�cult in this setting. To better
understand a complex data set, one would like to be able to visualize
archetypical examples, to cluster examples, to find correlated features,
to fill in (impute) missing entries, and to remove (or simply identify)
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spurious, anomalous, or noisy data points. This paper introduces a
templated method to enable these analyses even on large data sets with
heterogeneous values and with many missing entries. Our approach
will be to embed both the rows (examples) and columns (features)
of the table into the same low dimensional vector space. These low
dimensional vectors can then be plotted, clustered, and used to impute
missing entries or identify anomalous ones.

If the data set consists only of numerical (real-valued) data, then
a simple and well-known technique to find this embedding is Princi-
pal Components Analysis (PCA). PCA finds a low rank matrix that
minimizes the approximation error, in the least-squares sense, to the
original data set. A factorization of this low rank matrix embeds the
original high dimensional features into a low dimensional space. Ex-
tensions of PCA can handle missing data values, and can be used to
impute missing entries.

Here, we extend PCA to approximate an arbitrary data set by re-
placing the least-squares error used in PCA with a loss function that
is appropriate for the given data type. Another extension beyond PCA
is to add regularization on the low dimensional factors to impose or
encourage some structure, such as sparsity or nonnegativity, in the low
dimensional factors. In this paper we use the term generalized low rank
model (GLRM) to refer to the problem of approximating a data set as
a product of two low dimensional factors by minimizing an objective
function. The objective will consist of a loss function on the approxima-
tion error together with regularization of the low dimensional factors.
With these extensions of PCA, the resulting low rank representation
of the data set still produces a low dimensional embedding of the data
set, as in PCA.

Many of the low rank modeling problems we must solve will be
familiar. We recover an optimization formulation of nonnegative ma-
trix factorization, matrix completion, sparse and robust PCA, k-means,
k-SVD, and maximum margin matrix factorization, to name just a
few.The scope of the problems we consider, however, is more broad,
encompassing many di�erent combinations of loss function and regu-
larizer. A few of the choices we consider are shown in Tables A.1 and
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A.2 of Appendix A for reference; all of these are discussed in detail
later in the paper.

These low rank approximation problems are not convex, and in
general cannot be solved globally and e�ciently. There are a few ex-
ceptional problems that are known to have convex relaxations which
are tight under certain conditions, and hence are e�ciently (globally)
solvable under these conditions. However, all of these approximation
problems can be heuristically (locally) solved by methods that alter-
nate between updating the two factors in the low rank approximation.
Each step involves either a convex problem, or a nonconvex problem
that is simple enough that we can solve it exactly. While these alternat-
ing methods need not find the globally best low rank approximation,
they are often very useful and e�ective for the original data analysis
problem.

1.1 Previous work

Unified views of matrix factorization. We are certainly not the first
to note that matrix factorization algorithms may be viewed in a unified
framework, parametrized by a small number of modeling decisions. The
first instance we find in the literature of this unified view appeared in a
paper by Collins, Dasgupta, and Schapire, [29], extending PCA to use
loss functions derived from any probabilistic model in the exponential
family. Gordon’s Generalized2 Linear2 models [53] extended the frame-
work to loss functions derived from the generalized Bregman divergence
of any convex function, which includes models such as Independent
Components Analysis (ICA). Srebro’s 2004 PhD thesis [133] extended
the framework to other loss functions, including hinge loss and KL-
divergence loss, and to other regularizers, including the nuclear norm
and max-norm. Similarly, Chapter 8 in Tropp’s 2004 PhD thesis [144]
explored a number of new regularizers, presenting a range of cluster-
ing problems as matrix factorization problems with constraints, and
anticipated the k-SVD algorithm [4]. Singh and Gordon [129] o�ered
a complete view of the state of the literature on matrix factorization
in Table 1 of their 2008 paper, and noted that by changing the loss
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function and regularizer, one may recover algorithms including PCA,
weighted PCA, k-means, k-medians, ¸1 SVD, probabilistic latent se-
mantic indexing (pLSI), nonnegative matrix factorization with ¸2 or
KL-divergence loss, exponential family PCA, and MMMF. Witten et
al. introduced the statistics community to sparsity-inducing matrix fac-
torization in a 2009 paper on penalized matrix decomposition, with
applications to sparse PCA and canonical correlation analysis [155].
Recently, Markovsky’s monograph on low rank approximation [97] re-
viewed some of this literature, with a focus on applications in system,
control, and signal processing. The GLRMs discussed in this paper
include all of these models, and many more.

Heterogeneous data. Many authors have proposed the use of low
rank models as a tool for integrating heterogeneous data. The earliest
example of this approach is canonical correlation analysis, developed
by Hotelling [63] in 1936 to understand the relations between two sets
of variates in terms of the eigenvectors of their covariance matrix. This
approach was extended by Witten et al. [155] to encourage structured
(e.g., sparse) factors. In the 1970s, De Leeuw et al. proposed the use of
low rank models to fit data measured in nominal, ordinal and cardinal
levels [37]. More recently, Goldberg et al. [52] used a low rank model
to perform transduction (i.e., multi-label learning) in the presence of
missing data by fitting a low rank model to the features and the labels
simultaneously. Low rank models have also been used to embed image,
text and video data into a common low dimensional space [54], and have
recently come into vogue in the natural language processing community
as a means to embed words and documents into a low dimensional
vector space [99, 100, 112, 136].

Algorithms. In general, it can be computationally hard to find the
global optimum of a generalized low rank model. For example, it is
NP-hard to compute an exact solution to k-means [43], nonnegative
matrix factorization [149], and weighted PCA and matrix completion
[50], all of which are special cases of low rank models.
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However, there are many (e�cient) ways to go about fitting a low
rank model, by which we mean finding a good model with a small
objective value. The resulting model may or may not be the global
solution of the low rank optimization problem. We distinguish a model
fit in this way from the solution to an optimization problem, which
always refers to the global solution.

The matrix factorization literature presents a wide variety of meth-
ods to fit low rank models in a variety of special cases. For exam-
ple, there are variants on alternating minimization (with alternating
least squares as a special case) [37, 158, 141, 35, 36], alternating New-
ton methods [53, 129], (stochastic or incremental) gradient descent
[75, 88, 104, 119, 10, 159, 118], conjugate gradients [120, 134], expecta-
tion minimization (EM) (or “soft-impute”) methods [142, 134, 98, 60],
multiplicative updates [85], and convex relaxations to semidefinite pro-
grams [135, 46, 117, 48].

Generally, expectation minimization, which proceeds by iteratively
imputing missing entries in the matrix and solving the fully observed
problem, has been found to underperform relative to other methods
[129]. However, when used in conjunction with computational tricks
exploiting a particular problem structure, such as Gram matrix caching,
these methods can still work extremely well [60].

Semidefinite programming becomes computationally intractable for
very large (or even just large) scale problems [120]. However, a theoret-
ical analysis of optimality conditions for rank-constrained semidefinite
programs [20] has led to a few algorithms for semidefinite program-
ming based on matrix factorization [19, 1, 70] which guarantee global
optimality and converge quickly if the global solution to the problem is
exactly low rank. Fast approximation algorithms for rank-constrained
semidefinite programs have also been developed [127].

Recently, there has been a resurgence of interest in methods based
on alternating minimization, as numerous authors have shown that
alternating minimization (suitably initialized, and under a few technical
assumptions) provably converges to the global minimum for a range of
problems including matrix completion [72, 66, 58], robust PCA [103],
and dictionary learning [2].
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Gradient descent methods are often preferred for extremely large
scale problems since these methods parallelize naturally in both shared
memory and distributed memory architectures. See [118, 159] and ref-
erences therein for some recent innovative approaches to speeding up
stochastic gradient descent for matrix factorization by eliminating lock-
ing and reducing interprocess communication. These stochastic non-
locking methods often run faster than their deterministic counterparts;
and for the matrix completion problem in particular, these methods
can be shown to provably converge to the global minimum under the
same conditions required for alternating minimization [38].

Contributions. The present paper di�ers from previous work in a
number of ways. We are consistently concerned with the meaning of
applying these di�erent loss functions and regularizers to approximate
a data set. The generality of our view allows us to introduce a number
of loss functions and regularizers that have not previously been con-
sidered. Moreover, our perspective enables us to extend these ideas to
arbitrary data sets, rather than just matrices of real numbers.

A number of new considerations emerge when considering the prob-
lem so broadly. First, we must face the problem of comparing approx-
imation errors across data of di�erent types. For example, we must
choose a scaling to trade o� the loss due to a misclassification of a
categorical value with an error of 0.1 (say) in predicting a real value.

Second, we require algorithms that can handle the full gamut of
losses and regularizers, which may be smooth or nonsmooth, finite or
infinite valued, with arbitrary domain. This work is the first to consider
these problems in such generality, and therefore also the first to wrestle
with the algorithmic consequences. Below, we give a number of algo-
rithms appropriate for this setting, including many that have not been
previously proposed in the literature. Our algorithms are all based on
alternating minimization and variations on alternating minimization
that are more suitable for large scale data and can take advantage of
parallel computing resources.

These algorithms for fitting any GLRM are particularly useful for
interactive data analysis: a practitioner can mix and match di�erent
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loss functions and regularizers, and test which combinations provide the
best fit to the data, without having to identify a di�erent method to
fit each particular model. We present a few software packages designed
for this purpose, with interfaces in Julia, R, Java, Python, and Scala,
in §9.

Finally, we present some new results on some old problems. For
example, in Appendix A.1, we derive a formula for the solution to
quadratically regularized PCA, and show that quadratically regularized
PCA has no local nonglobal minima; and in §7.6 we show how to certify
(in some special cases) that a model is a global solution of a GLRM.

1.2 Organization

The organization of this paper is as follows. In §2 we first recall some
properties of PCA and its common variations to familiarize the reader
with our notation. We then generalize the regularization on the low
dimensional factors in §3, and the loss function on the approximation
error in §4. Returning to the setting of heterogeneous data, we extend
these dimensionality reduction techniques to abstract data types in §5
and to multi-dimensional loss functions in §6. Finally, we address algo-
rithms for fitting GLRMs in §7, discuss a few practical considerations
in choosing a GLRM for a particular problem in §8, and describe some
implementations of the algorithms that we have developed in §9.



2
PCA and quadratically regularized PCA

Data matrix. In this section, we let A œ R

m◊n be a data matrix
consisting of m examples each with n numerical features. Thus A

ij

œ R

is the value of the jth feature in the ith example, the ith row of A is
the vector of n feature values for the ith example, and the jth column
of A is the vector of the jth feature across our set of m examples.

It is common to represent other data types in a numerical matrix
using certain canonical encoding tricks. For example, Boolean data is
often encoded as 1 (for true) and -1 (for false), ordinal data is often
encoded using consecutive integers to represent the consecutive levels of
the variable, and categorical data is often encoded by creating a column
for each possible value of the categorical variable, and representing the
data using a 1 in the column corresponding to the observed value, and
-1 or 0 in all other columns. We will see more systematic and principled
ways to deal with these data types, and others, in §4–6. For now, we
assume the entries in the data matrix consist of real numbers.

2.1 PCA

Principal components analysis (PCA) is one of the oldest and most
widely used tools in data analysis [111, 62, 67]. We review some of its

9



10 PCA and quadratically regularized PCA

well-known properties here in order to set notation and as a warm-up
to the variants presented later.

PCA seeks the best rank-k approximation to the matrix A in the
least-squares sense, by solving

minimize ÎA ≠ ZÎ2
F

subject to Rank(Z) Æ k,
(2.1)

with variable Z œ R

m◊n. Here, Î·Î
F

is the Frobenius norm of a matrix,
i.e., the square root of the sum of the squares of the entries.

The rank constraint can be encoded implicitly by expressing Z in
factored form as Z = XY , with X œ R

m◊k, Y œ R

k◊n. Then the PCA
problem can be expressed as

minimize ÎA ≠ XY Î2
F

(2.2)

with variables X œ R

m◊k and Y œ R

k◊n. (The factorization of Z is of
course not unique.)

Define x
i

œ R

1◊n to be the ith row of X, and y
j

œ R

m to be the jth
column of Y . Thus x

i

y
j

= (XY )
ij

œ R denotes a dot or inner product.
(We will use this notation throughout the paper.) Using this definition,
we can rewrite the objective in problem (2.2) as

mÿ

i=1

nÿ

j=1
(A

ij

≠ x
i

y
j

)2.

We will give several interpretations of the low rank factorization
(X, Y ) solving (2.2) in §2.5. But for now, we note that (2.2) can inter-
preted as a method for compressing the n features in the original data
set to k < n new features. The row vector x

i

is associated with exam-
ple i; we can think of it as a feature vector for the example using the
compressed set of k < n features. The column vector y

j

is associated
with the original feature j; it can be interpreted as mapping the k new
features onto the original feature j.
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2.2 Quadratically regularized PCA

We can add quadratic regularization on X and Y to the objective. The
quadratically regularized PCA problem is

minimize
q

m

i=1
q

n

j=1(A
ij

≠ x
i

y
j

)2 + “
q

m

i=1 Îx
i

Î2
2 + “

q
n

j=1 Îy
j

Î2
2,

(2.3)
with variables X œ R

m◊k and Y œ R

k◊n, and regularization parameter
“ Ø 0. Problem (2.3) can be written more concisely in matrix form as

minimize ÎA ≠ XY Î2
F

+ “ÎXÎ2
F

+ “ÎY Î2
F

. (2.4)

When “ = 0, the problem reduces to the PCA problem (2.2).

2.3 Solution methods

Singular value decomposition. It is well known that a solution to
(2.2) can be obtained by truncating the singular value decomposition
(SVD) of A [44]. The (compact) SVD of A is given by A = U�V T ,
where U œ R

m◊r and V œ R

n◊r have orthonormal columns, and � =
diag(‡1, . . . , ‡

r

) œ R

r◊r, with ‡1 Ø · · · Ø ‡
r

> 0 and r = Rank(A).
The columns of U = [u1 · · · u

r

] and V = [v1 · · · v
r

] are called the left
and right singular vectors of A, respectively, and ‡1, . . . , ‡

r

are called
the singular values of A.

Using the orthogonal invariance of the Frobenius norm, we can
rewrite the objective in problem (2.1) as

ÎA ≠ XY Î2
F

= Î� ≠ UT XY V Î2
F

.

That is, we would like to find a matrix UT XY V of rank no more
than k approximating the diagonal matrix �. It is easy to see
that there is no better rank k approximation for � than �

k

=
diag(‡1, . . . , ‡

k

, 0, . . . , 0) œ R

r◊r. Here we have truncated the SVD
to keep only the top k singular values. We can achieve this approxima-
tion by choosing UT XY V = �

k

, or (using the orthogonality of U and
V ) XY = U�

k

V T . For example, define

U
k

= [u1 · · · u
k

], V
k

= [v1 · · · v
k

], (2.5)
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and let
X = U

k

�1/2
k

, Y = �1/2
k

V T

k

. (2.6)

The solution to (2.3) is clearly not unique: if X, Y is a solution, then
so is XG, G≠1Y for any invertible matrix G œ R

k◊k. When ‡
k

> ‡
k+1,

all solutions to the PCA problem have this form. In particular, letting
G = tI and taking t æ Œ, we see that the solution set of the PCA
problem is unbounded.

It is less well known that a solution to the quadratically regularized
PCA problem can be obtained in the same way. (Proofs for the state-
ments below can be found in Appendix A.1.) Define U

k

and V
k

as above,
and let �̃

k

= diag((‡1 ≠ “)+, . . . , (‡
k

≠ “)+), where (a)+ = max(a, 0).
Here we have both truncated the SVD to keep only the top k singu-
lar values, and performed soft-thresholding on the singular values to
reduce their values by “. A solution to the quadratically regularized
PCA problem (2.3) is then given by

X = U
k

�̃1/2
k

, Y = �̃1/2
k

V T

k

. (2.7)

For “ = 0, the solution reduces to the familiar solution to PCA (2.2)
obtained by truncating the SVD to the top k singular values.

The set of solutions to problem (2.3) is significantly smaller than
that of problem (2.2), although solutions are still not unique: if X, Y is
a solution, then so is XT , T ≠1Y for any orthogonal matrix T œ R

k◊k.
When ‡

k

> ‡
k+1, all solutions to (2.3) have this form. In particu-

lar, adding quadratic regularization results in a solution set that is
bounded.

The quadratically regularized PCA problem (2.3) (including the
PCA problem as a special case) is the only problem we will encounter
for which an analytical solution exists. The analytical tractability of
PCA explains its popularity as a technique for data analysis in the era
before computers were machines. For example, in his 1933 paper on
PCA [62], Hotelling computes the solution to his problem using power
iteration to find the eigenvalue decomposition of the matrix AT A =
V �2V T , and records in the appendix to his paper the intermediate
results at each of the (three) iterations required for the method to
converge.
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Alternating minimization. Here we mention a second method for
solving (2.3), which extends more readily to the extensions of PCA
that we discuss below. The alternating minimization algorithm simply
alternates between minimizing the objective over the variable X, hold-
ing Y fixed, and then minimizing over Y , holding X fixed. With an
initial guess for the factors Y 0, we repeat the iteration

X l = argmin
X

Q

a
mÿ

i=1

nÿ

j=1
(A

ij

≠ x
i

yl≠1
j

)2 + “
mÿ

i=1
Îx

i

Î2
2

R

b

Y l = argmin
Y

Q

a
mÿ

i=1

nÿ

j=1
(A

ij

≠ xl

i

y
j

)
ij

)2 + “
nÿ

j=1
Îy

j

Î2
2

R

b

for l = 1, . . . until a stopping condition is satisfied. (If X and Y are full
rank, or “ > 0, the minimizers above are unique; when they are not,
we can take any minimizer.) The objective function is nonincreasing at
each iteration, and therefore bounded. This implies, for “ > 0, that the
iterates X l and Y l are bounded.

This algorithm does not always work. In particular, it has stationary
points that are not solutions of problem (2.3). In particular, if the rows
of Y l lie in a subspace spanned by a subset of the (right) singular
vectors of A, then the columns of X l+1 will lie in a subspace spanned
by the corresponding left singular vectors of A, and vice versa. Thus,
if the algorithm is initialized with Y 0 orthogonal to any of the top
k (right) singular vectors, then the algorithm (implemented in exact
arithmetic) will not converge to the global solution to the problem.

But all stable stationary points of the iteration are solutions (see
Appendix A.1). So as a practical matter, the alternating minimization
method always works, i.e., the objective converges to the optimal value.

Parallelizing alternating minimization. Alternating minimization
parallelizes easily over examples and features. The problem of mini-
mizing over X splits into m independent minimization problems. We
can solve the simple quadratic problems

minimize
q

n

j=1(A
ij

≠ x
i

y
j

)2 + “Îx
i

Î2
2 (2.8)
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with variable x
i

, in parallel, for i = 1, . . . , m. Similarly, the problem of
minimizing over Y splits into n independent quadratic problems,

minimize
q

m

i=1(A
ij

≠ x
i

y
j

)2 + “Îy
j

Î2
2 (2.9)

with variable y
j

, which can be solved in parallel for j = 1, . . . , n.

Caching factorizations. We can speed up the solution of the
quadratic problems using a simple factorization caching technique.

For ease of exposition, we assume here that X and Y have full rank
k. The updates (2.8) and (2.9) can be expressed as

X = AY T (Y Y T + “I)≠1, Y = (XT X + “I)≠1XT A.

We show below how to e�ciently compute X = AY T (Y Y T +“I)≠1; the
Y update admits a similar speedup using the same ideas. We assume
here that k is modest, say, not more than a few hundred or a few
thousand. (Typical values used in applications are often far smaller,
on the order of tens.) The dimensions m and n, however, can be very
large.

First compute the Gram matrix G = Y Y T using an outer product
expansion

G =
nÿ

j=1
y

j

yT

j

.

This sum can be computed on-line by streaming over the index j, or in
parallel, split over the index j. This property allows us to scale up to
extremely large problems even if we cannot store the entire matrix Y in
memory. The computation of the Gram matrix requires 2k2n floating
point operations (flops), but is trivially parallelizable: with r workers,
we can expect a speedup on the order of r. We next add the diagonal
matrix “I to G in k flops, and form the Cholesky factorization of G+“I

in k3/3 flops and cache the factorization.
In parallel over the rows of A, we compute D = AY T (2kn flops

per row), and use the factorization of G + “I to compute D(G + “I)≠1

with two triangular solves (2k2 flops per row). These computations are
also trivially parallelizable: with r workers, we can expect a speedup
on the order of r.
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Hence the total time required for each update with r workers scales
as O(k

2(m+n)+kmn

r

). For k small compared to m and n, the time is
dominated by the computation of AY T .

2.4 Missing data and matrix completion

Suppose we observe only entries A
ij

for (i, j) œ � µ {1, . . . , m} ◊
{1, . . . , n} from the matrix A, so the other entries are unknown. Then
to find a low rank matrix that fits the data well, we solve the problem

minimize
q

(i,j)œ�(A
ij

≠ x
i

y
j

)2 + “ÎXÎ2
F

+ “ÎY Î2
F

, (2.10)

with variables X and Y , with “ > 0. A solution of this problem gives
an estimate Â

ij

= x
i

y
j

for the value of those entries (i, j) ”œ � that were
not observed. In some applications, this data imputation (i.e., guessing
entries of a matrix that are not known) is the main point.

There are two very di�erent regimes in which solving the prob-
lem (2.10) may be useful.

Imputing missing entries to borrow strength. Consider a matrix A

in which very few entries are missing. The typical approach in data
analysis is to simply remove any rows with missing entries from the
matrix and exclude them from subsequent analysis. If instead we solve
the problem above without removing these a�ected rows, we “borrow
strength” from the entries that are not missing to improve our global
understanding of the data matrix A. In this regime we are imputing
the (few) missing entries of A, using the examples that ordinarily we
would discard.

Low rank matrix completion. Now consider a matrix A in which most
entries are missing, i.e., we only observe relatively few of the mn ele-
ments of A, so that by discarding every example with a missing feature
or every feature with a missing example, we would discard the entire
matrix. Then the solution to (2.10) becomes even more interesting: we
are guessing all the entries of a (presumed low rank) matrix, given just
a few of them. It is a surprising fact that this is possible: typical re-
sults from the matrix completion literature show that one can recover
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an unknown m ◊ n matrix A of low rank r from just about nr log2 n

noisy samples � with an error that is proportional to the noise level
[23, 24, 117, 22], so long as the matrix A satisfies a certain incoherence
condition and the samples � are chosen uniformly at random. These
works use an estimator that minimizes a nuclear norm penalty along
with a data fitting term to encourage low rank structure in the solution.

The argument in §7.6 shows that problem (2.10) is equivalent to
the rank-constrained nuclear-norm regularized convex problem

minimize
q

(i,j)œ�(A
ij

≠ Z
ij

)2 + 2“ÎZÎú
subject to Rank(Z) Æ k,

where the nuclear norm ÎZÎú (also known as the trace norm) is de-
fined to be the sum of the singular values of Z. Thus, the solutions to
problem (2.10) correspond exactly to the solutions of these proposed
estimators so long as the rank k of the model is chosen to be larger
than the true rank r of the matrix A. Nuclear norm regularization is
often used to encourage solutions of rank less than k, and has appli-
cations ranging from graph embedding to linear system identification
[46, 92, 102, 130, 107].

Low rank matrix completion problems arise in applications like pre-
dicting customer ratings or customer (potential) purchases. Here the
matrix consists of the ratings or numbers of purchases that m cus-
tomers give (or make) for each of n products. The vast majority of the
entries in this matrix are missing, since a customer will rate (or pur-
chase) only a small fraction of the total number of products available.
In this application, imputing a missing entry of the matrix as x

i

y
j

, for
(i, j) ”œ �, is guessing what rating a customer would give a product, if
she were to rate it. This can used as the basis for a recommendation
system, or a marketing plan.

Alternating minimization. When � ”= {1, . . . , m} ◊ {1, . . . , n}, the
problem (2.10) has no known analytical solution, but it is still easy
to fit a model using alternating minimization. Algorithms based on
alternating minimization have been shown to converge quickly (even
geometrically [66]) to a global solution satisfying a recovery guarantee
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when the initial values of X and Y are chosen carefully [74, 76, 73, 66,
58, 55, 59, 140].

However, none of these results applies to the algorithm — alternat-
ing minimization on problem (2.10) — most often used in practice. For
example, none uses the quadratic regularizer above that corresponds to
the nuclear norm penalized estimator; and all of these analytical results,
until the recent paper [140], rely on using a fresh batch of samples �
for each iteration of alternating minimization. Interestingly, Hardt [58]
notes that none of these alternating methods achieves the same sample
complexity guarantees found in the convex matrix completion litera-
ture which, unlike the alternating minimization guarantees, match the
information theoretic lower bound [24] up to logarithmic factors. We
expect that these shortcomings — weaker error bounds for more com-
plex algorithms — are an artifact of current proof techniques, rather
than a fundamental limitation of alternating approaches. But for now,
alternating minimization applied to Problem (2.10) should still be con-
sidered a (very good) heuristic optimization method.

2.5 Interpretations and applications

The recovered matrices X and Y in the quadratically regularized PCA
problems (2.3) and (2.10) admit a number of interesting interpretations.
We introduce some of these interpretations now; the terminology we use
here will recur throughout the paper. Of course these interpretations
are related to each other, and not distinct.

Feature compression. Quadratically regularized PCA (2.3) can be
interpreted as a method for compressing the n features in the original
data set to k < n new features. The row vector x

i

is associated with
example i; we can think of it as a feature vector for the example using
the compressed set of k < n features. The column vector y

j

is associated
with the original feature j; it can be interpreted as the mapping from
the original feature j into the k new features.
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Low-dimensional geometric embedding. We can think of each y
j

as
associating feature j with a point in a low (k-) dimensional space. Sim-
ilarly, each x

i

associates example i with a point in the low dimensional
space. We can use these low dimensional vectors to judge which fea-
tures (or examples) are similar. For example, we can run a clustering
algorithm on the low dimensional vectors y

j

(or x
i

) to find groups of
similar features (or examples).

Archetypes. We can think of each row of Y as an archetype which
captures the behavior of one of k idealized and maximally informative
examples. These archetypes might also be called profiles, factors, or
atoms. Every example i = 1, . . . , m is then represented (approximately)
as a linear combination of these archetypes, with the row vector x

i

giv-
ing the coe�cients. The coe�cient x

il

gives the resemblance or loading
of example i to the lth archetype.

Archetypical representations. We call x
i

the representation of exam-
ple i in terms of the archetypes. The rows of X give an embedding
of the examples into R

k, where each coordinate axis corresponds to a
di�erent archetype. If the archetypes are simple to understand or inter-
pret, then the representation of an example can provide better intuition
about that example.

The examples can be clustered according to their representations
in order to determine a group of similar examples. Indeed, one might
choose to apply any machine learning algorithm to the representations
x

i

rather than to the initial data matrix: in contrast to the initial data,
which may consist of high dimensional vectors with noisy or missing
entries, the representations x

i

will be low dimensional, less noisy, and
complete.

Feature representations. The columns of Y embed the features into
R

k. Here, we think of the columns of X as archetypical features, and
represent each feature j as a linear combination of the archetypical
features. Just as with the examples, we might choose to apply any
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machine learning algorithm to the feature representations. For exam-
ple, we might find clusters of similar features that represent redundant
measurements.

Latent variables. Each row of X represents an example by a vector in
R

k. The matrix Y maps these representations back into R

m. We might
think of X as discovering the latent variables that best explain the
observed data. If the approximation error

q
(i,j)œ�(A

ij

≠x
i

y
j

)2 is small,
then we view these latent variables as providing a good explanation or
summary of the full data set.

Probabilistic interpretation. We can give a probabilistic interpreta-
tion of X and Y , building on the probabilistic model of PCA developed
by Tipping and Bishop [142]. We suppose that the matrices X̄ and Ȳ

have entries which are generated by taking independent samples from
a normal distribution with mean 0 and variance “≠1 for “ > 0. The
entries in the matrix X̄Ȳ are observed with noise ÷

ij

œ R,

A
ij

= (X̄Ȳ )
ij

+ ÷
ij

,

where the noise ÷ in the (i, j)th entry is sampled independently from a
standard normal distribution. We observe each entry (i, j) œ �. Then
to find the maximum a posteriori (MAP) estimator (X, Y ) of (X̄, Ȳ ),
we solve

maximize exp
3

≠“

2 ÎX̄Î2
F

4
exp

3
≠“

2 ÎȲ Î2
F

4

◊ r
(i,j)œ� exp

!≠(A
ij

≠ x
i

y
j

)2"
,

which is equivalent, by taking logs, to (2.3).
This interpretation explains the recommendation we gave above

for imputing missing observations (i, j) ”œ �. We simply use the MAP
estimator x

i

y
j

to estimate the missing entry (X̄Ȳ )
ij

. Similarly, we can
interpret (XY )

ij

for (i, j) œ � as a denoised version of the observation
A

ij

.
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Auto-encoder. The matrix X encodes the data; the matrix Y decodes
it back into the full space. We can view PCA as providing the best lin-
ear auto-encoder for the data; among all (bi-linear) low rank encodings
(X) and decodings (Y ) of the data, PCA minimizes the squared recon-
struction error.

Compression. We impose an information bottleneck [143] on the data
by using a low rank auto-encoder to fit the data. PCA finds X and Y

to maximize the information transmitted through this k-dimensional
information bottleneck. We can interpret the solution as a compressed
representation of the data, and use it to e�ciently store or transmit
the information present in the original data.

2.6 O�sets and scaling

For good practical performance of a generalized low rank model, it is
critical to ensure that model assumptions match the data. We saw
above in §2.5 that quadratically regularized PCA corresponds to a
model in which features are observed with N (0, 1) errors. If instead
each column j of XY is observed with N (µ

j

, ‡2
j

) errors, our model is
no longer unbiased, and may fit very poorly, particularly if some of the
column means µ

j

are large.
For this reason it is standard practice to standardize the data before

applying PCA or quadratically regularized PCA: the column means are
subtracted from each column, and the columns are normalized by their
variances. (This can be done approximately; there is no need to get the
scaling and o�set exactly right.) Formally, define n

j

= |{i : (i, j) œ �}|,
and let

µ
j

= 1
n

j

ÿ

i: (i,j)œ�
A

ij

, ‡2
j

= 1
n

j

≠ 1
ÿ

i: (i,j)œ�
(A

ij

≠ µ
j

)2

estimate the mean and variance of each column of the data matrix.
PCA or quadratically regularized PCA is then applied to the matrix
whose (i, j) entry is (A

ij

≠ µ
j

)/‡
j

.



3
Generalized regularization

It is easy to see how to extend PCA to allow arbitrary regularization on
the rows of X and columns of Y . We form the regularized PCA problem

minimize
q

(i,j)œ�(A
ij

≠ x
i

y
j

)2 +
q

m

i=1 r
i

(x
i

) +
q

n

j=1 r̃
j

(y
j

), (3.1)

with variables x
i

and y
j

, with given regularizers r
i

: R

k æ Rfi{Œ} and
r̃

j

: R

k æ Rfi{Œ} for i = 1, . . . , n and j = 1, . . . , m. Regularized PCA
(3.1) reduces to quadratically regularized PCA (2.3) when r

i

= “Î · Î2
2,

r̃
j

= “Î · Î2
2. We do not restrict the regularizers to be convex.

The objective in problem (3.1) can be expressed compactly in ma-
trix notation as

ÎA ≠ XY Î2
F

+ r(X) + r̃(Y ),
where r(X) =

q
n

i=1 r
i

(x
i

) and r̃(Y ) =
q

n

j=1 r̃
j

(y
j

). The regularization
functions r and r̃ are separable across the rows of X, and the columns
of Y , respectively.

Infinite values of r
i

and r̃
j

are used to enforce constraints on the
values of X and Y . For example, the regularizer

r
i

(x) =
I

0 x Ø 0
Œ otherwise,

21
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the indicator function of the nonnegative orthant, imposes the con-
straint that x

i

be nonnegative.
Solutions to (3.1) need not be unique, depending on the choice of

regularizers. If X and Y are a solution, then so are XT and T ≠1Y ,
where T is any nonsingular matrix that satisfies r(UT ) = r(U) for all
U and r̃(T ≠1V ) = r(V ) for all V .

By varying our choice of regularizers r and r̃, we are able to rep-
resent a wide range of known models, as well as many new ones. We
will discuss a number of choices for regularizers below, but turn now
to methods for solving the regularized PCA problem (3.1).

3.1 Solution methods

In general, there is no analytical solution for (3.1). The problem is not
convex, even when r and r̃ are convex. However, when r and r̃ are
convex, the problem is bi-convex: it is convex in X when Y is fixed,
and convex in Y when X is fixed.

Alternating minimization. There is no reason to believe that alter-
nating minimization will always converge to the global minimum of the
regularized PCA problem (3.1). Indeed, we will see many cases below
in which the problem is known to have many local minima. However,
alternating minimization can still be applied in this setting, and it still
parallelizes over the rows of X and columns of Y . To minimize over X,
we solve, in parallel,

minimize
q

j:(i,j)œ�(A
ij

≠ x
i

y
j

)2 + r
i

(x
i

) (3.2)

with variable x
i

, for i = 1, . . . , m. Similarly, to minimize over Y , we
solve, in parallel,

minimize
q

i:(i,j)œ�(A
ij

≠ x
i

y
j

)2 + r̃
j

(y
j

) (3.3)

with variable y
j

, for j = 1, . . . , n.
When the regularizers are convex, these problems are convex. When

the regularizers are not convex, there are still many cases in which we
can find analytical solutions to the nonconvex subproblems (3.2) and
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(3.3), as we will see below. A number of concrete algorithms, in which
these subproblems are solved explicitly, are given in §7.

Caching factorizations. Often, the X and Y updates (3.2) and (3.3)
reduce to convex quadratic programs. For example, this is the case for
nonnegative matrix factorization, sparse PCA, and quadratic mixtures
(which we define and discuss below in §3.2). The same factorization
caching of the Gram matrix that was described above in the case of
PCA can be used here to speed up the solution of these updates. Vari-
ations on this idea are described in detail in §7.3.

3.2 Examples

Here and throughout the paper, we present a set of examples chosen for
pedagogical clarity, not for completeness. In all of the examples below,
“ > 0 is a parameter that controls the strength of the regularization,
and we drop the subscripts from r (or r̃) to lighten the notation. Of
course, it is possible to mix and match these regularizers, i.e., to choose
di�erent r

i

for di�erent i, and choose di�erent r̃
j

for di�erent j.

Nonnegative matrix factorization (NNMF). Consider the regular-
ized PCA problem (3.1) with r =

I+ and r̃ =
I+, where

I+ is the
indicator function of the nonnegative reals. (Here, and throughout the
paper, we define the indicator function of a set C, to be 0 when its
argument is in C and Œ otherwise.) Then problem (3.1) is NNMF:
a solution gives the matrix best approximating A that has a nonneg-
ative factorization (i.e., a factorization into elementwise nonnegative
matrices) [85]. It is NP-hard to solve NNMF problems exactly [149].
However, these problems have a rich analytical structure which can
sometimes be exploited [49, 10, 31], and a wide range of uses in practice
[85, 126, 7, 151, 77, 47]. Hence a number of specialized algorithms and
codes for fitting NNMF models are available [86, 91, 78, 80, 13, 79, 81].

We can also replace the nonnegativity constraint with any interval
constraint. For example, r and r̃ can be 0 if all entries of X and Y ,
respectively, are between 0 and 1, and infinite otherwise.
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Sparse PCA. If very few of the coe�cients of X and Y are nonzero, it
can be easier to interpret the archetypes and representations. We can
understand each archetype using only a small number of features, and
can understand each example as a combination of only a small number
of archetypes. To get a sparse version of PCA, we use a sparsifying
penalty as the regularization. Many variants on this basic idea have
been proposed, together with a wide variety of algorithms [33, 161,
128, 94, 155, 122, 152].

For example, we could enforce that no entry A
ij

depend on more
than s columns of X or of Y by setting r to be the indicator function
of a s-sparse vector, i.e.,

r(x) =
I

0 card(x) Æ s

Œ otherwise,

and defining r̃(y) similarly, where card(x) denotes the cardinality
(number of nonzero entries) in the vector x. The updates (3.2) and
(3.3) are not convex using this regularizer, but one can find approxi-
mate solutions using a pursuit algorithm (see, e.g., [28, 145]), or exact
solutions (for small s) using the branch and bound method [84, 15].

As a simple example, consider s = 1. Here we insist that each x
i

have at most one nonzero entry, which means that each example is a
multiple of one of the rows of Y . The X-update is easy to carry out,
by evaluating the best quadratic fit of x

i

with each of the k rows of Y .
This reduces to choosing the row of Y that has the smallest angle to
the ith row of A.

The s-sparse regularization can be relaxed to a convex, but still
sparsifying, regularization using r(x) = ÎxÎ1, r̃(y) = ÎyÎ1 [161]. In this
case, the X-update reduces to solving a (small) ¸1-regularized least-
squares problem.

Orthogonal nonnegative matrix factorization. One well known prop-
erty of PCA is that the principal components obtained (i.e., the
columns of X and rows of Y ) can be chosen to be orthogonal, so XT X

and Y Y T are both diagonal. We can impose the same condition on a
nonnegative matrix factorization. Due to nonnegativity of the matrix,
two columns of X cannot be orthogonal if they both have a nonzero in
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the same row. Conversely, if X has only one nonzero per row, then its
columns are mutually orthogonal. So an orthogonal nonnegative ma-
trix factorization is identical to a nonnegativity condition in addition to
the 1-sparse condition described above. Orthogonal nonnegative matrix
factorization can be achieved by using the regularizer

r(x) =
I

0 card(x) = 1, x Ø 0
Œ otherwise,

and letting r̃(y) be the indicator of the nonnegative orthant, as in
NNMF.

Geometrically, we can interpret this problem as modeling the data
A as a union of rays. Each row of Y , interpreted as a point in R

n,
defines a ray from the origin passing through that point. Orthogonal
nonnegative matrix factorization models each row of X as a point along
one of these rays.

Some authors [41] have also considered how to obtain a bi-
orthogonal nonnegative matrix factorization, in which both X and Y T

have orthogonal columns. By the same argument as above, we see this
is equivalent to requiring both X and Y T to have only one positive
entry per row, with the other entries equal to 0.

Max-norm matrix factorization. We take r = r̃ = „ with

„(x) =
I

0 ÎxÎ2
2 Æ µ

Œ otherwise.

This penalty enforces that

ÎXÎ2
2,Œ Æ µ, ÎY T Î2

2,Œ Æ µ,

where the (2, Œ) norm of a matrix X with rows x
i

is defined as
max

i

Îx
i

Î2. This is equivalent to requiring the max-norm (sometimes
called the “2-norm) of Z = XY , which is defined as

ÎZÎmax = inf{ÎXÎ2,ŒÎY T Î2,Œ : XY = Z},

to be bounded by µ. This penalty has been proposed by [88] as a heuris-
tic for low rank matrix completion, which can perform better than
Frobenius norm regularization when the low rank factors are known to
have bounded entries.
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Quadratic clustering. Consider (3.1) with r̃ = 0. Let r be the indica-
tor function of a selection, i.e.,

r(x) =
I

0 x = e
l

for some l œ {1, . . . , k}
Œ otherwise,

where e
l

is the lth standard basis vector. Thus x
i

encodes the cluster
(one of k) to which the data vector (A

i1, . . . , A
im

) is assigned.
Alternating minimization on this problem reproduces the well-

known k-means algorithm (also known as Lloyd’s algorithm) [93]. The
y update (3.3) is a least squares problem with the simple solution

Y
lj

=
q

i:(i,j)œ� A
ij

X
il

q
i:(i,j)œ� X

il

,

i.e., each row of Y is updated to be the mean of the rows of A assigned
to that archetype. The x update (3.2) is not a convex problem, but
is easily solved. The solution is given by assigning x

i

to the closest
archetype (often called a cluster centroid in the context of k-means):
x

i

= e
l

ı for lı = argmin
l

1q
n

j=1(A
ij

≠ Y
lj

)2
2
.

Quadratic mixtures. We can also implement partial assignment of
data vectors to clusters. Take r̃ = 0, and let r be the indicator function
of the set of probability vectors, i.e.,

r(x) =
I

0
q

k

l=1 x
l

= 1, x
l

Ø 0
Œ otherwise.

Subspace clustering. PCA approximates a data set by a single low di-
mensional subspace. We may also be interested in approximating a data
set as a union of low dimensional subspaces. This problem is known as
subspace clustering (see [150] and references therein). Subspace clus-
tering may also be thought of as generalizing quadratic clustering to
assign each data vector to a low dimensional subspace rather than to
a single cluster centroid.

To frame subspace clustering as a regularized PCA problem (3.1),
partition the columns of X into k blocks. Then let r be the indicator
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function of block sparsity (i.e., r(x) = 0 if only one block of x has
nonzero entries, and otherwise r(x) = Œ).

It is easy to perform alternating minimization on this objective
function. This method is sometimes called the k-planes algorithm [150,
146, 3], which alternates over assigning examples to subspaces, and
fitting the subspaces to the examples. Once again, the X update (3.2)
is not a convex problem, but can be easily solved. Each block of the
columns of X defines a subspace spanned by the corresponding rows of
Y . We compute the distance from example i (the ith row of A) to each
subspace (by solving a least squares problem), and assign example i to
the subspace that minimizes the least squares error by setting x

i

to be
the solution to the corresponding least squares problem.

Many other algorithms for this problem have also been proposed,
such as the k-SVD [144, 4] and sparse subspace clustering [45], some
with provable guarantees on the quality of the recovered solution [131].

Supervised learning. Sometimes we want to understand the variation
that a certain set of features can explain, and the variance that remains
unexplainable. To this end, one natural strategy would be to regress
the labels in the dataset on the features; to subtract the predicted
values from the data; and to use PCA to understand the remaining
variance. This procedure gives the same answer as the solution to a
single regularized PCA problem. Here we present the case in which the
features we wish to use in the regression are present in the data as the
first column of A. To construct the regularizers, we make sure the first
column of A appears as a feature in the supervised learning problem
by setting

r
i

(x) =
I

r0(x2, . . . , x
k+1) x1 = A

i1
Œ otherwise,

where r0 = 0 can be chosen as in any regularized PCA model. The
regularization on the first row of Y is the regularization used in the
supervised regression, and the regularization on the other rows will be
that used in regularized PCA.

Thus we see that regularized PCA can naturally combine supervised
and unsupervised learning into a single problem.
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Feature selection. We can use regularized PCA to perform feature
selection. Consider (3.1) with r(x) = ÎxÎ2

2 and r̃(y) = ÎyÎ2. (Notice
that we are not using ÎyÎ2

2.) The regularizer r̃ encourages the matrix
Ỹ to be column-sparse, so many columns are all zero. If ỹ

j

= 0, it
means that feature j was uninformative, in the sense that its values
do not help much in predicting any feature in the matrix A (including
feature j itself). In this case we say that feature j was not selected.
For this approach to make sense, it is important that the columns of
the matrix A should have mean zero. Alternatively, one can use the de-
biasing regularizers rÕ and r̃Õ introduced in §3.3 along with the feature
selection regularizer introduced here.

Dictionary learning. Dictionary learning (also sometimes called
sparse coding) has become a popular method to design concise rep-
resentations for very high dimensional data [106, 87, 95, 96]. These
representations have been shown to perform well when used as features
in subsequent (supervised) machine learning tasks [116]. In dictionary
learning, each row of A is modeled as a linear combination of dictionary
atoms, represented by rows of Y . The total size of the dictionary used
is often very large (k ∫ max(m, n)), but each example is represented
using a very small number of atoms. To fit the model, one solves the
regularized PCA problem (3.1) with r(x) = ÎxÎ1, to induce sparsity in
the number of atoms used to represent any given example, and with
r̃(y) = ÎyÎ2

2 or r̃(y) =
I+(c ≠ ÎyÎ2) for some c > 0 œ R, in order to

ensure the problem is well posed. (Note that our notation transposes
the usual notation in the literature on dictionary learning.)

Mix and match. It is possible to combine these regularizers to obtain
a factorization with any combination of the above properties. As an
example, one may require that both X and Y be simultaneously sparse
and nonnegative by choosing

r(x) = ÎxÎ1 +
I+(x) = 1

T x +
I+(x),

and similarly for r̃(y). Similarly, [77] show how to obtain a nonnegative
matrix factorization in which one factor is sparse by using r(x) = ÎxÎ2

1+
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I+(x) and r̃(y) = ÎyÎ2
2 +

I+(y); they go on to use this factorization as
a clustering technique.

3.3 O�sets and scaling

In our discussion of the quadratically regularized PCA problem (2.3),
we saw that it can often be quite important to standardize the data
before applying PCA. Conversely, in regularized PCA problems such
as nonnegative matrix factorization, it makes no sense to standardize
the data, since subtracting column means introduces negative entries
into the matrix.

A flexible approach is to allow an o�set in the model: we solve

minimize
q

(i,j)œ�(A
ij

≠ x
i

y
j

≠ µ
j

)2 +
q

m

i=1 r
i

(x
i

) +
q

n

j=1 r̃
j

(y
j

),
(3.4)

with variables x
i

, y
j

, and µ
j

. Here, µ
j

takes the role of the column
mean, and in fact will be equal to the column mean in the trivial case
k = 0.

An o�set may be included in the standard form regularized PCA
problem (3.1) by augmenting the problem slightly. Suppose we are given
an instance of the problem (3.1), i.e., we are given k, r, and r̃. We
can fit an o�set term µ

j

by letting kÕ = k + 1 and modifying the
regularizers. Extend the regularization r : R

k æ R and r̃ : R

k æ R to
new regularizers rÕ : R

k+1 æ R and r̃Õ : R

k+1 æ R which enforce that
the first column of X is constant and the first row of Y is not penalized.
Using this scheme, the first row of the optimal Y will be equal to the
optimal µ in (3.4).

Explicitly, let

rÕ(x) =
I

r(x2, . . . , x
k+1) x1 = 1

Œ otherwise,

and r̃Õ(y) = r̃(y2, . . . , y
k+1). (Here, we identify r(x) = r(x1, . . . , x

k

) to
explicitly show the dependence on each coordinate of the vector x, and
similarly for r̃.)

It is also possible to introduce row o�sets in the same way.
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Generalized loss functions

We may also generalize the loss function in PCA to form a generalized
low rank model,

minimize
q

(i,j)œ� L
ij

(x
i

y
j

, A
ij

) +
q

m

i=1 r
i

(x
i

) +
q

n

j=1 r̃
j

(y
j

),
(4.1)

where L
ij

: R ◊ R æ R+ are given loss functions for i = 1, . . . , m and
j = 1, . . . , n. Problem (4.1) reduces to PCA with generalized regular-
ization when L

ij

(u, a) = (a ≠ u)2. However, the loss function L
ij

can
now depend on the data A

ij

in a more complex way.

4.1 Solution methods

As before, problem (4.1) is not convex, even when L
ij

, r
i

and r̃
j

are
convex; but if all these functions are convex, then the problem is bi-
convex.

Alternating minimization. Alternating minimization can still be used
to find a local minimum, and it is still often possible to use factoriza-
tion caching to speed up the solution of the subproblems that arise in

30
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alternating minimization. We defer a discussion of how to solve these
subproblems explicitly to §7.

Stochastic proximal gradient method. For use with extremely large
scale problems, we discuss fast variants of the basic alternating mini-
mization algorithm in §7. For example, we present an alternating di-
rections stochastic proximal gradient method. This algorithm accesses
the functions L

ij

, r
i

, and r̃
j

only through a subgradient or proximal
interface, allowing it to generalize trivially to nearly any loss function
and regularizer. We defer a more detailed discussion of this method to
§7.

4.2 Examples

Weighted PCA. A simple modification of the PCA objective is to
weight the importance of fitting each element in the matrix A. In the
generalized low rank model, we let L

ij

(u≠a) = w
ij

(a≠u)2, where w
ij

is
a weight, and take r = r̃ = 0. Unlike PCA, the weighted PCA problem
has no known analytical solution [134]. In fact, it is NP-hard to find an
exact solution to weighted PCA [50], although it is not known whether
it is always possible to find approximate solutions of moderate accuracy
e�ciently.

Robust PCA. Despite its widespread use, PCA is very sensitive to
outliers. Many authors have proposed a robust version of PCA obtained
by replacing least-squares loss with ¸1 loss, which is less sensitive to
large outliers [21, 156, 157]. They propose to solve the problem

minimize ÎSÎ1 + ÎZÎú
subject to S + Z = A.

(4.2)

The authors interpret Z as a robust version of the principal compo-
nents of the data matrix A, and S as the sparse, possibly large noise
corrupting the observations.

We can frame robust PCA as a GLRM in the following way. If
L

ij

(u, a) = |a≠u|, and r(x) = “

2 ÎxÎ2
2, r̃(y) = “

2 ÎyÎ2
2, then (4.1) becomes

minimize ÎA ≠ XY Î1 + “

2 ÎXÎ2
F

+ “

2 ÎY Î2
F

.
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Using the arguments in §7.6, we can rewrite the problem by introducing
a new variable Z = XY as

minimize ÎA ≠ ZÎ1 + “ÎZÎú
subject to Rank(Z) Æ k.

This results in a rank-constrained version of the estimator proposed in
the literature on robust PCA [156, 21, 157]:

minimize ÎSÎ1 + “ÎZÎú
subject to S + Z = A

Rank(Z) Æ k,

where we have introduced the new variable S = A ≠ Z.

Huber PCA. The Huber function is defined as

huber(x) =
I

(1/2)x2 |x| Æ 1
|x| ≠ (1/2) |x| > 1.

Using Huber loss,
L(u, a) = huber(u ≠ a),

in place of ¸1 loss also yields an estimator robust to occasionally large
outliers [65]. The Huber function is less sensitive to small errors |u ≠ a|
than the ¸1 norm, but becomes linear in the error for large errors.
This choice of loss function results in a generalized low rank model
formulation that is robust both to large outliers and to small Gaussian
perturbations in the data.

Previously, the problem of Gaussian noise in robust PCA has been
treated by decomposing the matrix A = L + S + N into a low rank
matrix L, a sparse matrix S, and a matrix with small Gaussian entries
N by minimizing the loss

ÎLÎú + ÎSÎ1 + (1/2)ÎNÎ2
F

over all decompositions A = L + S + N of A [157].
In fact, this formulation is equivalent to Huber PCA with quadratic

regularization on the factors X and Y . The argument showing this is
very similar to the one we made above for robust PCA. The only added
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ingredient is the observation that

huber(x) = inf{|s| + (1/2)n2 : x = n + s}.

In other words, the Huber function is the infimal convolution of the
negative log likelihood of a Gaussian random variable and a Laplacian
random variable: it represents the most likely assignment of (additive)
blame for the error x to a Gaussian error n and a Laplacian error s.

Robust regularized PCA. We can design robust versions of all the reg-
ularized PCA problems above by the same transformation we used to
design robust PCA. Simply replace the quadratic loss function with an
¸1 or Huber loss function. For example, k-mediods [71, 110] is obtained
by using ¸1 loss in place of quadratic loss in the quadratic clustering
problem. Similarly, robust subspace clustering [132] can be obtained by
using an ¸1 or Huber penalty in the subspace clustering problem.

Quantile PCA. For some applications, it can be much worse to over-
estimate the entries of A than to underestimate them, or vice versa.
One can capture this asymmetry by using the loss function

L(u, a) = –(a ≠ u)+ + (1 ≠ –)(u ≠ a)+

and choosing – œ (0, 1) appropriately. This loss function is sometimes
called a scalene loss, and can be interpreted as performing quantile
regression, e.g., fitting the 20th percentile [83, 82].

Fractional PCA. For other applications, we may be interested in find-
ing an approximation of the matrix A whose entries are close to the
original matrix on a relative, rather than an absolute, scale. Here, we
assume the entries A

ij

are all positive. The loss function

L(u, a) = max
3

a ≠ u

u
,
u ≠ a

a

4

can capture this objective. A model (X, Y ) with objective value less
than 0.10mn gives a low rank matrix XY that is on average within
10% of the original matrix.
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Logarithmic PCA. Logarithmic loss functions may also be useful for
finding an approximation of A that is close on a relative, rather than
absolute, scale. Once again, we assume all entries of A are positive.
Define the logarithmic loss

L(u, a) = log2(u/a).

This loss is not convex, but has the nice property that it fits the geo-
metric mean of the data:

argmin
u

ÿ

i

L(u, a
i

) = (
Ÿ

i

a
i

)1/n.

To see this, note that we are solving a least squares problem in log
space. At the solution, log(u) will be the mean of log(a

i

), i.e.,

log(u) = 1/n
ÿ

i

log(a
i

) = log
A

(
Ÿ

i

a
i

)1/n

B

.

Exponential family PCA. It is easy to formulate a version of PCA
corresponding to any loss in the exponential family. Here we give some
interesting loss functions generated by exponential families when all the
entries A

ij

are positive. (See [29] for a general treatment of exponential
family PCA.) One popular loss function in the exponential family is the
KL-divergence loss,

L(u, a) = a log
3

a

u

4
≠ a + u,

which corresponds to a Poisson generative model [29].
Another interesting loss function is the Itakura-Saito (IS) loss,

L(u, a) = log
3

a

u

4
≠ 1 + a

u
,

which has the property that it is scale invariant, so scaling a and u by
the same factor produces the same loss [139]. The IS loss corresponds to
Tweedie distributions (i.e., distributions for which the variance is some
power of the mean) [147]. This makes it interesting in applications, such
as audio processing, where fractional errors in recovery are perceived.
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The —-divergence,

L(u, a) = a—

—(— ≠ 1) + u—

—
≠ au—≠1

— ≠ 1 ,

generalizes both of these losses. With — = 2, we recover quadratic loss;
in the limit as — æ 1, we recover the KL-divergence loss; and in the
limit as — æ 0, we recover the IS loss [139].

4.3 O�sets and scaling

In §2.6, we saw how to use standardization to rescale the data in order
to compensate for unequal scaling in di�erent features. In general, stan-
dardization destroys sparsity in the data by subtracting the (column)
means (which are in general non-zero) from each element of the data
matrix A. It is possible to instead rescale the loss functions in order to
compensate for unequal scaling. Scaling the loss functions instead has
the advantage that no arithmetic is performed directly on the data A,
so sparsity in A is preserved.

A savvy user may be able to select loss functions L
ij

that are scaled
to reflect the importance of fitting di�erent columns. However, it is
useful to have a default automatic scaling for times when no savvy
user can be found. The scaling proposed here generalizes the idea of
standardization to a setting with heterogeneous loss functions.

Given initial loss functions L
ij

, which we assume are nonnegative,
for each feature j let

µ
j

= argmin
µ

ÿ

i:(i,j)œ�
L

ij

(µ, A
ij

), ‡2
j

= 1
n

j

≠ 1
ÿ

i:(i,j)œ�
L

ij

(µ
j

, A
ij

).

It is easy to see that µ
j

generalizes the mean of column j, while ‡2
j

generalizes the column variance. For example, when L
ij

(u, a) = (u≠a)2

for every i = 1, . . . , m, j = 1, . . . , n, µ
j

is the mean and ‡2
j

is the sample
variance of the jth column of A. When L

ij

(u, a) = |u ≠ a| for every
i = 1, . . . , m, j = 1, . . . , n, µ

j

is the median of the jth column of A,
and ‡2

j

is the sum of the absolute values of the deviations of the entries
of the jth column from the median value.
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To fit a standardized GLRM, we rescale the loss functions by ‡2
j

and solve

minimize
q

(i,j)œ� L
ij

(A
ij

, x
i

y
j

+µ
j

)/‡2
j

+
q

m

i=1 r
i

(x
i

)+
q

n

j=1 r̃
j

(y
j

).
(4.3)

Note that this problem can be recast in the standard form for a gener-
alized low rank model (4.1). For the o�set, we may use the same trick
described in §3.3 to encode the o�set in the regularization; and for the
scaling, we simply replace the original loss function L

ij

by L
ij

/‡2
j

.



5
Loss functions for abstract data types

We began our study of generalized low rank modeling by considering
the best way to approximate a matrix by another matrix of lower rank.
In this section, we apply the same procedure to approximate a data
table that may not consist of real numbers, by choosing a loss function
that respects the data type.

We now consider A to be a table consisting of m examples (i.e.,
rows, samples) and n features (i.e., columns, attributes), with each
entry A

ij

drawn from a feature set F
j

. The feature set F
j

may be dis-
crete or continuous. So far, we have only considered numerical data
(F

j

= R for j = 1, . . . , n), but now F
j

can represent more ab-
stract data types. For example, entries of A can take on Boolean val-
ues (F

j

= {T, F}), integral values (F
j

= 1, 2, 3, . . .), ordinal values
(F

j

= {very much, a little, not at all}), or consist of a tuple of these
types (F

j

= {(a, b) : a œ R}).
We are given a loss function L

ij

: R ◊ F
j

æ R. The loss L
ij

(u, a)
describes the approximation error incurred when we represent a feature
value a œ F

j

by the number u œ R. We give a number of examples of
these loss functions below.

37
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We now formulate a generalized low rank model on the database A

as

minimize
q

(i,j)œ� L
ij

(x
i

y
j

, A
ij

) +
q

m

i=1 r
i

(x
i

) +
q

n

j=1 r̃
j

(y
j

), (5.1)

with variables X œ R

n◊k and Y œ R

k◊m, and with loss L
ij

as above
and regularizers r

i

(x
i

) : R

1◊k æ R and r̃
j

(y
j

) : R

k◊1 æ R (as be-
fore). When the domain of each loss function is R ◊ R, we recover the
generalized low rank model on a matrix (4.1).

5.1 Solution methods

As before, this problem is not convex, but it is bi-convex if r
i

, and
r̃

j

are convex, and L
ij

is convex in its first argument. The problem is
also separable across samples i = 1, . . . , m and features j = 1, . . . , m.
These properties makes it easy to perform alternating minimization on
this objective. Once again, we defer a discussion of how to solve these
subproblems explicitly to §7.

5.2 Examples

Boolean PCA. Suppose A
ij

œ {≠1, 1}m◊n, and we wish to approx-
imate this Boolean matrix. For example, we might suppose that the
entries of A are generated as noisy, 1-bit observations from an under-
lying low rank matrix XY . Surprisingly, it is possible to accurately
estimate the underlying matrix with only a few observations |�| from
the matrix by solving problem (5.1) (under a few mild technical condi-
tions) with an appropriate loss function [34].

We may take the loss to be

L(u, a) = (1 ≠ au)+,

which is the hinge loss (see Figure 5.1), and solve the problem (5.1) with
or without regularization. When the regularization is sum of squares
(r(x) = ⁄ÎxÎ2

2, r̃(y) = ⁄ÎyÎ2
2), fixing X and minimizing over y

j

is
equivalent to training a support vector machine (SVM) on a data set
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Figure 5.1: Hinge loss.
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Figure 5.2: Logistic loss.

consisting of m examples with features x
i

and labels A
ij

. Hence alter-
nating minimization for the problem (4.1) reduces to repeatedly train-
ing an SVM. This model has been previously considered under the
name Maximum Margin Matrix Factorization (MMMF) [135, 120].

Logistic PCA. Again supposing A
ij

œ {≠1, 1}m◊n, we can also use a
logistic loss to measure the approximation quality. Let

L(u, a) = log(1 + exp(≠au))

(see Figure 5.2). With this loss, fixing X and minimizing over y
j

is
equivalent to using logistic regression to predict the labels A

ij

. This
model has been previously considered under the name logistic PCA
[124].

Poisson PCA. Now suppose the data A
ij

are nonnegative integers. We
can use any loss function that might be used in a regression framework
to predict integral data to construct a generalized low rank model for
Poisson PCA. For example, we can take

L(u, a) = exp(u) ≠ au + a log a ≠ a.

This is the exponential family loss corresponding to Poisson data. (It
di�ers from the KL-divergence loss from §4.2 only in that u has been
replaced by exp(u), which allows u to take negative values.)
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Figure 5.3: Ordinal hinge loss.

Ordinal PCA. Suppose the data A
ij

records the levels of some ordinal
variable, encoded as {1, 2, . . . , d}. We wish to penalize the entries of the
low rank matrix XY which deviate by many levels from the encoded
ordinal value. A convex version of this penalty is given by the ordinal
hinge loss,

L(u, a) =
a≠1ÿ

a

Õ=1
(1 ≠ u + aÕ)+ +

dÿ

a

Õ=a+1
(1 + u ≠ aÕ)+, (5.2)

which generalizes the hinge loss to ordinal data (see Figure 5.3).
This loss function may be useful for encoding Likert-scale data in-

dicating degrees of agreement with a question [90]. For example, we
might have

F
j

= {strongly disagree, disagree, neither agree nor disagree,

agree, strongly agree}.

We can encode these levels as the integers 1, . . . , 5 and use the above
loss to fit a model to ordinal data.

This approach assumes that every increment of error is equally bad:
for example, that approximating “agree” by “strongly disagree” is just
as bad as approximating “neither agree nor disagree” by “agree”. In
§6.1 we introduce a more flexible ordinal loss function that can learn a
more flexible relationship between ordinal labels. For example, it could
determine that the di�erence between “agree” and “strongly disagree”
is smaller than the di�erence between “neither agree nor disagree” and
“agree”.
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Interval PCA. Suppose that the data A
ij

œ R

2 are tuples denoting
the endpoints of an interval, and we wish to find a low rank matrix
whose entries lie inside these intervals. We can capture this objective
using, for example, the deadzone-linear loss

L(u, a) = max((a1 ≠ u)+, (u ≠ a2)+).

5.3 Missing data and data imputation

We can use the solution (X, Y ) to a low rank model to impute values
corresponding to missing data (i, j) ”œ �. This process is sometimes
also called inference. Above, we saw that for quadratically regularized
PCA, the MAP estimator for the missing entry A

ij

is equal to x
i

y
j

.
This is still true for many of the loss functions above, such as the Huber
function or ¸1 loss, for which it makes sense for the data to take on any
real value.

However, to approximate abstract data types we must consider a
more nuanced view. While we can still think of the solution (X, Y ) to
the generalized low rank model (4.1) in Boolean PCA as approximating
the Boolean matrix A, the solution is not a Boolean matrix. Instead we
say that we have encoded the original Boolean matrix as a real-valued
low rank matrix XY , or that we have embedded the original Boolean
matrix into the space of real-valued matrices.

To fill in missing entries in the original matrix A, we compute the
value Â

ij

that minimizes the loss for x
i

y
j

:

Â
ij

= argmin
a

L
ij

(x
i

y
j

, a).

This implicitly constrains Â
ij

to lie in the domain F
j

of L
ij

. When
L

ij

: R ◊ R æ R, as is the case for the losses in §4 above (including
¸2, ¸1, and Huber loss), then Â

ij

= x
i

y
j

. But when the data is of an
abstract type, the minimum argmin

a

L
ij

(u, a) will not in general be
equal to u.

For example, when the data is Boolean, L
ij

: {0, 1} ◊ R æ R,
we compute the Boolean matrix Â implied by our low rank model by
solving

Â
ij

= argmin
aœ{0,1}

(a(XY )
ij

≠ 1)+
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for MMMF, or

Â
ij

= argmin
aœ{0,1}

log(1 + exp(≠a(XY )
ij

))

for logistic PCA. These problems both have the simple solution

Â
ij

= sign(x
i

y
j

).

When F
j

is finite, inference partitions the real numbers into regions

R
a

= {x œ R : L
ij

(u, x) = min
a

L
ij

(u, a)}
corresponding to di�erent values a œ F

j

. When L
ij

is convex, these
regions are intervals.

We can use the estimate Â
ij

even when (i, j) œ � was observed.
If the original observations have been corrupted by noise, we can view
Â

ij

as a denoised version of the original data. This is an unusual kind
of denoising: both the noisy (A

ij

) and denoised (Â
ij

) versions of the
data lie in the abstract space F

j

.

5.4 Interpretations and applications

We have already discussed some interpretations of X and Y in the
PCA setting. Now we reconsider those interpretations in the context
of approximating these abstract data types.

Archetypes. As before, we can think of each row of Y as an archetype
which captures the behavior of an idealized example. However, the rows
of Y are real numbers. To represent each archetype l = 1, . . . , k in the
abstract space as Y

l

with (Y
l

)
j

œ F
j

, we solve

(Y
l

)
j

= argmin
aœFj

L
j

(y
lj

, a).

(Here we assume that the loss L
ij

= L
j

is independent of the exam-
ple i.)

Archetypical representations. As before, we call x
i

the representation
of example i in terms of the archetypes. The rows of X give an embed-
ding of the examples into R

k, where each coordinate axis corresponds
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to a di�erent archetype. If the archetypes are simple to understand
or interpret, then the representation of an example can provide better
intuition about that example.

In contrast to the initial data, which may consist of arbitrarily
complex data types, the representations x

i

will be low dimensional
vectors, and can easily be plotted, clustered, or used in nearly any kind
of machine learning algorithm. Using the generalized low rank model,
we have converted an abstract feature space into a vector space.

Feature representations. The columns of Y embed the features into
R

k. Here we think of the columns of X as archetypical features, and
represent each feature j as a linear combination of the archetypical
features. Just as with the examples, we might choose to apply any
machine learning algorithm to the feature representations.

This procedure allows us to compare non-numeric features using
their representation in R

l. For example, if the features F are Likert
variables giving the extent to which respondents on a questionnaire
agree with statements 1, . . . , n, we might be able to say that questions
i and j are similar if Îy

i

≠ y
j

Î is small; or that question i is a more
polarizing form of question j if y

i

= –y
j

, with – > 1.
Even more interesting, it allows us to compare features of di�erent

types. We could say that the real-valued feature i is similar to Likert-
valued question j if Îy

i

≠ y
j

Î is small.

Latent variables. Each row of X represents an example by a vector
in R

k. The matrix Y maps these representations back into the origi-
nal feature space (now nonlinearly) as described in the discussion on
data imputation in §5.3. We might think of X as discovering the latent
variables that best explain the observed data, with the added benefit
that these latent variables lie in the vector space R

k. If the approxi-
mation error

q
(i,j)œ� L

ij

(x
i

y
j

, A
ij

) is small, then we view these latent
variables as providing a good explanation or summary of the full data
set.
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Probabilistic interpretation. We can give a probabilistic interpreta-
tion of X and Y , generalizing the hierarchical Bayesian model presented
by Fithian and Mazumder in [48]. We suppose that the matrices X̄

and Ȳ are generated according to a probability distribution with prob-
ability proportional to exp(≠r(X̄)) and exp(≠r̃(Ȳ )), respectively. Our
observations A of the entries in the matrix Z̄ = X̄Ȳ are given by

A
ij

= Â
ij

((X̄Ȳ )
ij

),

where the random variable Â
ij

(u) takes value a with probability pro-
portional to

exp (≠L
ij

(u, a)) .

We observe each entry (i, j) œ �. Then to find the maximum a poste-
riori (MAP) estimator (X, Y ) of (X̄, Ȳ ), we solve

maximize exp
1
≠ q

(i,j)œ� L
ij

(x
i

y
j

, A
ij

)
2

exp(≠r(X)) exp(≠r̃(Y )),

which is equivalent, by taking logs, to problem (5.1).
This interpretation gives us a simple way to interpret our procedure

for imputing missing observations (i, j) ”œ �. We are simply computing
the MAP estimator Â

ij

.

Auto-encoder. The matrix X encodes the data; the matrix Y decodes
it back into the full space. We can view (5.1) as providing the best
linear auto-encoder for the data. Among all linear encodings (X) and
decodings (Y ) of the data, the abstract generalized low rank model
(5.1) minimizes the reconstruction error measured according to the
loss functions L

ij

.

Compression. We impose an information bottleneck by using a low
rank auto-encoder to fit the data. The bottleneck is imposed by both
the dimensionality reduction and the regularization, giving both soft
and hard constraints on the information content allowed. The solu-
tion (X, Y ) to problem (5.1) maximizes the information transmitted
through this k-dimensional bottleneck, measured according to the loss
functions L

ij

. This X and Y give a compressed and real-valued rep-
resentation that may be used to more e�ciently store or transmit the
information present in the data.
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5.5 O�sets and scaling

Just as in the previous section, better practical performance can often
be achieved by allowing an o�set in the model as described in §3.3, and
automatic scaling of loss functions as described in §4.3. As we noted in
§4.3, scaling the loss functions (instead of standardizing the data) has
the advantage that no arithmetic is performed directly on the data A.
When the data A consists of abstract types, it is quite important that
no arithmetic is performed on the data, so that we need not take the
average of, say, “very much” and “a little”, or subtract it from “not at
all”.

5.6 Numerical examples

In this section we give results of some small experiments illustrating
the use of di�erent loss functions adapted to abstract data types, and
comparing their performance to quadratically regularized PCA. To fit
these GLRMs, we use alternating minimization and solve the subprob-
lems with subgradient descent. This approach is explained more fully in
§7. Running the alternating subgradient method multiple times on the
same GLRM from di�erent initial conditions yields di�erent models,
all with very similar (but not identical) objective values.

Boolean PCA. For this experiment, we generate Boolean data A œ
{≠1, +1}n◊m as

A = sign

1
XtrueY true

2
,

where Xtrue œ R

n◊k

true and Y true œ R

k

true

◊m have independent, stan-
dard normal entries. We consider a problem instance with m = 50,
n = 50, and ktrue = k = 10.

We fit two GLRMs to this data to compare their perfor-
mance. Boolean PCA uses hinge loss L(u, a) = max (1 ≠ au, 0) and
quadratic regularization r(u) = r̃(u) = .1ÎuÎ2

2, and produces the
model (Xbool, Y bool). Quadratically regularized PCA uses squared loss
L(u, a) = (u≠a)2 and the same quadratic regularization, and produces
the model (Xreal, Y real).
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Figure 5.4 shows the results of fitting Boolean PCA to this data.
The first column shows the original ground-truth data A; the second
shows the imputed data given the model, Âbool, generated by rounding
the entries of XboolY bool to the closest number in 0, 1 (as explained in
§5.3); the third shows the error A ≠ Âbool. Figure 5.4 shows the results
of running quadratically regularized PCA on the same data, and shows
A, Âreal, and A ≠ Âreal.

As expected, Boolean PCA performs substantially better than
quadratically regularized PCA on this data set. Define the misclas-
sification error (percentage of misclassified entries)

‘(X, Y ; A) = #{(i, j) | A
ij

”= sign (XY )
ij

}
mn

. (5.3)

On average over 100 draws from the ground truth data distri-
bution, the misclassification error is much lower using hinge loss
(‘(Xbool, Y bool; A) = 0.0016) than squared loss (‘(Xreal, Y real; A) =
0.0051). The average RMS errors

RMS(X, Y ; A) =

Q

a 1
mn

mÿ

i=1

nÿ

j=1
(A

ij

≠ (XY )
ij

)2

R

b
1/2

using hinge loss (RMS(Xbool, Y bool; A) = 0.0816) and squared loss
(RMS(Xreal, Y real; A) = 0.159) also indicate an advantage for Boolean
PCA.

Figure 5.4: Boolean PCA on Boolean data.
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Figure 5.5: Quadratically regularized PCA on Boolean data.

Censored PCA. In this example, we consider the performance of
Boolean PCA when only a subset of positive entries in the Boolean
matrix A œ {≠1, 1}m◊n have been observed, i.e., the data has been cen-
sored. For example, a retailer might know only a subset of the products
each customer purchased; or a medical clinic might know only a subset
of the diseases a patient has contracted, or of the drugs the patient has
taken. Imputation can be used in this setting to (attempt to) distin-
guish true negatives A

ij

= ≠1 from unobserved positives A
ij

= +1,
(i, j) ”œ �.

We generate a low rank matrix B = XY œ [0, 1]m◊n with X œ
R

m◊k, Y œ R

k◊n, where the entries of X and Y are drawn from a
uniform distribution on [0, 1], m = n = 300 and k = 3. Our data
matrix A is chosen by letting A

ij

= 1 with probability proportional
to B

ij

, and ≠1 otherwise; the constant of proportionality is chosen so
that half of the entries in A are positive. We fit a rank 5 GLRM to
an observation set � consisting of 10% of the positive entries in the
matrix, drawn uniformly at random, using hinge loss and quadratic
regularization. (Note that the rank of the model is higher than the
(unobserved) true rank of the data; we will see below in §8.2 how to
choose the right rank for a model.) That is, we fit the low rank model

minimize
q

(i,j)œ� max(1≠x
i

y
j

A
ij

, 0)+“
q

m

i=1 Îx
i

Î2
2 +“

q
n

j=1 Îy
j

Î2
2

and vary the regularization parameter “.
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We consider three error metrics to measure the performance of the
fitted model (X, Y ): normalized training error,

1
|�|

ÿ

(i,j)œ�
max(1 ≠ A

ij

x
i

y
j

, 0),

normalized test error,
1

|�C |
ÿ

(i,j)œ�C

max(1 ≠ A
ij

x
i

y
j

, 0),

and precision at 10 (p@10), which is computed as the fraction of the
top ten predicted values not in the observation set, {x

i

y
j

: (i, j) œ �C},
for which A

ij

= 1. (Here, �C = {1, . . . , m} ◊ {1, . . . , n} \ �.) Precision
at 10 measures the usefulness of the model: if we predicted that the
top 10 unseen elements (i, j) had values +1, how many would we get
right?

Figure 5.6 shows the regularization path as “ ranges from 0 to 40,
averaged over 50 samples from the distribution generating the data.
Here, we see that while the training error decreases as “ decreases,
the test error reaches a minimum around “ = 5. Interestingly, the
precision at 10 improves as the regularization increases; since precision
at 10 is computed using only relative rather than absolute values of the
model, it is insensitive to the shrinkage of the parameters introduced by
the regularization. The grey line shows the probability of identifying a
positive entry by guessing randomly; precision at 10, which exceeds 80%
when “ & 30, is significantly higher. This performance is particularly
impressive given that the observations � are generated by sampling
from rather than rounding the auxiliary matrix B.

Mixed data types. In this experiment, we fit a GLRM to a data
table with numerical, Boolean, and ordinal columns generated as fol-
lows. Let N1, N2, and N3 partition the column indices 1, . . . , n. Choose
Xtrue œ R

m◊k

true , Y true œ R

k

true

◊n to have independent, standard nor-
mal entries. Assign entries of A as follows:

A
ij

=

Y
_]

_[

x
i

y
j

j œ N1
sign (x

i

y
j

) j œ N2
round(3x

i

y
j

+ 1) j œ N3,
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Figure 5.6: Error metrics for Boolean GLRM on censored data. The grey line shows
the probability that a random guess identifies a positive entry.

where the function round maps a to the nearest integer in the set
{1, . . . , 7}. Thus, N1 corresponds to real-valued data; N2 corresponds
to Boolean data; and N3 corresponds to ordinal data. We consider a
problem instance in which m = 100, n1 = 40, n2 = 30, n3 = 30, and
ktrue = k = 10.

We fit a heterogeneous loss GLRM to this data with loss function

L
ij

(u, a) =

Y
_]

_[

Lreal(u, a) j œ N1
Lbool(u, a) j œ N2
Lord(u, a) j œ N3,

where Lreal(u, a) = (u≠a)2, Lbool(u, a) = (1≠au)+, and Lord(u, a) is de-
fined in (5.2), and with quadratic regularization r(u) = r̃(u) = .1ÎuÎ2

2.
We fit the GLRM to produce the model (Xmix, Y mix). For compar-
ison, we also fit quadratically regularized PCA to the same data,
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using L
ij

(u, a) = (u ≠ a)2 for all j and quadratic regularization
r(u) = r̃(u) = .1ÎuÎ2

2, to produce the model (Xreal, Y real).
Figure 5.7 compares the performance of the heterogeneous loss

GLRM to quadratically regularized PCA fit to the same data.
Panel 5.7a shows the results of fitting the heterogeneous loss GLRM
above. Panel 5.7b shows the results of fitting quadratically regular-
ized PCA. The first column shows the original ground-truth data A;
the second shows the imputed data given the model, Âmix, generated
by rounding the entries of XmixY mix to the closest number in 0, 1 (as
explained in §5.3); the third shows the error A ≠ Âmix.

To evaluate error for Boolean and ordinal data, we use the misclas-
sification error ‘ (5.3) defined above. For notational convenience, we let
YNl (ANl) denote Y (A) restricted to the columns N

l

in order to pick
out real-valued columns (l = 1), Boolean columns (l = 2), and ordinal
columns (l = 3).

Table 5.1 compare the average error (di�erence between imputed
entries and ground truth) over 100 draws from the ground truth distri-
bution for models using heterogeneous loss (Xmix, Y mix) and quadrat-
ically regularized loss (Xreal, Y real). Columns are labeled by error met-
ric. We use misclassification error ‘ (defined in (5.3)) for Boolean and
ordinal data and MSE for numerical data.

MSE(X, YN
1

; AN
1

) ‘(X, YN
2

; AN
2

) ‘(X, YN
3

; AN
3

)
Xmix, Y mix 0.0224 0.0074 0.0531
Xreal , Y real 0.0076 0.0213 0.0618

Table 5.1: Average error for numerical, Boolean, and ordinal features using GLRM
with heterogeneous loss and quadratically regularized loss.

Missing data. Here, we explore the e�ect of missing entries on the ac-
curacy of the recovered model. We generate data A as detailed above,
but then censor one large block of entries in the table (constituting
3.75% of numerical, 50% of Boolean, and 50% of ordinal data), remov-
ing them from the observed set �.
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(a) Heterogeneous loss GLRM on mixed data.

(b) Quadratically regularized PCA on mixed data.

Figure 5.7: Models for mixed data.

Figure 5.8 shows the results of fitting three di�erent models with
rank 10 to the censored data. Panel 5.8a shows the original ground-
truth data A and the block of data that has been removed from the
observation set �. Panel 5.8b shows the results of fitting the heteroge-
neous loss GLRM described above to the block-censored data: the first
column shows the imputed data given the model, Âmix, generated by
rounding the entries of XmixY mix to the closest number in {0, 1} (as
explained in §5.3), while the second column shows the error A ≠ Âmix.
Two other models are provided for comparison. Panel 5.8c shows the
imputed values Âreal and error A ≠ Âreal obtained by running quadrat-
ically regularized PCA on the same data and with the same held-out
block. Panel 5.8d shows the imputed values Âreal and error A ≠ Âreal

obtained by running (unregularized) PCA on the same data after re-
placing each missing entry with the column mean. While quadradically
regularized PCA and the heterogeneous loss GLRM performed sim-
ilarly when no data was missing, the heterogeneous loss GLRM per-
forms better than quadradically regularized PCA when a large block of
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(c) Quadratically regularized PCA on missing data.
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(d) PCA on missing data fit by replacing missing entries with column mean.

Figure 5.8: Three methods for imputing a block of heterogeneous missing data.
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data is censored; interestingly, using maladapted (quadratic) loss func-
tions for the Boolean and ordinal data results in a model that fits even
the real valued data more poorly. The third (and all too common in
practice) approach, which fills in missing data with the column mean
and runs PCA, performs disastrously.

We compare the average error (di�erence between imputed entries
and ground truth) over 100 draws from the ground truth distribution
in Table 5.2. As above, we use misclassification error ‘ (defined in (5.3))
for Boolean and ordinal data and MSE for numerical data.

MSE(X, YN
1

; AN
1

) ‘(X, YN
2

; AN
2

) ‘(X, YN
3

; AN
3

)
Xmix, Y mix 0.392 0.2968 0.3396
Xreal , Y real 0.561 0.4029 0.9418

Table 5.2: Average error over imputed data comparing two GLRMs: one using
heterogeneous loss and one using regularized quadratic loss.



6
Multi-dimensional loss functions

In this section, we generalize the procedure to allow the loss functions
to depend on blocks of the matrix XY , which allows us to represent
abstract data types more naturally. For example, we can now represent
categorical values , permutations, distributions, and rankings.

We are given a loss function L
ij

: R

1◊dj ◊ F
j

æ R, where d
j

is
the embedding dimension of feature j, and d =

q
j

d
j

is the embedding
dimension of the model. The loss L

ij

(u, a) describes the approximation
error incurred when we represent a feature value a œ F

j

by the vector
u œ R

dj .
Let x

i

œ R

1◊k be the ith row of X (as before), and let Y
j

œ R

k◊dj

be the jth block matrix of Y so the columns of Y
j

correspond to the
columns of embedded feature j. We now formulate a multi-dimensional
generalized low rank model on the database A,

minimize
q

(i,j)œ� L
ij

(x
i

Y
j

, A
ij

) +
q

m

i=1 r
i

(x
i

) +
q

n

j=1 r̃
j

(Y
j

),
(6.1)

with variables X œ R

n◊k and Y œ R

k◊d, and with loss L
ij

as above and
regularizers r

i

(x
i

) : R

1◊k æ R (as before) and r̃
j

(Y
j

) : R

k◊dj æ R.
Note that the first argument of L

ij

is a row vector with d
j

entries, and
the first argument of r

j

is a matrix with d
j

columns. When every entry

54
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A
ij

is real-valued (i.e., d
j

= 1), then we recover the generalized low
rank model (4.1) seen in the previous section.

6.1 Examples

Categorical PCA. Suppose that a œ F is a categorical variable, tak-
ing on one of d values or labels. Identify the labels with the integers
{1, . . . , d}. In (6.1), set

L(u, a) = (1 ≠ u
a

)+ +
ÿ

a

ÕœF , a

Õ ”=a

(1 + u
a

Õ)+,

and use the quadratic regularizer r
i

= “Î · Î2
2, r̃ = “Î · Î2

2.
Fixing X and optimizing over Y is equivalent to training one SVM

per label to separate that label from all the others: the jth column
of Y gives the weight vector corresponding to the jth SVM. (This is
sometimes called one-vs-all multiclass classification [123].) Optimizing
over X identifies the low-dimensional feature vectors for each example
that allow these SVMs to most accurately predict the labels.

The di�erence between categorical PCA and Boolean PCA is in
how missing labels are imputed. To impute a label for entry (i, j) with
feature vector x

i

according to the procedure described above in 5.3,
we project the representation Y

j

onto the line spanned by x
i

to form
u = x

i

Y
j

. Given u, the imputed label is simply argmax
l

u
l

. This model
has the interesting property that if column lÕ of Y

j

lies in the interior of
the convex hull of the columns of Y

j

, then u
l

Õ will lie in the interior of
the interval [min

l

u
l

, max
l

u
l

] [17]. Hence the model will never impute
label lÕ for any example.

We need not restrict ourselves to the loss function given above.
In fact, any loss function that can be used to train a classifier for
categorical variables (also called a multi-class classifier) can be used
to fit a categorical PCA model, so long as the loss function depends
only on the inner products between the parameters of the model and
the features corresponding to each example. The loss function becomes
the loss function L used in (6.1); the optimal parameters of the model
give the optimal matrix Y , while the implied features will populate
the optimal matrix X. For example, it is possible to use loss functions



56 Multi-dimensional loss functions

derived from error-correcting output codes [40]; the Directed Acyclic
Graph SVM [114]; the Crammer-Singer multi-class loss [30]; or the
multi-category SVM [89].

Of these loss functions, only the one-vs-all loss is separable across
the classes a œ F . (By separable, we mean that the objective value can
be written as a sum over the classes.) Hence fitting a categorical fea-
tures with any other loss functions is not the same as fitting d Boolean
features. For example, in the Crammer-Singer loss

L(u, a) = (1 ≠ u
a

+ max
a

ÕœF , a

Õ ”=a

uÕ
a

)+,

the classes are combined according to their maximum, rather than their
sum. While one-vs-all classification performs about as well as more so-
phisticated loss functions on small data sets [123], these more sophis-
ticated nonseparable loss tend to perform much better as the number
of classes (and examples) increases [56].

Some interesting nonconvex loss functions have also been suggested
for this problem. For example, consider a generalization of Hamming
distance to this setting,

L(u, a) = ”(u
a

”= 1) +
ÿ

a

Õ ”=a

”(u
a

Õ ”= ≠1),

where ” is a function that returns 1 if its argument is true and 0 oth-
erwise. In this case, alternating minimization with regularization that
enforces a clustered structure in the low rank model (see the discus-
sion of quadratic clustering in §3.2) reproduces the k-modes algorithm
[64].

Ordinal PCA. We saw in §5 one way to fit a GLRM to ordinal data.
The multi-dimensional embedding will be particularly useful when the
best mapping of the ordinal variable onto a linear scale is not uniform;
e.g., if level 1 of the ordinal variable is much more similar to level 2
than level 2 is to level 3. Using a larger embedding dimension allows
us to infer the relations between the levels from the data itself. Here
we again identify the labels a œ F with the integers {1, . . . , d}.
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Figure 6.1: Multi-dimensional ordinal loss. Fitting a GLRM with this loss function
simultaneously finds the best locations xi for each ordinal observation (here shown
as the numbers 1–4), and the best hyperplanes (here shown as grey lines) to separate
each level from the next. The perpendicular segment on each line shows (as a vector)
the column of Y corresponding to that hyperplane.

One approach we can use for (multi-dimensional) ordinal PCA is
to solve (6.1) with the loss function

L(u, a) =
d≠1ÿ

a

Õ=1
(1 ≠

I

a>a

Õu
a

Õ)+, (6.2)

and with quadratic regularization. Here, the embedding dimension is
d≠1, so u œ R

d≠1. This approach fits a set of hyperplanes (given by the
columns of Y ) separating each level l from the next. The hyperplanes
need not be parallel to each other. Fixing X and optimizing over Y is
equivalent to training an SVM to separate labels a Æ l from a > l for
each l œ F . Fixing Y and optimizing over X finds the low dimensional
features vector for each example that places the example between the
appropriate hyperplanes. (See Figure 6.1 for an illustration of an op-
timal fit of this loss function, with k = 2, to a simple synthetic data
set.)
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Permutation PCA. Suppose that a is a permutation of the numbers
1, . . . , d. Define the permutation loss

L(u, a) =
d≠1ÿ

i=1
(1 ≠ u

ai + u
ai+1

)+.

This loss is zero if u
ai > u

ai+1

+ 1 for i = 1, . . . , d ≠ 1, and increases
linearly when these inequalities are violated. Define sort(u) to return
a permutation â of the indices 1, . . . , d so that u

âi Ø u
âi+1

for i =
1, . . . , d ≠ 1. It is easy to check that argmin

a

L(u, a) = sort(u). Hence
using the permutation loss function in generalized PCA (6.1) finds a
low rank approximation of a given table of permutations.

Ranking PCA. Many variants on the permutation PCA problem are
possible. For example, in ranking PCA, we interpret the permutation
as a ranking of the choices 1, . . . , d, and penalize deviations of many
levels more strongly than deviations of only one level by choosing the
loss

L(u, a) =
d≠1ÿ

i=1

dÿ

j=i+1
(1 ≠ u

ai + u
aj )+.

From here, it is easy to generalize to a setting in which the rankings
are only partially observed. Suppose that we observe pairwise compar-
isons a ™ {1, . . . , d} ◊ {1, . . . , d}, where (i, j) œ a means that choice i

was ranked above choice j. Then a loss function penalizing deviations
from these observed rankings is

L(u, a) =
ÿ

(i,j)œa

(1 ≠ u
ai + u

aj )+.

Many other modifications to ranking loss functions have been pro-
posed in the literature that interpolate between the the two first loss
functions proposed above, or which prioritize correctly predicting the
top ranked choices. These losses include the area under the curve loss
[138], ordered weighted average of pairwise classification losses [148],
the weighted approximate-rank pairwise loss [153], the k-order statis-
tic loss [154], and the accuracy at the top loss [14].
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6.2 O�sets and scaling

Just as in the previous section, better practical performance can often
be achieved by allowing an o�set in the model as described in §3.3, and
scaling loss functions as described in §4.3.

6.3 Numerical examples

We fit a low rank model to the 2013 American Community Survey
(ACS) to illustrate how to fit a low rank model to heterogeneous
data.

The ACS is a survey administered to 1% of the population of
the United States each year to gather their responses to a variety
of demographic and economic questions. Our data sample consists of
m = 3132796 responses gathered from residents of the US, exclud-
ing Puerto Rico, in the year 2013, on the 23 questions listed in Table
6.1.

We fit a rank 10 model to this data using Huber loss for real val-
ued data, hinge loss for Boolean data, ordinal hinge loss for ordinal
data, one-vs-all categorical loss for categorical data, and regularization
parameter “ = .1. We allow an o�set in the model and scale the loss
functions and regularization as described in §4.3.

In Table 6.2, we select a few features j from the model,
along with their associated vectors y

j

, and find the two features
most similar to them by finding the two features jÕ which mini-
mize cos(y

j

, y
j

Õ). The model automatically groups states which in-
tuitively share demographic features: for example, three wealthy
states adjoining (but excluding) a major metropolitan area — Vir-
ginia, Maryland, and Connecticut — are grouped together. The
low rank structure also identifies the results (high water prices)
of the prolonged drought a�icting California, and corroborates the
intuition that work leads only to more work: hours worked per
week, weeks worked per year, and education level are highly corre-
lated.
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Variable Description Type
HHTYPE household type categorical
STATEICP state categorical
OWNERSHP own home Boolean
COMMUSE commercial use Boolean
ACREHOUS house on Ø 10 acres Boolean
HHINCOME household income real
COSTELEC monthly electricity bill real
COSTWATR monthly water bill real
COSTGAS monthly gas bill real
FOODSTMP on food stamps Boolean
HCOVANY have health insurance Boolean
SCHOOL currently in school Boolean
EDUC highest level of education ordinal
GRADEATT highest grade level attained ordinal
EMPSTAT employment status categorical
LABFORCE in labor force Boolean
CLASSWKR class of worker Boolean
WKSWORK2 weeks worked per year ordinal
UHRSWORK usual hours worked per week real
LOOKING looking for work Boolean
MIGRATE1 migration status categorical

Table 6.1: ACS variables.

Feature Most similar features
Alaska Montana, North Dakota
California Illinois, cost of water
Colorado Oregon, Idaho
Ohio Indiana, Michigan
Pennsylvania Massachusetts, New Jersey
Virginia Maryland, Connecticut
Hours worked weeks worked, education

Table 6.2: Most similar features in demography space.
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Fitting low rank models

In this section, we discuss a number of algorithms that may be used
to fit generalized low rank models. As noted earlier, it can be compu-
tationally hard to find the global optimum of a generalized low rank
model. For example, it is NP-hard to compute an exact solution to k-
means [43], nonnegative matrix factorization [149], and weighted PCA
and matrix completion [50] all of which are special cases of low rank
models.

In §7.1, we will examine a number of local optimization methods
based on alternating minimization. Algorithms implementing lazy vari-
ants of alternating minimization, such as the alternating gradient, prox-
imal gradient, or stochastic gradient algorithms, are faster per iteration
than alternating minimization, although they may require more iter-
ations for convergence. In numerical experiments, we notice that lazy
variants often converge to points with a lower objective value: it seems
that these lazy variants are less likely to be trapped at a saddle point
than is alternating minimization. §7.4 explores the convergence of these
algorithms in practice.

We then consider a few special cases in which we can show that al-
ternating minimization converges to the global optimum in some sense:

61
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for example, we will see convergence with high probability, approxi-
mately, and in retrospect. §7.5 discusses a few strategies for initializing
these local optimization methods, with provable guarantees in special
cases. §7.6 shows that for problems with convex loss functions and
quadratic regularization, it is sometimes possible to certify global op-
timality of the resulting model.

7.1 Alternating minimization

We showed earlier how to use alternating minimization to find an (ap-
proximate) solution to a generalized low rank model. Algorithm (1)
shows how to explicitly extend alternating minimization to a general-
ized low rank model (4.1) with observations �.

Algorithm 1

given X0, Y 0

for k = 1, 2, . . . do

for i = 1, . . . , M do

xk

i

= argmin
x

1q
j:(i,j)œ� L

ij

(xyk≠1
j

, A
ij

) + r
i

(x)
2

end for

for j = 1, . . . , N do

yk

j

= argmin
y

1q
i:(i,j)œ� L

ij

(xk

i

y, A
ij

) + r̃
j

(y)
2

end for

end for

Parallelization. Alternating minimization parallelizes naturally over
examples and features. In Algorithm 1, the loops over i = 1, . . . , N and
over j = 1, . . . , M may both be executed in parallel.

7.2 Early stopping

It is not very useful to spend a lot of e�ort optimizing over X before we
have a good estimate for Y . If an iterative algorithm is used to compute
the minimum over X, it may make sense to stop the optimization over
X early before going on to update Y . In general, we may consider
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replacing the minimization over x and y above by any update rule that
moves towards the minimum. This templated algorithm is presented
as Algorithm 2. Empirically, we find that this approach often finds a
better local minimum than performing a full optimization over each
factor in every iteration, in addition to saving computational e�ort on
each iteration.

Algorithm 2

given X0, Y 0

for t = 1, 2, . . . do

for i = 1, . . . , m do

xt

i

= update

Lij ,ri
(xt≠1

i

, Y t≠1, A)
end for

for j = 1, . . . , n do

yt

j

= update

Lij ,r̃j
(y(t≠1)T

j

, X(t)T , AT )
end for

end for

We describe below a number of di�erent update rules update

L,r

by
writing the X update. The Y update can be implemented similarly. (In
fact, it can be implemented by substituting r̃ for r, switching the roles of
X and Y , and transposing all matrix arguments.) All of the approaches
outlined below can still be executed in parallel over examples (for the
X update) and features (for the Y update).

Gradient method. For example, we might take just one gradient step
on the objective. This method can be used as long as L, r, and r̃ do not
take infinite values. (If any of these functions f is not di�erentiable,
replace Òf below by any subgradient of f [12, 18].)

We implement update

L,r

as follows. Let

g =
ÿ

j:(i,j)œ�
ÒL

ij

(x
i

y
j

, A
ij

)y
j

+ Òr
i

(x
i

).

Then set
xt

i

= xt≠1
i

≠ –
t

g,
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for some step size –
t

. For example, the step size rule –
t

= 1/t, which
guarantees convergence to the globally optimal X if Y is fixed [12, 18].
A faster approach in practice might be to use a backtracking line search
[105].

Proximal gradient method. If a function takes on the value Œ, it
need not have a subgradient at that point, which limits the gradient
update to cases where the regularizer and loss are (finite) real-valued.
When the regularizer (but not the loss) takes on infinite values (say, to
represent a hard constraint), we can use a proximal gradient method
instead.

The proximal operator of a function f [109] is

prox

f

(z) = argmin
x

(f(x) + 1
2Îx ≠ zÎ2

2).

If f is the indicator function of a set C, the proximal operator of f is
just (Euclidean) projection onto C.

A proximal gradient update update

L,r

is implemented as follows.
Let

g =
ÿ

j:(i,j)œ�
ÒL

ij

(xt≠1
i

yt≠1
j

, A
ij

)yt≠1
j

.

Then set

xt

i

= prox

–tri
(xt≠1

i

≠ –
t

g),

for some step size –
t

. The step size rule –
t

= 1/t guarantees con-
vergence to the globally optimal X if Y is fixed, while using a fixed,
but su�ciently small, step size – guarantees convergence to a small
O(–) neighborhood around the optimum [8]. The technical condition
required on the step size is that –

t

< 1/L, where L is the Lipshitz con-
stant of the gradient of the objective function. Bolte et al. have shown
that the iterates xt

i

and yt

j

produced by the proximal gradient update
rule (which they call proximal alternating linearized minimization, or
PALM) globally converge to a critical point of the objective function
under very mild conditions on the loss functions and regularizers [11].
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Prox-prox method. Letting f
t

(X) =
q

(i,j)œ� L
ij

(x
i

yt

j

, A
ij

), define
the proximal-proximal (prox-prox) update

Xt+1 = prox

–tri
(prox

–tft
(Xt)).

The prox-prox update is simply a proximal gradient step on the
objective when f

t

is replaced by its Moreau envelope,

M
ft(X) = inf

X

Õ

1
f

t

(X Õ) + ÎX ≠ X ÕÎ2
F

2
.

(See [109] for details.) The Moreau envelope has the same minimizers
as the original objective. Thus, just as the proximal gradient method
repeatedly applied to X converges to global minimum of the objective
if Y is fixed, the prox-prox method repeatedly applied to X also con-
verges to global minimum of the objective if Y is fixed under the same
conditions on the step size –

t

, for any constant stepsize – Æ ÎGÎ2
2.

(Here, ÎGÎ2 = supÎxÎ
2

Æ1 ÎGxÎ2 is the operator norm of G.)
This update can also be seen as a single iteration of ADMM when

the dual variable in ADMM is initialized to 0; see [16]. In the case of
quadratic objectives, we will see below that the prox-prox update can
be applied very e�ciently, making iterated prox-prox, or ADMM, an
e�ective means of computing the solution to the subproblems arising
in alternating minimization.

Choosing a step size. In numerical experiments, we find that using
a slightly more nuanced rule allowing di�erent step sizes for di�erent
rows and columns can allow fast progress towards convergence while
ensuring that the value of the objective never increases. The safeguards
on step sizes we propose are quite important in practice: without these
checks, we observe divergence when the initial step sizes are chosen too
large.

Motivated by the convergence proof in [8], for each row i, we seek
a step size –

i

on the order of 1/Îg
i

Î2, where g
i

is the gradient of the
objective function with respect to x

i

. We start by choosing an initial
step size scale – of the same order as the average gradient of the loss
functions. In the numerical experiments reported here, we choose – =
1.Since g

i

grows with the number of observations n
i

= |{j : (i, j) œ �}|
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in row i, we achieve the desired scaling by setting –
i

= –/n
i

. We take
a gradient step on each row x

i

using the step size –
i

. Our procedure
for choosing –

j

is the same.
We then check whether the objective value for the row,

ÿ

j:(i,j)œ�
L

j

(x
i

y
j

, A
ij

) + r
i

(x
i

),

has increased or decreased. If it has increased, then we trust our first
order approximation to the objective function less far, and reduce the
step size; if it has decreased, we gain confidence, and increase the step
size. In the numerical experiments reported below, we decrease the step
size by 30% when the objective increases, and increase the step size by
5% when the objective decreases. This check stabilizes the algorithm
and prevents divergence even when the initial scale has been chosen
poorly.

We then do the same with respect to each column y
j

: we take a
gradient step, check if the objective value for the column has increased
or decreased, and adjust the step size.

The time per iteration is thus O(k(m + n + |�|)): computing the
gradient of the ith loss function with respect to x

i

takes time O(kn
i

);
computing the proximal operator of the square loss takes time O(k);
summing these over all the rows i = 1, . . . , m gives time O(k(m +
|�|)); and adding the same costs for the column updates gives time
O(k(m + n + |�|)). The checks on the objective value take time O(k)
per observed entry (to compute the inner product x

i

y
j

and value of
the loss function for each observation) and time O(1) per row and
column to compute the value of the regularizer. Hence the total time
per iteration is O(k(m + n + |�|)).

By partitioning the job of updating di�erent rows and di�erent
columns onto di�erent processors, we can achieve an iteration time of
O(k(m + n + |�|)/p) using p processors.

Stochastic gradients. Instead of computing the full gradient of L

with respect to x
i

above, we can replace the gradient g in either the
gradient or proximal gradient method by any stochastic gradient g,
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which is a vector that satisfies
E g =

ÿ

j:(i,j)œ�
ÒL

ij

(x
i

y
j

, A
ij

)y
j

.

A stochastic gradient can be computed by sampling j uniformly at
random from among observed features of i, and setting g = |{j : (i, j) œ
�}|ÒL

ij

(x
i

y
j

, A
ij

)y
j

. More samples from {j : (i, j) œ �} can be used
to compute a less noisy stochastic gradient.

7.3 Quadratic objectives
Here we describe how to e�ciently implement the prox-prox update
rule for quadratic objectives and arbitrary regularizers, extending the
factorization caching technique introduced in §2.3. We assume here
that the objective is given by

ÎA ≠ XY Î2
F

+ r(X) + r̃(Y ).
We will concentrate here on the X update; as always, the Y update is
exactly analogous.

As in the case of quadratic regularization, we first form the Gram
matrix G = Y Y T . Then the proximal gradient update for X is fast to
evaluate:

prox

–kr

(X ≠ –
k

(XG ≠ 2AY T )).
But we can also take advantage of the ease of inverting the Gram

matrix G to design a faster algorithm using the prox-prox update than
is possible with general loss functions. For a quadratic objective with
Gram matrix G = Y T Y , the prox-prox update takes the simple form

prox

–kr

((G + 1
–

k

I)≠1(AY T + 1
–

k

X)).

As in §2.3, we can compute (G + 1
–k

I)≠1(AY T + 1
–k

X) in parallel by
first caching the factorization of (G+ 1

–k
I)≠1. Hence it is advantageous

to repeat this update many times before updating Y , since most of the
computational e�ort is in forming G and AY T .

For example, in the case of nonnegative least squares, this update
is just

�+((G + 1
–

k

I)≠1(AY T + 1
–

k

X)),

where �+ projects its argument onto the nonnegative orthant.
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7.4 Convergence

Alternating minimization need not converge to the same model (or
the same objective value) when initialized at di�erent starting points.
Through examples, we explore this idea here. These examples are fit
using the Julia implementation (presented in §9) of the alternating
proximal gradient updates method. The timing results were obtained
using a single core of a standard laptop computer.

Global convergence for quadratically regularized PCA. Figure 7.1
shows the convergence of the alternating proximal gradient update
method on a quadratically regularized PCA problem with randomly
generated, fully observed data A = XtrueY true, where entries of Xtrue

and Y true are drawn from a standard normal distribution. We pick
five di�erent random initializations of X and Y with standard normal
entries to generate five di�erent convergence trajectories. Quadrati-
cally regularized PCA is a simple problem with an analytical solution
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Figure 7.1: Convergence of alternating proximal gradient updates on quadratically
regularized PCA for n = m = 200, k = 2.
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(see §2), and with no local minimum that is not global (see Ap-
pendix A.1). Hence it should come as no surprise that the trajectories
all converge to the same, globally optimal value.

Local convergence for nonnegative matrix factorization. Figure 7.2
shows convergence of the same algorithm on a nonnegative matrix fac-
torization model, with data generated in the same way as in Figure 7.1.
(Note that A has negative entries as well as positive entries, so the
minimal objective value is strictly greater than zero.) Here, we plot the
convergence of the objective value, rather than the suboptimality, since
we cannot (e�ciently, provably) compute the global minimum of the
objective function even in the rank 1 case [51].

We see that the algorithm converges to a di�erent optimal value
(and point) depending on the initialization of X and Y . Three trajec-
tories converge to the same optimal value (though one does so much
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Figure 7.2: Convergence of alternating proximal gradient updates on NNMF for
n = m = 200, k = 2.
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faster than the others), one to a value that is somewhat better, and
one to a value that is substantially worse.

7.5 Initialization

Above, we saw that alternating minimization can converge to mod-
els with optimal values that di�er significantly. Here, we discuss two
approaches to initialization that result in provably good solutions, for
special cases of the generalized low rank problem. We then discuss how
to apply these initialization schemes to more general models.

SVD. A literature that is by now extensive shows that the SVD pro-
vides a provably good initialization for the quadratic matrix completion
problem (2.10) [74, 76, 73, 66, 58, 55]. Algorithms based on alternating
minimization have been shown to converge quickly (even geometrically
[66]) to a global solution satisfying a recovery guarantee when the initial
values of X and Y are chosen carefully; see §2.4 for more details.

Here, we extend the SVD initialization previously proposed for ma-
trix completion to one that works well for all PCA-like problems: prob-
lems with convex loss functions that have been scaled as in §4.3; with
data A that consists of real values, Booleans, categoricals, and ordinals;
and with quadratic (or no) regularization.

But we will need a matrix on which to perform the SVD. What
matrix corresponds to our data table? Here, we give a simple proposal
for how to construct such a matrix, motivated by [76, 66, 26]. Our key
insight is that the SVD is the solution to our problem when the entries
in the table have mean zero and variance one (and all the loss functions
are quadratic). Our initialization will construct a matrix with mean
zero and variance one from the data table, take its SVD, and invert
the construction to produce the correct initialization.

Our first step is to expand the categorical columns taking on d val-
ues into d Boolean columns, and to re-interpret ordinal and Boolean
columns as numbers. The scaling we propose below is insensitive to the
values of the numbers in the expansion of the Booleans: for example,
using (false, true)= (0, 1) or (false, true)= (≠1, 1) produces the same
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initialization. The scaling is sensitive to the di�erences between ordi-
nal values: while encoding (never, sometimes, always) as (1, 2, 3) or as
(≠5, 0, 5) will make no di�erence, encoding these ordinals as (0, 1, 10)
will result in a di�erent initialization.

Now we assume that the rows of the data table are independent
and identically distributed; our mission is to standardize the columns.
The observed entries in column j have mean µ

j

and variance ‡2
j

,

µ
j

= argmin
µ

ÿ

i:(i,j)œ�
L

j

(µ, A
ij

)

‡2
j

= 1
n

j

≠ 1
ÿ

i:(i,j)œ�
L

j

(µ
j

, A
ij

),

so the matrix whose (i, j)th entry is (A
ij

≠ µ
j

)/‡
j

for (i, j) œ � has
columns whose observed entries have mean 0 and variance 1.

Each missing entry can be safely replaced with 0 in the scaled ver-
sion of the data without changing the column mean. But the column
variance will decrease to m

j

/m. If instead we define

Ã
ij

=
I

m

‡jmj
(A

ij

≠ µ
j

) (i, j) œ �
0 otherwise,

then the column will have mean 0 and variance 1.
Take the SVD U�V T of Ã, and let Ũ œ R

m◊k, �̃ œ R

k◊k, and
Ṽ œ R

n◊k denote these matrices truncated to the top k singular vectors
and values. We initialize X = Ũ �̃1/2, and Y = �̃1/2Ṽ T

diag(‡). The
o�set row in the model is initialized with the means, i.e., the kth column
of X is filled with 1’s, and the kth row of Y is filled with the means,
so Y

kj

= µ
j

.
Finally, note that we need not compute the full SVD of Ã, but

instead can simply compute the top k singular triples. For example,
the randomized top k SVD algorithm proposed in [57] computes the
top k singular triples of Ã in time linear in |�|, m, and n (and quadratic
in k).

Figure 7.3 compares the convergence of this SVD-based initializa-
tion with random initialization on a low rank model for census data
described in detail in §6.3. We initialize the algorithm at six di�erent
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Figure 7.3: Convergence from five di�erent random initializations, and from the
SVD initialization.

points: from five di�erent random normal initializations (entries of X0

and Y 0 drawn iid from N (0, 1)), and from the SVD of Ã. The SVD
initialization produces a better initial value for the objective function,
and also allows the algorithm to converge to a substantially lower final
objective value than can be found from any of the five random starting
points. This behavior indicates that the “good” local minimum discov-
ered by the SVD initialization is located in a basin of attraction that
has low probability with respect to the measure induced by random
normal initialization.

k-means++. The k-means++ algorithm is an initialization scheme
designed for quadratic clustering problems [5]. It consists of choosing an
initial cluster centroid at random from the points, and then choosing
the remaining k ≠ 1 centroids from the points x that have not yet
been chosen with probability proportional to D(x)2, where D(x) is the
minimum distance of x to any previously chosen centroid.
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Quadratic clustering is known to be NP-hard, even with only two
clusters (k = 2) [43]. However, k-means++ followed by alternat-
ing minimization gives a solution with expected approximation ratio
within O(log k) of the optimal value [5]. (Here, the expectation is
over the randomization in the initialization algorithm.) In contrast,
an arbitrary initialization of the cluster centers for k-means can re-
sult in a solution whose value is arbitrarily worse than the true opti-
mum.

A similar idea can be used for other low rank models. If the model
rewards a solution that is spread out, as is the case in quadratic cluster-
ing or subspace clustering, it may be better to initialize the algorithm
by choosing elements with probability proportional to a distance mea-
sure, as in k-means++. In the k-means++ procedure, one can use the
loss function L(u) as the distance metric D.

7.6 Global optimality

All generalized low rank models are non-convex, but some are more
non-convex than others. In particular, for some problems, the only im-
portant source of non-convexity is the low rank constraint. For these
problems, it is sometimes possible to certify global optimality of a
model by considering an equivalent rank-constrained convex problem.

The arguments in this section are similar to ones found in [117],
in which Recht et al. propose using a factored (nonconvex) formu-
lation of the (convex) nuclear norm regularized estimator in order
to e�ciently solve the large-scale SDP arising in a matrix comple-
tion problem. However, the algorithm in [117] relies on a subrou-
tine for finding a local minimum of an augmented Lagrangian which
has the same biconvex form as problem (2.10). Finding a local min-
imum of this problem (rather than a saddle point) may be hard.
In this section, we avoid the issue of finding a local minimum of
the nonconvex problem; we consider instead whether it is possible
to verify global optimality when presented with some putative solu-
tion.
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The factored problem is equivalent to the rank constrained problem.
Consider the factored problem

minimize L(XY ) + “

2 ÎXÎ2
F

+ “

2 ÎY Î2
F

, (7.1)

with variables X œ R

m◊k, Y œ R

k◊n, where L : R

m◊n æ R is any
convex loss function. Compare this to the rank-constrained problem

minimize L(Z) + “ÎZÎú
subject to Rank(Z) Æ k,

(7.2)

with variable Z œ R

m◊n. Here, we use Î·Îú to denote the nuclear norm,
the sum of the singular values of a matrix.

Theorem 7.1. (Xı, Y ı) is a solution to the factored problem (7.1) if
and only if Zı = XıY ı is a solution to the rank-constrained prob-
lem (7.2), and ÎXıÎ2

F

= ÎY ıÎ2
F

= 1
2ÎZıÎú.

We will need the following lemmas to understand the relation be-
tween the rank-constrained problem and the factored problem.

Lemma 7.2. Let XY = U�V T be the SVD of XY , where � =
diag(‡). Then

Î‡Î1 Æ 1
2(||X||2

F

+ ||Y ||2
F

). (7.3)

Proof. We may derive this fact as follows:

Î‡Î1 = tr(UT XY V )
Æ ÎUT XÎ

F

ÎY V Î
F

Æ ÎXÎ
F

ÎY Î
F

Æ 1
2(||X||2

F

+ ||Y ||2
F

),

where the first inequality above uses the Cauchy-Schwartz inequality,
the second relies on the orthogonal invariance of the Frobenius norm,
and the third follows from the basic inequality ab Æ 1

2(a2 + b2) for any
real numbers a and b.

The following result is well known.
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Lemma 7.3. For any matrix Z, ÎZÎú = inf
XY =Z

1
2(||X||2

F

+ ||Y ||2
F

).

Proof. Writing Z = UDV T and recalling the definition of the nuclear
norm ÎZÎú = Î‡Î1, we see that Lemma 7.2 implies

ÎZÎú Æ inf
XY =Z

1
2(||X||2

F

+ ||Y ||2
F

).

But taking X = U�1/2 and Y = �1/2V T , we have
1
2(||X||2

F

+ ||Y ||2
F

) = 1
2(Î�1/2Î2

F

+ Î�1/2Î2
F

) = Î‡Î1,

(using once again the orthogonal invariance of the Frobenius norm), so
the bound is satisfied with equality.

Note that the infimum is achieved by X = U�1/2T and Y =
T T �1/2V T for any orthonormal matrix T .

Theorem 7.1 follows as a corollary, since L(Z) = L(XY ) so long as
Z = XY .

The rank constrained problem is sometimes equivalent to an uncon-
strained problem. Note that problem (7.2) is still a hard problem to
solve: it is a rank-constrained semidefinite program. On the other hand,
the same problem without the rank constraint is convex and tractable
(though not easy to solve at scale). In particular, it is possible to write
down an optimality condition for the problem

minimize L(Z) + “ÎZÎú (7.4)

that certifies that a matrix Z is globally optimal. This problem is a
relaxation of problem (7.2), and so has an optimal value that is at
least as small. Furthermore, if any solution to problem (7.4) has rank
no more than k, then it is feasible for problem (7.2), so the optimal
values of problem (7.4) and problem (7.2) must be the same. Hence
any solution of problem (7.4) with rank no more than k also solves
problem (7.2).

Recall that the matrix Z is a solution to problem (7.4) if and only
if

0 œ ˆ(L(Z) + “ÎZÎú),
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where ˆf(Z) is the subgradient of the function f at Z. The subgradient
is a set-valued function.

The subgradient of the nuclear norm for Z = U�V T is easily seen
to be

ˆÎZÎú = {UV T + W : UT W = 0, WV = 0, ÎWÎ2 Æ 1}.

Define the objective obj(Z) = L(Z) + “ÎZÎú . Then, if G œ ˆL(Z) and
UV T + W œ ˆÎZÎú, we can use the convexity of the objective to see
that

obj(Z) Ø obj(Zı) Ø obj(Z) + ÈG + “UV T + “W, Zı ≠ ZÍ
Ø obj(Z) ≠ ÎG + “UV T + “WÎ

F

ÎZı ≠ ZÎ
F

,

using the Cauchy–Schwarz inequality to obtain the last relation. Hence
we might say that ÎG + “UV T + “WÎ

F

bounds the (relative) subopti-
mality of the estimate Z. Furthermore, Z is optimal for problem (7.4)
if and only if 0 œ ˆobj(Z), which means that G + “UV T + “W = 0 for
some G œ ˆL(Z) and UV T + W œ ˆÎZÎú.

To find the tightest bound on the suboptimality of Z, we can min-
imize the bound over valid subgradients G and UV T + W :

minimize ÎG + “UV T + “WÎ2
F

subject to ÎWÎ2 Æ 1
UT W = 0
WV = 0
G œ ˆL(Z).

(7.5)

If the optimal value of this program is 0, then Z is optimal for prob-
lem (7.4).

This result allows us to (sometimes) certify global optimality of
a particular model. Given a model (X, Y ), we compute the SVD of
the product XY = U�V T . Solve (7.5). If the optimal value is 0, then
(X, Y ) is globally optimal.

If G is fixed, we can rewrite problem 7.5 by decomposing G into a
sum of four parts: GÎ = UUT GV V T , G‹ = (I ≠ UUT )G(I ≠ V V T ),
and two parts that do not require names, (I ≠ UUT )GV V T and
UUT G(I ≠ V V T ). Noticing that the objective decomposes additively
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over the components of G, the optimal W is given by

W ı = G‹

max(“, ÎG‹Î2) . (7.6)

If ÎG + “UV T + “W ıÎ2
F

= 0, then (X, Y ) is globally optimal.



8
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8.1 Regularization paths

Suppose that we wish to understand the entire regularization path for
a GLRM; that is, we would like to know the solution (X(“), Y (“)) to
the problem

minimize
q

(i,j)œ� L
ij

(x
i

y
j

, A
ij

) + “
q

m

i=1 r
i

(x
i

) + “
q

n

j=1 r̃
j

(y
j

)

as a function of “. Frequently, the regularization path may be com-
puted almost as quickly as the solution for a single value of “. We can
achieve this by initially fitting the model with a very high value for “,
which is often a very easy problem. (For example, when r and r̃ are
norms, the solution is (X, Y ) = (0, 0) for su�ciently large “.) Then
we may fit models corresponding to smaller and smaller values of “ by
initializing the alternating minimization algorithm from our previous
solution. This procedure is sometimes called a homotopy method.

For example, Figure 8.1 shows the regularization path for quadrat-
ically regularized Huber PCA on a synthetic data set. We generate a
dataset A = XY + S with X œ R

m◊k, Y œ R

k◊n, and S œ R

m◊n,
with m = n = 300 and k = 3. The entries of X and Y are drawn from
a standard normal distribution, while the entries of the sparse noise
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matrix S are drawn from a uniform distribution on [0, 1] with proba-
bility 0.05, and are 0 otherwise. We choose a rank for the model that is
higher than the (unobserved) true rank of the data; we will see below
in §8.2 how to choose the right rank for a model.
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Figure 8.1: Regularization path.

We fit a rank 5 GLRM to an observation set � consisting of 10% of
the entries in the matrix, drawn uniformly at random from {1, . . . , m}◊
{1, . . . , n}, using Huber loss and quadratic regularization, and vary the
regularization parameter. That is, we fit the model

minimize
q

(i,j)œ� huber(x
i

y
j

, A
ij

) + “
q

m

i=1 Îx
i

Î2
2 + “

q
n

j=1 Îy
j

Î2
2

and vary the regularization parameter “. The figure plots both the
normalized training error,

1
|�|

ÿ

(i,j)œ�
huber(x

i

y
j

, A
ij

),

and the normalized test error,
1

nm ≠ |�|
ÿ

(i,j) ”œ�
huber(x

i

y
j

, A
ij

),
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of the fitted model (X, Y ), for “ ranging from 0 to 3. Here, we see
that while the training error decreases and “ decreases, the test error
reaches a minimum around “ = .5. Interestingly, it takes only three
times longer (about 3 seconds) to generate the entire regularization
path than it does to fit the model for a single value of the regularization
parameter (about 1 second).

8.2 Choosing model parameters

To form a generalized low rank model, one needs to specify the loss
functions L

j

, regularizers r and r̃, and a rank k. The loss function
should usually be chosen by a domain expert to reflect the intuitive
notion of what it means to “fit the data well”. On the other hand, the
regularizers and rank are often chosen based on statistical considera-
tions, so that the model generalizes well to unseen (missing) data.

There are three major considerations to balance in choosing the
regularization and rank of the model. In the following discussion, we
suppose that the regularizers r = “r0 and r̃ = “r̃0 have been chosen
up to a scaling “.

Compression. A low rank model (X, Y ) with rank k and no spar-
sity represents the data table A with only (m + n)k nonzeros, achiev-
ing a compression ratio of (m + n)k/(mn). If the factors X or Y are
sparse, then we have used fewer than (m + n)k numbers to represent
the data A, achieving a higher compression ratio. We may want to pick
parameters of the model (k and “) in order to achieve a good errorq

(i,j)œ� L
j

(A
ij

≠ x
i

y
j

) for a given compression ratio. For each possible
combination of model parameters, we can fit a low rank model with
those parameters, observing both the error and the compression ratio.
We can then choose the best model parameters (highest compression
rate) achieving the error we require, or the best model parameters (low-
est error rate) achieving the compression we require.

More formally, one can construct an information criterion for low
rank models by analogy with the Aikake Information Criterion (AIC)
or the Bayesian Information Criterion (BIC). For use in the AIC, the
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number of degrees of freedom in a low rank model can be computed as
the di�erence between the number of nonzeros in the model and the
dimensionality of the symmetry group of the problem. For example,
if the model (X, Y ) is dense, and the regularizer is invariant under
orthogonal transformations (e.g., r(x) = ÎxÎ2

2), then the number of
degrees of freedom is (m + n)k ≠ k2 [142]. Minka [101] proposes a
method based on the BIC to automatically choose the dimensionality
in PCA, and observes that it performs better than cross validation in
identifying the true rank of the model when the number of observations
is small (m, n . 100).

Denoising. Suppose we observe every entry in a true data matrix
contaminated by noise, e.g., A

ij

= Atrue
ij

+ ‘
ij

, with ‘
ij

some random
variable. We may wish to choose model parameters to identify the
truth and remove the noise: we would like to find k and “ to minimizeq

(i,j)œ� L
j

(Atrue
ij

≠ x
i

y
j

).
A number of commonly used rules-of-thumb have been proposed in

the case of PCA to distinguish the signal (the true rank k of the data)
from the noise, some of which can be generalized to other low rank
models. These include using scree plots, often known as the “elbow
method” [25]; the eigenvalue method; Horn’s parallel analysis [61, 42];
and other related methods [162, 115]. A recent, more sophisticated
method adapts the idea of dropout training [137] to regularize low-
rank matrix estimation [68].

Some of these methods can easily be adapted to the GLRM con-
text. The “elbow method” increases k until the objective value de-
creases less than linearly; the eigenvalue method increases k until the
objective value decreases by less than some threshold; Horn’s parallel
analysis increases k until the objective value compares unfavorably to
one generated by fitting a model to data drawn from a synthetic noise
distribution.

Cross validation is also simple to apply, and is discussed further
below as a means of predicting missing entries. However, applying cross
validation to the denoising problem is somewhat tricky, since leaving
out too few entries results in overfitting to the noise, while leaving out
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too many results in underfitting to the signal. The optimal number of
entries to leave out may depend on the aspect ratio of the data, as
well as on the type of noise present in the data [113], and is not well
understood except in the case of Gaussian noise [108]. We explore the
problem of choosing a holdout size numerically below.

Predicting missing entries. Suppose we observe some entries in the
matrix and wish to predict the others. A GLRM with a higher rank
will always be able to fit the (noisy) data better than one of lower rank.
However, a model with many parameters may also overfit to the noise.
Similarly, a GLRM with no regularization (“ = 0) will always produce
a model with a lower empirical loss

q
(i,j)œ� L

j

(x
i

y
j

, A
ij

). Hence, we
cannot pick a rank k or regularization “ simply by considering the
objective value obtained by fitting the low rank model.

But by resampling from the data, we can simulate the performance
of the model on out of sample (missing) data to identify GLRMs that
neither over nor underfit. Here, we discuss a few methods for choosing
model parameters by cross-validation; that is, by resampling from the
data to evaluate the model’s performance. Cross validation is commonly
used in regression models to choose parameters such as the regulariza-
tion parameter “, as in Figure 8.1. In GLRMs, cross validation can
also be used to choose the rank k. Indeed, using a lower rank k can be
considered another form of model regularization.

We can distinguish between three sources of noise or variability in
the data, which give rise to three di�erent resampling procedures.

• The rows or columns of the data are chosen at random, i.e., drawn
iid from some population. In this case it makes sense to resample
the rows or columns.

• The rows or columns may be fixed, but the indices of the observed
entries in the matrix are chosen at random. In this case, it makes
sense to resample from the observed entries in the matrix.

• The indices of the observed entries are fixed, but the values are
observed with some measurement error. In this case, it makes
sense to resample the errors in the model.
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Each of these leads to a di�erent reasonable kind of resampling
scheme. The first two give rise to resampling schemes based on cross
validation (i.e., resampling the rows, columns, or individual entries of
the matrix) which we discuss further below. The third gives rise to
resampling schemes based on the bootstrap or jackknife procedures,
which resample from the errors or residuals after fitting the model. A
number of methods using the third kind of resampling have been pro-
posed in order to perform inference (i.e., generate confidence intervals)
for PCA; see Josse et al. [69] and references therein.

As an example, let us explore the e�ect of varying |�|/mn, “, and k.
We generate random data as follows. Let X œ R

m◊k

true , Y œ R

k

true◊n,
and S œ R

m◊n, with m = n = 300 and ktrue = 3. Draw the entries of
X and Y from a standard normal distribution, and draw the entries of
the sparse outlier matrix S are drawn from a uniform distribution on
[0, 3] with probability 0.05, and are 0 otherwise. Form A = XY + S.
Select an observation set � by picking entries in the matrix uniformly
at random from {1, . . . , n} ◊ {1, . . . , m}. We fit a rank k GLRM with
Huber loss and quadratic regularization “Î ·Î2

2, varying |�|/mn, “, and
k, and compute the test error. We average our results over 5 draws
from the distribution generating the data.

In Figure 8.2, we see that the true rank k = 3 performs best on
cross-validated error for any number of observations |�|. (Here, we
show performance for “ = 0. The plot for other values of the regular-
ization parameter is qualitatively the same.) Interestingly, it is easiest
to identify the true rank with a small number of observations: higher
numbers of observations make it more di�cult to overfit to the data
even when allowing higher ranks.

In Figure 8.3, we consider the interdependence of our choice of “

and k. Regularization is most important when few matrix elements
have been observed: the curve for each k is nearly flat when more than
about 10% of the entries have been observed, so we show here a plot
for |�| = .1mn. Here, we see that the true rank k = 3 performs best
on cross-validated error for any value of the regularization parameter.
Ranks that are too high (k > 3) benefit from increased regularization
“, whereas higher regularization hurts the performance of models with
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Figure 8.2: Test error as a function of k, for “ = 0.
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Figure 8.3: Test error as a function of “ when 10% of entries are observed.
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Figure 8.4: Test error as a function of observations |�|/mn, for “ = 0.

k lower than the true rank. That is, regularizing the rank (small k) can
substitute for explicit regularization of the factors (large “).

Finally, in Figure 8.4 we consider how the fit of the model depends
on the number of observations. If we correctly guess the rank k = 3, we
find that the fit is insensitive to the number of observations. If our rank
is either too high or too low, the fit improves with more observations.

8.3 On-line optimization

Suppose that new examples or features are being added to our data
set continuously, and we wish to perform on-line optimization, which
means that we should have a good estimate at any time for the repre-
sentations of those examples x

i

or features y
j

which we have seen. This
model is equivalent to adding new rows or columns to the data table
A as the algorithm continues. In this setting, alternating minimization
performs quite well, and has a very natural interpretation. Given an
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estimate for Y , when a new example is observed in row i, we may solve

minimize
q

j:(i,j)œ� L
ij

(A
ij

, xy
j

) + r
i

(x)

with variable x to compute a representation for row i. This computation
is exactly the same as one step of alternating minimization. Here, we
are finding the best feature representation for the new example in terms
of the (already well understood) archetypes Y . If the number of other
examples previously seen is large, the addition of a single new example
should not change the optimal Y by very much; hence if (X, Y ) was
previously the global minimum of (4.1), this estimate of the feature
representation for the new example will be very close to its optimal
representation (i.e., the one that minimizes problem (4.1)). A similar
interpretation holds when new columns are added to A.



9
Implementations

The authors and collaborators have developed and released four open
source codes for modeling and fitting generalized low rank models:

• a serial implementation written in Python;

• a fully featured serial and shared-memory parallel implementa-
tion written in Julia;

• a basic distributed implementation written in Scala using the
Spark framework; and

• a distributed implementation written in Java using the H2O
framework, with Java and R interfaces.

The Julia, Spark and H2O implementations use the alternating proxi-
mal gradient method described in §7 to fit GLRMs, while the Python
implementation uses alternating minimization and a cvxpy [39] back-
end for each subproblem. The Python implementation is suitable for
problems with no more than a few hundred rows and columns. The
Julia implementation is suitable for problems that fit in memory on a
single computer, including those with thousands of columns and mil-
lions of rows. The H2O and Spark implementations must be used for

87
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larger problem sizes. For most uses, we recommend the Julia imple-
mentation or the H2O implementation. As of March 2016, the Julia
implementation is the most fully featured, with an ample library of
losses and regularizers, as well as routines to cross validate, impute,
and test goodness-of-fit. For a full description and up-to-date informa-
tion about available functionality of each of these implementations, we
encourage the reader to consult the on-line documentation for each of
these packages.

There are also many implementations available for fitting special
cases of GLRMs. For example, an implementation capable of fitting
any GLRM for which the subproblems in an alternating minimization
method are quadratic programs was recently developed in Spark by
Debasish Das and Santanu Das [32].

In this section we briefly discuss the Python, Julia, and Spark
implementations, and report some timing results. The H2O imple-
mentation will not be discussed below; documentation and tutori-
als are available at http://learn.h2o.ai/content/tutorials/glrm/
glrm-tutorial.html.

9.1 Python implementation

GLRM.py is a Python implementation for fitting GLRMs that can
be found, together with documentation, at https://github.com/
cehorn/glrm.

Usage. The user initializes a GLRM by specifying

• the data table A (A), stored as a Python list of 2-D arrays, where
each 2-D array in A contains all data associated with a particular
loss function,

• the list of loss functions L (L
j

, j = 1, . . . , n), that correspond to
the data as specified by A,

• regularizers regX (r) and regY (r̃),

• the rank k (k),

https://github.com/cehorn/glrm
https://github.com/cehorn/glrm


9.1. Python implementation 89

• an optional list missing_list with the same length as A so that
each entry of missing_list is a list of missing entries correspond-
ing to the data from A, and

• an optional convergence object converge that characterizes the
stopping criterion for the alternating minimization procedure.

The following example illustrates how to use GLRM.py to fit a GLRM
with Boolean (A_bool) and numerical (A_real) data, with quadratic
regularization and a few missing entries.

from glrm import GLRM # import model
from glrm.loss import QuadraticLoss, HingeLoss # and losses
from glrm.reg import QuadraticReg # and regularizer

A = [A_bool, A_real] # data (as list)
L = [Hinge_Loss, QuadraticLoss] # losses (as list)
regX = QuadraticReg(0.1) # penalty scale 0.1
regY = QuadraticReg(0.1)
missing_list = [[], [(0,0), (0,1)]] # missing entries

model = GLRM(A, L, regX, regY, k, missing_list) # initialize GLRM
model.fit() # fit GLRM

The fit() method automatically adds an o�set to the GLRM and
scales the loss functions as described in §4.3.

GLRM.py fits GLRMs by alternating minimization. The code in-
stantiates cvxpy problems [39] corresponding to the X- and Y -update
steps, then iterates by alternately solving each problem until conver-
gence criteria are met.

The following loss functions and regularizers are supported by
GLRM.py:

• quadratic loss QuadraticLoss,

• Huber loss HuberLoss,

• hinge loss HingeLoss,

• ordinal loss OrdinalLoss,

• no regularization ZeroReg,
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• ¸1 regularization LinearReg,

• quadratic regularization QuadraticReg, and

• nonnegative constraint NonnegativeReg.

Users may implement their own loss functions (regularizers) using the
abstract class Loss (Reg).

9.2 Julia implementation

LowRankModels is a code written in Julia [9] for modeling and
fitting GLRMs. The implementation is available on-line at https:
//github.com/madeleineudell/LowRankModels.jl. We discuss some
aspects of the usage and features of the code here.

Usage. The LowRankModels package transposes some of the no-
tation from this paper for computational speed. It approximates the
m◊n data table A by a model XT Y , where X œ R

k◊m and Y œ R

k◊n.
For most GLRMs, d = n, but for multidimensional loss functions,
d =

q
n

j=1 d
j

is the embedding dimension of the model (see §6).
To form a GLRM using LowRankModels, the user specifies, in

order:

• A: the data (A), which can be any array or array-like data struc-
ture (e.g., a sparse matrix, or a Julia DataFrame);

• losses: either one loss function to be applied to every entry of A;
or a list of loss functions (L

j

, j = 1, . . . , n), one for each column
of A;

• rx: a regularizer (r) on the rows of X

• ry: a regularizer (r̃) on the columns of Y ; or a list of regularizers
(r̃

j

, j = 1, . . . , n), one for each column of A, and

• k: the rank (k),

and optional named arguments:

https://github.com/madeleineudell/LowRankModels.jl
https://github.com/madeleineudell/LowRankModels.jl
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• the observed entries obs (�), a list of tuples of the indices of the
observed entries in the matrix, which may be omitted if all the
entries in the matrix have been observed;

• initial values X (X) and Y (Y )

• if offset is true, an o�set will be added to the model for each
column; it is false by default

• if scale is true, the losses for each column are scaled as in §4.3;
it is false by default.

• if sparse_na is true, the data matrix A is given as a sparse
matrix, and the keyword argument obs is omitted, implicit zeros
of A will be interpreted as missing entries; sparse_na is true by
default.

For example, the following code forms and fits a k-means model
with k = 5 on the entries of the matrix A œ R

m◊n in the observation
set obs.
losses = fill(quadratic(),n) # quadratic loss
rx = unitonesparse() # x is 1-sparse unit vector
ry = zeroreg() # y is not regularized
glrm = GLRM(A,losses,rx,ry,k,obs=obs) # form GLRM
X,Y,ch = fit!(glrm) # fit GLRM

LowRankModels uses the proximal gradient method described
in §7.2 to fit GLRMs. The optimal model is returned in the factors X
and Y, while ch gives the convergence history. The exclamation mark
su�x is a naming convention in Julia, and denotes that the function
mutates at least one of its arguments. In this case, it caches the best
fit X and Y as glrm.X and glrm.Y [27].

Losses and regularizers must be of type Loss and Regularizer,
respectively, and may be chosen from a list of supported losses and
regularizers, shown in Table 9.1 and Table 9.2 respectively. In the ta-
bles, w, c, and d are parameters: w is the weight of the loss function,
and takes default value 1; c is the relative importance of false positive
examples compared to false negative examples, and has default value
1; and d is the number of levels of an ordinal or categorical variable.
Users may also implement their own losses and regularizers.
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loss code L(u, a)

quadratic QuadLoss(w) w(u ≠ a)2

¸

1

L1Loss(w) w|u ≠ a|

huber HuberLoss(w) w huber(u ≠ a)

Poisson PoissonLoss(w) w(exp(u) ≠ au)

logistic LogisticLoss(w) w log(1 + exp(≠au))

hinge HingeLoss(w) w max(1 ≠ au, 0)

weighted hinge WeightedHingeLoss(w,c) (”(a = ≠1) + c”(a = 1))

◊w(1 ≠ au)
+

ordinal hinge OrdinalHingeLoss(w,d) w

qa≠1

aÕ
=1

(1 ≠ u + a

Õ)
+

+w

qd

aÕ
=a+1

(1 + u ≠ a

Õ)
+

multinomial MultinomialOrdinalLoss(w,d) w

1qa≠1

i=1

ui ≠
qd

i=a
ui

ordinal + log(
qd

aÕ
=1

exp(
qaÕ≠1

i=1

ui

≠
qd≠1

i=aÕ ui))
2

multinomial MultinomialLoss(w,d) ≠ log
3

exp(ua)qd

aÕ=1
exp(uaÕ )

4

Table 9.1: Loss functions available in the LowRankModels Julia package. Here
” is a function that returns 1 if its argument is true and 0 otherwise.

regularizer code r(x)
nothing ZeroReg() 0
quadratic QuadReg(w) wÎxÎ2

2
¸1 OneReg(w) wÎxÎ1
nonnegative NonNegConstraint()

I+(x)
1-sparse OneSparseConstraint()

I1(x)
clustered UnitOneSparseConstraint()

I1(x) +
I

(
qk

l=1 xl = 1)
mixture SimplexConstraint()

I+(x) +
I

(
qk

l=1 xl = 1)

Table 9.2: Regularizers available in the LowRankModels Julia package. Here
I

+

is the indicator of the nonnegative orthant,
I

1

is the indicator of the 1-sparse
vectors, and

I

is a function that returns 0 if its argument is true and Œ otherwise.

Shared memory parallelism. LowRankModels takes advantage of
Julia’s SharedArray data structure to implement a shared-memory
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parallel fitting procedure. While Julia does not yet support threading,
SharedArrays in Julia allow separate processes on the same computer
to access the same block of memory at the same time. To fit a model
using multiple processes, LowRankModels loads the data A and the
initial model X and Y into shared memory, broadcasts other problem
data (e.g., the losses and regularizers) to each process, and assigns to
each process a partition of the rows of X and columns of Y . At ev-
ery iteration, each process updates its rows of X, its columns of Y , and
computes its portion of the objective function, synchronizing after each
of these steps to ensure that, e.g., the X update is completed before
the Y update begins; then the master process checks a convergence
criterion and adjusts the step length.

Automatic modeling. LowRankModels is capable of adding o�-
sets to a GLRM, and of automatically scaling the loss functions,
as described in §4.3. It can also pick appropriate loss functions for
columns whose types are specified in an array datatypes whose ele-
ments take the values :real, :bool, :ord, or :cat. Using these fea-
tures, LowRankModels implements a method

glrm(dataframe, k, datatypes)

that forms a rank k model on a data frame with datatypes specified in
the array datatypes. This function automatically selects loss functions
and regularization that suit the data well, and ignores any missing (NA)
element in the data frame. This GLRM can then be fit with the function
fit!. By default, the four data types are fit with quadratic loss, logistic
loss, multinomial ordinal loss, and ordinal loss, respectively, but other
mappings can be specified by setting the keyword argument loss_map
to a dictionary mapping datatypes to loss functions.

Example. As an example, we fit a GLRM to the Motivational States
Questionnaire (MSQ) data set [121]. This data set measures 3896 sub-
jects on 92 aspects of mood and personality type, as well as recording
the time of day the data were collected. The data include real-valued,
Boolean, and ordinal measurements, and approximately 6% of the mea-
surements are missing (NA).
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The following code loads the MSQ data set and encodes it in two
dimensions:

using RDatasets
using LowRankModels
# pick a data set
df = RDatasets.dataset("psych","msq")
# encode it!
X,Y,labels,ch = fit(glrm(df,2))

Figure 9.1 uses the rows of Y as a coordinate system to plot some of
the features of the data set. Here we see the automatic embedding sepa-
rates positive from negative emotions along the y axis. This embedding
is notable for being interpretable despite having been generated com-
pletely automatically. Of course, better embeddings may be obtained
by a more careful choice of loss functions, regularizers, scaling, and
rank k.

9.3 Spark implementation

SparkGLRM is a code written in Scala, built on the Spark cluster pro-
gramming framework [160], for modelling and fitting GLRMs. The im-
plementation is available on-line at http://git.io/glrmspark.

Design. In SparkGLRM, the data matrix A is split entry-wise across
many machines, just as in [60]. The model (X, Y ) is replicated and
stored in memory on every machine. Thus the total computation time
required to fit the model is proportional to the number of nonzeros
divided by the number of cores, with the restriction that the model
should fit in memory. (The authors leave to future work an extension
to models that do not fit in memory, e.g., by using a parameter server
[125].) Where possible, hardware acceleration (via breeze and BLAS)
is used for local linear algebraic operations.

At every iteration, the current model is broadcast to all machines, so
there is only one copy of the model on each machine. This particularly
important in machines with many cores, because it avoids duplicating

http://git.io/glrmspark
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Figure 9.1: An automatic embedding of the MSQ [121] data set into two dimen-
sions.

the model on those machines. Each core on a machine will process a
partition of the input matrix, using the local copy of the model.

Usage. The user provides loss functions L
ij

(u, a) indexed by i =
0, . . . , m ≠ 1 and j = 0, . . . , n ≠ 1, so a di�erent loss function can be
defined for each column, or even for each entry. Each loss function is
defined by its gradient (or a subgradient). The method signature is

loss_grad(i: Int, j: Int, u: Double, a: Double)
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whose implementation can be customized by particular i and j. As an
example, the following line implements squared error loss (L(u, a) =
1/2(u ≠ a)2) for all entries:

u - a

Similarly, the user provides functions implementing the proximal
operator of the regularizers r and r̃, which take a dense vector and
perform the appropriate proximal operation.

Experiments. We ran experiments on several large matrices. For size
comparison, a very popular matrix in the recommender systems com-
munity is the Netflix Prize Matrix, which has 17770 rows, 480189
columns, and 100480507 nonzeros. Below we report results on several
larger matrices, up to 10 times larger. The matrices are generated by
fixing the dimensions and number of nonzeros per row, then uniformly
sampling the locations for the nonzeros, and finally filling in those lo-
cations with a uniform random number in [0, 1].

We report iteration times using an Amazon EC2 cluster with 10
slaves and one master, of instance type “c3.4xlarge". Each machine has
16 CPU cores and 30 GB of RAM. We ran SparkGLRM to fit two GLRMs
on matrices of varying sizes. Table 9.3 gives results for quadratically
regularized PCA (i.e., quadratic loss and quadratic regularization) with
k = 5. To illustrate the capability to write and fit custom loss functions,
we also fit a GLRM using a loss function that depends on the parity of
i + j:

L
ij

(u, a) =
I

|u ≠ a| i + j is even
(u ≠ a)2 i + j is odd,

Matrix size # nonzeros Time per iteration (s)

106 ◊ 106 106 7
106 ◊ 106 109 11
107 ◊ 107 109 227

Table 9.3: SparkGLRM for quadratically regularized PCA, k = 5.
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Matrix size # nonzeros Time per iteration (s)

106 ◊ 106 106 9
106 ◊ 106 109 13
107 ◊ 107 109 294

Table 9.4: SparkGLRM for custom GLRM, k = 10.

with r(x) = ÎxÎ1 and r̃(y) = ÎyÎ2
2, setting k = 10. (This loss function

was chosen merely to illustrate the generality of the implementation.
Usually losses will be the same for each entry in the same column.) The
results for this custom GLRM are given in Table 9.4.

The table gives the time per iteration. The number of iterations
required for convergence depends on the size of the ambient dimension.
On the matrices with the dimensions shown in Tables 9.3 and 9.4,
convergence typically requires about 100 iterations, but we note that
useful GLRMs often emerge after only a few tens of iterations.
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A
Examples, loss functions, and regularizers

A.1 Quadratically regularized PCA

In this appendix we describe some properties of the quadratically reg-
ularized PCA problem (2.3),

minimize ÎA ≠ XY Î2
F

+ “ÎXÎ2
F

+ “ÎY Î2
F

. (A.1)

In the sequel, we let U�V T = A be the SVD of A and let r be the rank
of A. We assume for convenience that all the nonzero singular values
‡1 > ‡2 > · · · > ‡

r

> 0 of A are distinct.

A.1.1 Solution

A solution is given by

X = Ũ �̃1/2, Y = �̃1/2Ṽ T , (A.2)

where Ũ and Ṽ are defined as in (2.5), and �̃ = diag((‡1 ≠
“)+, . . . , (‡

k

≠ “)+).
To prove this, let us consider the optimality conditions of (2.3). The

optimality conditions are

≠(A ≠ XY )Y T + “X = 0, ≠(A ≠ XY )T X + “Y T = 0.
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Multiplying the first optimality condition on the left by XT and the
second on the left by Y and rearranging, we find

XT (A ≠ XY )Y T = “XT X, Y (A ≠ XY )T X = “Y Y T ,

which shows, by taking a transpose, that XT X = Y Y T at any station-
ary point.

We may rewrite the optimality conditions together as
C
≠“I A

AT ≠“I

D C
X

Y T

D

=
C

0 XY

(XY )T 0

D C
X

Y T

D

=
C

X(Y Y T )
Y T (XT X)

D

=
C

X

Y T

D

(XT X),

where we have used the fact that XT X = Y Y T .
Now we see that (X, Y T ) lies in an invariant subspace of the matrixC

≠“I A

AT ≠“I

D

. Recall that V is an invariant subspace of a matrix A if

AV = V M for some matrix M . If Rank(M) Æ Rank(A), we know that
the eigenvalues of M are eigenvalues of A, and that the corresponding
eigenvectors lie in the span of V .

Thus the eigenvalues of XT X must be eigenvalues of
C
≠“I A

AT ≠“I

D

,

and (X, Y T ) must span the corresponding eigenspace. More concretely,

notice that
C
≠“I A

AT ≠“I

D

is (symmetric, and therefore) diagonalizable,

with eigenvalues ≠“ ± ‡
i

. The larger eigenvalues ≠“ + ‡
i

correspond
to the eigenvectors (u

i

, v
i

), and the smaller ones ≠“ ≠ ‡
i

to (u
i

, ≠v
i

).
Now, XT X is positive semidefinite, so the eigenvalues shared by

XT X and
C
≠“I A

AT ≠“I

D

must be positive. Hence there is some set |�| Æ
k with ‡

i

Ø “ for i œ � such that X has singular values Ô≠“ + ‡
i

for
i œ �. (Recall that XT X = Y Y T , so Y has the same singular values as
X.) Then (X, Y T ) spans the subspace generated by the vectors (u

i

, v
i

for i œ �. We say the stationary point (X, Y ) has active subspace �.
It is easy to verify that XY =

q
iœ� u

i

(‡
i

≠ “)vT

i

.
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Each active subspace gives rise to an orbit of stationary points. If
(X, Y ) is a stationary point, then (XT, T ≠1Y ) is also a stationary point
so long as

≠(A ≠ XY )Y T T ≠T + “XT = 0, ≠(A ≠ XY )T XT + “Y T T ≠T = 0,

which is always true if T ≠T = T , i.e., T is orthogonal. This shows that
the set of stationary points is invariant under orthogonal transforma-
tions.

To simplify what follows, we choose a representative element for
each orbit. Represent any stationary point with active subspace � by

X = U�(�� ≠ “I)1/2, Y = (�� ≠ “I)1/2V T

� ,

where by U� we denote the submatrix of U with columns indexed by �,
and similarly for � and V . At any value of “, let kÕ(“) = max{i : ‡

i

Ø
“}. Then we have

q
k

i=0
!

k

Õ(“)
i

"
(representative) stationary points, one

for each choice of � The number of (representative) stationary points
is decreasing in “; when “ > ‡1, the only stationary point is X = 0,
Y = 0.

These stationary points can have quite di�erent values. If (X, Y )
has active subspace �, then

||A ≠ XY ||2
F

+ “(||X||2
F

+ ||Y ||2
F

) =
ÿ

i/œ�
‡2

i

+
ÿ

iœ�

1
“2 + 2“|‡

i

≠ “|
2

.

From this form, it is clear that we should choose � to include the top
singular values i = 1, . . . , kÕ(“). Choosing any other subset � will result
in a higher (worse) objective value: that is, the other stationary points
are not global minima.

A.1.2 Fixed points of alternating minimization

Theorem A.1. The quadratically regularized PCA problem (2.3) has
only one local minimum, which is the global minimum.

Our proof is similar to that of [6], who proved a related theorem
for the case of PCA (2.2).

Proof. We showed above that every stationary point of (2.3) has the
form XY =

q
iœ� u

i

d
i

vT

i

, with � ™ {1, . . . , kÕ}, |�| Æ k, and d
i

= ‡
i

≠“.
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We use the representative element from each stationary orbit described
above, so each column of X is u

i

Ô
d

i

and each row of Y is
Ô

d
i

vT

i

for
some i œ �. The columns of X are orthogonal, as are the rows of Y .

If a stationary point is not the global minimum, then ‡
j

> ‡
i

for
some i œ �, j ”œ �. Below, we show we can always find a descent direc-
tion if this condition holds, thus showing that the only local minimum
is the global minimum.

Assume we are at a stationary point with ‡
j

> ‡
i

for some i œ �,
j ”œ �. We will find a descent direction by perturbing XY in direction
u

j

vT

j

. Form X̃ by replacing the column of X containing u
i

Ô
d

i

by (u
i

+
‘u

j

)
Ô

d
i

, and Ỹ by replacing the row of Y containing
Ô

d
i

vT

i

by
Ô

d
i

(v
i

+
‘v

j

)T . Now the regularization term increases slightly:

“(ÎX̃Î2
F

+ ÎỸ Î2
F

) ≠ “(ÎXÎ2
F

+ ÎY Î2
F

)
=

ÿ

i

Õœ�,i

Õ ”=i

(2“t
i

Õ) + 2“d
i

(1 + ‘2) ≠
ÿ

i

Õœ�
2“t

i

Õ

= 2“d
i

‘2.

Meanwhile, the approximation error decreases:

ÎA ≠ X̃Ỹ Î2
F

≠ ÎA ≠ XY Î2
F

= Îu
i

‡
i

vT

i

+ u
j

‡
j

vT

j

≠ (u
i

+ ‘u
j

)d
i

(v
i

+ ‘v
j

)T Î2
F

≠ (‡
i

≠ d
i

)2 ≠ ‡2
j

= Îu
i

(‡
i

≠ d
i

)vT

i

+ u
j

(‡
j

≠ ‘2d
i

)vT

j

≠ ‘u
i

d
i

vT

j

≠ ‘u
j

d
i

vT

i

Î2
F

≠ (‡
i

≠ d
i

)2 ≠ ‡2
j

=
.....

C
‡

i

≠ d
i

≠‘d
i

≠‘d
i

‡
j

≠ ‘2d
i

D.....

2

F

≠ (‡
i

≠ d
i

)2 ≠ ‡2
j

= (‡
i

≠ d
i

)2 + (‡
j

≠ ‘2d
i

)2 + 2‘2d2
i

≠ (‡
i

≠ d
i

)2 ≠ ‡2
j

= ≠2‡
j

‘2d
i

+ ‘4d2
i

+ 2‘2d2
i

= 2‘2d
i

(d
i

≠ ‡
j

) + ‘4d2
i

,

where we have used the rotational invariance of the Frobenius norm to
arrive at the third equality above. Hence the net change in the objective
value in going from (X, Y ) to (X̃, Ỹ ) is

2“d
i

‘2 + 2‘2d
i

(d
i

≠ ‡
j

) + ‘4d2
i

= 2‘2d
i

(“ + d
i

≠ ‡
j

) + ‘4d2
i

= 2‘2d
i

(‡
i

≠ ‡
j

) + ‘4d2
i

,
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which is negative for small ‘. Hence we have found a descent direction,
showing that any stationary point with ‡

j

> ‡
i

for some i œ �, j ”œ �
is not a local minimum.

data type loss L(u, a) params dim

real quadratic (u ≠ a)2 1

real absolute value |u ≠ a| 1

real huber huber(u ≠ a) 1

real quantile –(a ≠ u)
+

+ (1 ≠ –)(u ≠ a)
+

tilt – 1

boolean logistic log(1 + exp(≠au)) 1

boolean hinge (1 ≠ ua)
+

1

boolean weighted hinge (”(a = ≠1) + c”(a = 1))(1 ≠ au)
+

weight c 1

integer poisson exp(u) ≠ au + a log a ≠ a 1

ordinal ordinal hinge
qa≠1

aÕ
=1

(1 ≠ u + a

Õ)
+

+ levels d 1
qd

aÕ
=a+1

(1 + u ≠ a

Õ)
+

ordinal multinomial
qa≠1

i=1

ui ≠
qd≠1

i=a
ui+ levels d d ≠ 1

ordinal log
1qd≠1

aÕ
=1

exp
1qaÕ≠1

i=1

ui

qd≠1

i=aÕ ui

22

categorical one-vs-all (1 ≠ ua)
+

+
q

aÕ ”=a
(1 + uaÕ )

+

levels d d

categorical hamming ”(ua ”= 1) +
q

aÕ ”=a
”(uaÕ ”= ≠1) levels d d

categorical multinomial ≠ log
3

exp(ua)qd

aÕ=1
exp(uaÕ )

4
levels d d

Table A.1: A few loss functions. Here ” is a function that returns 1 if its argument
is true and 0 otherwise. params shows the parameters of the loss function, and dim

gives its embedding dimension.
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regularizer r(x)
nothing 0
quadratic ÎxÎ2

2
¸1 ÎxÎ1
nonnegative

I+(x)
nonnegative ¸1 regularized ÎxÎ1 +

I+(x)
orthogonal nonnegative

I1(x) +
I+(x)

s-sparse card(x) Æ s

clustered
I1(x) +

I

(
q

k

l=1 x
l

= 1)
mixture

I+(x) +
I

(
q

k

l=1 x
l

= 1)

Table A.2: A few regularizers. Here
I

+

is the indicator of the nonnegative orthant,
I

1

is the indicator of the 1-sparse vectors, and
I

is a function that returns 0 if its
argument is true and Œ otherwise.
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