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Abstract—In [1], Jejurikar and Gupta investigated energy In this note, we cast the uniform slowdown problem as
savings due to optimal slowdown of periodic tasks in real-time g geometric program (GP), with the slowdown factors, pro-
task systems, where tasks have varying power characteristicsd cessor voltages, and task execution times as the optimizati
task deadlines are less than the periods. The authors presented a__ . ' . . .
bisection method for computing near-optimal constant slowdown variables. We also give an explicit solution to _the coqstant
factors, when all the tasks are assigned the same slowdownslowdown problem. We use GPPOSY [3], a publicly available
factor. For the case when tasks have different slowdown facts; interior-point GP solver, to solve instances of uniformvsio
they presented a method for computing near-optimal slowdown down problems with hundreds of tasks in a couple of seconds
factors as a solution to a convex optimization problem, using the (on a generic personal computer). Compared to the ellipsoid

ellipsoid method. In this note, we show a method to cast the thod. which be s| . i 4 his f
problem of finding near-optimal slowdown factors that minimize method, which can be slow in practice [4], our approach is far

the total energy consumption as a geometric program (GP), which faster.

can be efficiently solved using modern interior-point methods.

More importantly, we show that the problem of finding near-

optimal constant slowdown factors has an analytic solution. A Task system model

We demonstrate the GP approach by solving several numerical e priefly present the task system model from [1]. The real-
instances using a publicly available interior-point GP solver. time task system processes a sebgferiodic tasks on a single

Index Terms—EDF scheduling, real-time systems, low power processor, where we denote the task sdt as {v1,...,v.}-
scheduling, dynamic .voltage scal!ng, slowdown factors, convex A task ~; is a 3-tuple (Ti,Di,Ci), whereT; is the period of
optimization, geometric programming. the task,D; is the relative deadline witlD; < T}, andC; is
the worst-case execution time (WCET) for the task, with the
processor is running at its maximum (speed) frequefigyk.
Without loss of generality, we can assume thiat D;, and

We consider a real-time task system with a single pré-: are natural numbers [5]. The hyper-period of the task set,
cessor as in [1], and briefly describe the problem setdp. is defined as the least common multiple (lcm) of the task
for completeness. When the peak processing capacity is f6fiods. The tasks are scheduled using a preemptive Harlies
needed for an application, we can reduce the system eneRgadline First (EDF) scheduling policy and we assume tret th
Consumption by opera[ing the processor at a lower frequer@k sefl” is ordered in terms of the non-decreasing deadlines.
than the maximum possible frequency. Such slowdown, usifighally, we assume that all tasks are independent.
frequency and voltage scaling, is widely deployed in real- The execution time of the taskunder slowdown, denoted
time systems [2]. We assume that the amount of slowdown is
is constant during the execution of a task instance, and we T = Q (1)
refer to it as thetask slowdown factor. i

The goal of theoptimized slowdown problem is to find the Here,7; is the slowdown factor for the task: and is given by
slowdown factors for each task such that we minimize the ‘
energy consumption of the system, while satisfying the task N = L,
deadlines. In [1], Jejurikar and Gupta addressed two igs®n Jinax
of the slowdown problem: one wittonstant slowdown, where where f; is the operating frequency of the processor during
all the tasks are assigned the same slowdown factor, ahé execution of the task The task slowdown factor can be
the other withuniform slowdown, where all instances of aviewed as the normalized operating frequency: at any given
task have the same slowdown factor, but different tasks ceastance, it is the ratio of the current operating frequetwy
have different slowdown factors. The authors use a bisectithe maximum operating frequency. For example, if we run the
method to solve the constant slowdown problem, and tlpeocessor at half its maximum frequency, thes= 1/2, and
ellipsoid method to solve the uniform slowdown problemeaft the execution time of the current task is doublied, 1/7 = 2.
formulating it as a convex optimization problem. We always havef; < fiax, s < 1, andr; > C;.

I. INTRODUCTION

)



B. Feasihility tests D. Wltage and slowdown factor relationship

A task system is said to be feasible if all tasks meet their The transistor gate delay increases with a decrease in
deadlines. In [1], two methods are used to determine theltage, forcing a decrease in the operating frequency. The
feasibility of the task system: Devi Test Method (DTM) andelationship between the transistor gate detgy, and supply
Optimal Test Method (OTM). The constraints that need to hwltage is given by:

satisfied for the DTM [6] are given by: kVig
. ; by = ©
Flm () — o1 (T; — Dy) <1 ko1 (Vaa — Vin)
BOWE — T, D= T; TS H EE L whereVyq is the operating supply voltag#;,, is the threshold

(3) Vvoltage,a has a value in the rangdeto 2, andk is a technology
and for the OTM [5] are given by: constant.
n From equations (2) and (7), we obtain the following re-

Fo'™ (7 t) = Z (V _ DiJ + 1) 7, <t t<tua, t €7, lationship between the supply voltagé and the slowdown
) . T,L —_ —_ ) Y ..
i=1 @ factor for the task:
4
Vi — Vin)“®
where7 = {kT; + D; |i=1,...,n, k > 0} andtyax = H mz%, (8)
is the hyper-period of the task set. i ¢ _
The computational complexity of DTM is significantly lessVhere i = (Vimax — Vin)*/Viax is @ constant, an@ay is
than that for OTM. In DTM we have to check feasibility ofthe operating supply voltage of the system at the maximum

n linear constraints in the variable = (r4,...,7,), while Operating frequency, which is a known constant.
the number of constraints in OTM can grow exponentially in
the number of variables. However, note that DTM is only a Il. OPTIMIZED SLOWDOWN PROBLEM

sufficient feasibility test that can identify a large perage of In this section, we formulate the optimized slowdown prob-
feasible task sets; it will produce results that are lessii@ate lem in GP form. We refer the reader to [7, Sec. 4.5], [8],
than OTM. In [1], an approximation to OTM is given, wherd9] for an introduction to geometric programming, some of

the number of constraints is limited by using the main approaches used to formulate problems in GP form,
1 and for various examples and applications. From this paint o
tmax = —max(Ti — Dy) < H, (5)  we will assume that the reader is familiar with terms such as

which gives pseudo-polynomial humber of constraints in (45nonom|al, posynomialetc.

In this case, OTM will identify feasible task sets that will )

achieve total system utilization up td — ¢) x 100 %, where A Uniform slowdown problem

0 < e < 1 is the measure of suboptimality. In the uniform slowdown problem we wish to choose
the slowdown factorsyy,...,n, that minimize the energy

C. Energy model consumption of the system, while satisfying the feasibitit

We will assume that the energy consumption of the systemﬂl.e tasks. We also want to determine the values of variables
dominated by the dynamic power consumption, which aris&s; - - -» Vo, Which are supply voltages during the execution of
due to switching activity in circuits, while the static pawethe taski, and the task execution times, ..., 7,. We note
consumption, which is present even when no logic operatioltt all of these variables are positive. _
are performed, is negligible. The power consumption of the The objective is the total energy consumption of the system,
system implemented in CMOS technology is given by which is obtained by summing equation (6) for each task,

P= CefdeQdf> E(V) = ZNJ/? (9)
where Co is the effective switching capacitancgy, is the i=1
operating supply voltage, anflis the operating frequency. WeThis is a quadratic function and also a posynominaVin
obtain the energy spent in the system by integrating power ov The problem constraints are the task feasibility constsain
the time of operation. For example, if the system is runnin@vhere we can use DTM or OTM constraints), lower and upper
at a constant operating frequengyand voltageVyy for the bounds on the variables, and equality relationships betiese
period of T' seconds, then the energy spent is slowdown factors, voltages, and task execution times.

E = CeaViy IT. Finally, the uniform slowdown problem with DTM con-

straints is given by
The energy spent during the execution of the task minimize  E(V)

E(Vaa) = CeatVg fimi, subjectto Fo™(7) <1, i=1,....n
. L Ci/mi =1 (20)
which simplifies to i/ i
P ) (Vi = Van)*/(5:Vi) = ms
E(Vdd) = Ninda (6) ‘/min S ‘/7 S ‘/maxa TImin S un S 1,

whereN; = CogC; fmax- Thus the energy spent depends onlwhereV,,;, > Vi, is the minimum allowable operating supply
on the supply voltage and the given constants for task voltage, andn,,;, is the corresponding minimum slowdown.



Here we can also add bounds arbut they are redundant. Thevoltage V' and the task execution times,...,7,, i.e, we
uniform slowdown problem with OTM constraints is the sameeek to solve

as the above problem except that the feasibility const#B)ts minimize NV2
are replaced by constraints (4). subject to Fdtm(7) <1, i=1,....n
Problem (10) is not in GP form since the voltage/slowdown Ci/n=r (13)
relationship (8) is not GP compatible (valid GP problems can (V = Van)*/(kV) =1
only have monomial equalities). However, we can formulate Vinin <V < Vinaxes Tmin <1 < 1,
an equivalent GP problem which is given by
whereN = 3"" | N, is a constant.
minimize E(V) We can give an explicit solution to this problem. We first
subjectto Fi™(r) <1, i=1,...,n note that the objective is to find the smallest possible gelia
Ci/mi =1 (11) subject to the problem constraints, which translates tarfond
Vi + (ki Vi)Yo < V; the smallest possible (sincen is an increasing one-to-one
Vinin < Vi < Viax,  Mmin <73 < 1. function of V' on the domain[nmia, 1]). Thus, an equivalent

L . . o ) problem is
This is a valid GP since the objective is a posynomial, there

aren monomial equalities, and all of the inequalities are either
monomial or posynomial inequalities.

minimize 7
subjectto F&™(C;) <n, i=1,...,n (14)

Next we show that (10) and (11) are equivalent problems. Mhoin <7 < 1,
The slowdown factor); (8) is a monotone increasing functionwhere we have substituted; = C;/n in the feasibility
of voltageV;, since fora > 1 andV; > Vi, we have constraints and pulled to the righthand side (it factors out).

Clearly, the optimal slowdown factor in the DTM case is
dn; _ (V= Va)* (@Vi/(Vi= V) = 1) _ e op
dv; KV? ' ™" = min{nu, (G}, =1,

The slowdown factor is also a concave functiontinwhich While in the OTM case is

together with monotonicity can be used to cast problem (10)  otm _ i {Din, FO(Ch, 1) /1), ¢ < by £ € T
as a convex problem. However, here we are mainly interested T K ’ o
in how to convert this equality into a posynomial inequality

and turn the problem into a GP. We relax the equality (8) in M- EXPERIMENTAL.RESULTS )
problem (10) as The GP problem (11) can be efficiently solved using modern

interior-point methods [7, Chap. 11], [10], [11]. For our
(Vi = Van)®/ (5 Vi) > m5 (12) numerical experiments we use GPPOSY, a publicly available
Matlab implementation of an interior-point method for Saty
and argue that this inequality is always tight at the optim&Ps in posynomial form [3]. The GPPOSY solver can easily
solution {.e, it is met with equality). Assume that this is nothandle problems with hundreds of tasks and thousands of
the case, and that there is an optinmi@lsuch that the above feasibility constraints. For simple prototyping, we alsived
inequality is slack. We can then decrease the objectiveevalsmaller problems with up to ten tasks using CVX [12].
(it is a quadratic) by reducindy;, which reduces the value of We consider the same experimental setup as in ¢4,
the lefthand side, until the inequality is tight. Then, bywta- we randomly generate task sets with random periods in the
diction, the relaxed inequalities are always tight at thénogl range [20000, 50000, WCETS in the rangg100, 5000], and
solution, and the optimal solution of the relaxed problem ideadlines which are about/4 of the task periods. We take
also an optimal solution of the original problem (10). Aftef;;, = 0.36V anda = 1.5, and use an operating voltage range
algebraic manipulation, the inequality (12) is equivalent  with V,;, = 0.6V and V., = 1.8V. We usee = 0.01 to
obtain 1% near-optimal solutions for every experimental run.
Vin + (miki Vi)V < Vi, The results are summarized in figure 1, with the plot show-
o o ) ) _ ) ing the mean and standard deviation for the total time regluir
which is a posynomial inequality and is compatible with GRy fing optimized slowdown oves0 randomly generated task
We conclude that the problems (10) and (11) are equivalendystem with, tasks. Figure 2 shows the average number of GP
problem constraints as increases, which explains variation
in the solution times for randomly generated problems with

B. Constant slowdown problem larger than20 tasks

The constant slowdown problem is a special case of the uni-
form slowdown problem, in which the same slowdown factor REFERENCES
is applied to all task instances in the system. Therefore the) R Jejurikar and R. Gupta, “Optimized slowdown in reaiei task
goal of the constant slowdown problem is to choose the dveral systems,”|IEEE Transactions on Computers, vol. 55, pp. 1588-1598,

slowdown factoryn that minimize the energy consumption of _ Dec. 2006. ,
[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez, “Dynamicdan

the system, while SatiSfyiljg feasibility of the tasks. .Imi'midn, aggressive scheduling techniques for power-aware need-§iystems,” in
we also want to determine the value of the optimal supply Proc. of IEEE Real-Time Systems Symposium, pp. 95-105, Dec. 2001.
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