
1

Optimized Slowdown in Real-Time Task Systems
via Geometric Programming

Almir Mutapcic†, Srinivasan Murali†, Stephen Boyd†, Rajesh Gupta‡, David Atienza+§, Giovanni De Micheli+
†Department of Electrical Engineering, Stanford University, Stanford, USA,{almirm,smurali,boyd}@stanford.edu

‡Department of Computer Science and Engineering, UCSD, San Diego, USA, rgupta@ucsd.edu
+LSI, EPFL, Lausanne, Switzerland,{david.atienza, giovanni.demicheli}@epfl.ch

§DACYA, Complutense University of Madrid (UCM), Madrid, Spain

Abstract— In [1], Jejurikar and Gupta investigated energy
savings due to optimal slowdown of periodic tasks in real-time
task systems, where tasks have varying power characteristics and
task deadlines are less than the periods. The authors presented a
bisection method for computing near-optimal constant slowdown
factors, when all the tasks are assigned the same slowdown
factor. For the case when tasks have different slowdown factors,
they presented a method for computing near-optimal slowdown
factors as a solution to a convex optimization problem, using the
ellipsoid method. In this note, we show a method to cast the
problem of finding near-optimal slowdown factors that minimize
the total energy consumption as a geometric program (GP), which
can be efficiently solved using modern interior-point methods.
More importantly, we show that the problem of finding near-
optimal constant slowdown factors has an analytic solution.
We demonstrate the GP approach by solving several numerical
instances using a publicly available interior-point GP solver.

Index Terms— EDF scheduling, real-time systems, low power
scheduling, dynamic voltage scaling, slowdown factors, convex
optimization, geometric programming.

I. I NTRODUCTION

We consider a real-time task system with a single pro-
cessor as in [1], and briefly describe the problem setup
for completeness. When the peak processing capacity is not
needed for an application, we can reduce the system energy
consumption by operating the processor at a lower frequency
than the maximum possible frequency. Such slowdown, using
frequency and voltage scaling, is widely deployed in real-
time systems [2]. We assume that the amount of slowdown
is constant during the execution of a task instance, and we
refer to it as thetask slowdown factor.

The goal of theoptimized slowdown problem is to find the
slowdown factors for each task such that we minimize the
energy consumption of the system, while satisfying the task
deadlines. In [1], Jejurikar and Gupta addressed two instances
of the slowdown problem: one withconstant slowdown, where
all the tasks are assigned the same slowdown factor, and
the other withuniform slowdown, where all instances of a
task have the same slowdown factor, but different tasks can
have different slowdown factors. The authors use a bisection
method to solve the constant slowdown problem, and the
ellipsoid method to solve the uniform slowdown problem, after
formulating it as a convex optimization problem.

In this note, we cast the uniform slowdown problem as
a geometric program (GP), with the slowdown factors, pro-
cessor voltages, and task execution times as the optimization
variables. We also give an explicit solution to the constant
slowdown problem. We use GPPOSY [3], a publicly available
interior-point GP solver, to solve instances of uniform slow-
down problems with hundreds of tasks in a couple of seconds
(on a generic personal computer). Compared to the ellipsoid
method, which can be slow in practice [4], our approach is far
faster.

A. Task system model

We briefly present the task system model from [1]. The real-
time task system processes a set ofn periodic tasks on a single
processor, where we denote the task set asΓ = {γ1, . . . , γn}.
A task γi is a 3-tuple (Ti,Di, Ci), whereTi is the period of
the task,Di is the relative deadline withDi ≤ Ti, andCi is
the worst-case execution time (WCET) for the task, with the
processor is running at its maximum (speed) frequencyfmax.
Without loss of generality, we can assume thatTi, Di, and
Ci are natural numbers [5]. The hyper-period of the task set,
H, is defined as the least common multiple (lcm) of the task
periods. The tasks are scheduled using a preemptive Earliest-
Deadline First (EDF) scheduling policy and we assume that the
task setΓ is ordered in terms of the non-decreasing deadlines.
Finally, we assume that all tasks are independent.

The execution time of the taski under slowdown, denoted
τi, is

τi =
Ci

ηi
. (1)

Here,ηi is theslowdown factor for the taski and is given by

ηi =
fi

fmax

, (2)

where fi is the operating frequency of the processor during
the execution of the taski. The task slowdown factor can be
viewed as the normalized operating frequency: at any given
instance, it is the ratio of the current operating frequencyto
the maximum operating frequency. For example, if we run the
processor at half its maximum frequency, thenη = 1/2, and
the execution time of the current task is doubled,i.e., 1/η = 2.
We always havefi ≤ fmax, ηi ≤ 1, andτi ≥ Ci.



2

B. Feasibility tests

A task system is said to be feasible if all tasks meet their
deadlines. In [1], two methods are used to determine the
feasibility of the task system: Devi Test Method (DTM) and
Optimal Test Method (OTM). The constraints that need to be
satisfied for the DTM [6] are given by:

F dtm

k (τ) =
k

∑

i=1

τi

Ti
+

1

Dk

k
∑

i=1

(Ti − Di)

Ti
τi ≤ 1, k = 1, . . . , n,

(3)
and for the OTM [5] are given by:

F otm(τ, t) =

n
∑

i=1

(⌊

t − Di

Ti

⌋

+ 1

)

τi ≤ t, t ≤ tmax, t ∈ T ,

(4)
whereT = {kTi + Di | i = 1, . . . , n, k ≥ 0} and tmax = H
is the hyper-period of the task set.

The computational complexity of DTM is significantly less
than that for OTM. In DTM we have to check feasibility of
n linear constraints in the variableτ = (τ1, . . . , τn), while
the number of constraints in OTM can grow exponentially in
the number of variables. However, note that DTM is only a
sufficient feasibility test that can identify a large percentage of
feasible task sets; it will produce results that are less accurate
than OTM. In [1], an approximation to OTM is given, where
the number of constraints is limited by using

tmax =
1

ǫ
max

i
(Ti − Di) < H, (5)

which gives pseudo-polynomial number of constraints in (4).
In this case, OTM will identify feasible task sets that will
achieve total system utilization up to(1 − ǫ) × 100%, where
0 < ǫ < 1 is the measure of suboptimality.

C. Energy model

We will assume that the energy consumption of the system is
dominated by the dynamic power consumption, which arises
due to switching activity in circuits, while the static power
consumption, which is present even when no logic operations
are performed, is negligible. The power consumption of the
system implemented in CMOS technology is given by

P = CeffV 2

ddf,

whereCeff is the effective switching capacitance,Vdd is the
operating supply voltage, andf is the operating frequency. We
obtain the energy spent in the system by integrating power over
the time of operation. For example, if the system is running
at a constant operating frequencyf and voltageVdd for the
period ofT seconds, then the energy spent is

E = CeffV 2

ddfT.

The energy spent during the execution of the taski is

E(Vdd) = CeffV 2

ddfiτi,

which simplifies to

E(Vdd) = NiV
2

dd, (6)

whereNi = CeffCifmax. Thus the energy spent depends only
on the supply voltage and the given constants for taski.

D. Voltage and slowdown factor relationship

The transistor gate delay increases with a decrease in
voltage, forcing a decrease in the operating frequency. The
relationship between the transistor gate delay,tinv, and supply
voltage is given by:

tinv =
kVdd

(Vdd − Vth)α
, (7)

whereVdd is the operating supply voltage,Vth is the threshold
voltage,α has a value in the range1 to 2, andk is a technology
constant.

From equations (2) and (7), we obtain the following re-
lationship between the supply voltageVi and the slowdown
factor for the taski:

ηi =
(Vi − Vth)α

κiVi
, (8)

whereκi = (Vmax − Vth)α/Vmax is a constant, andVmax is
the operating supply voltage of the system at the maximum
operating frequency, which is a known constant.

II. OPTIMIZED SLOWDOWN PROBLEM

In this section, we formulate the optimized slowdown prob-
lem in GP form. We refer the reader to [7, Sec. 4.5], [8],
[9] for an introduction to geometric programming, some of
the main approaches used to formulate problems in GP form,
and for various examples and applications. From this point on,
we will assume that the reader is familiar with terms such as
monomial, posynomial,etc.

A. Uniform slowdown problem

In the uniform slowdown problem we wish to choose
the slowdown factorsη1, . . . , ηn that minimize the energy
consumption of the system, while satisfying the feasibility of
the tasks. We also want to determine the values of variables
V1, . . . , Vn, which are supply voltages during the execution of
the taski, and the task execution timesτ1, . . . , τn. We note
that all of these variables are positive.

The objective is the total energy consumption of the system,
which is obtained by summing equation (6) for each task,

E(V ) =

n
∑

i=1

NiV
2

i . (9)

This is a quadratic function and also a posynominal inV .
The problem constraints are the task feasibility constraints

(where we can use DTM or OTM constraints), lower and upper
bounds on the variables, and equality relationships between the
slowdown factors, voltages, and task execution times.

Finally, the uniform slowdown problem with DTM con-
straints is given by

minimize E(V )
subject to F dtm

i (τ) ≤ 1, i = 1, . . . , n
Ci/ηi = τi

(Vi − Vth)α/(κiVi) = ηi

Vmin ≤ Vi ≤ Vmax, ηmin ≤ ηi ≤ 1,

(10)

whereVmin > Vth is the minimum allowable operating supply
voltage, andηmin is the corresponding minimum slowdown.



3

Here we can also add bounds onτ , but they are redundant. The
uniform slowdown problem with OTM constraints is the same
as the above problem except that the feasibility constaints(3)
are replaced by constraints (4).

Problem (10) is not in GP form since the voltage/slowdown
relationship (8) is not GP compatible (valid GP problems can
only have monomial equalities). However, we can formulate
an equivalent GP problem which is given by

minimize E(V )
subject to F dtm

i (τ) ≤ 1, i = 1, . . . , n
Ci/ηi = τi

Vth + (ηiκiVi)
1/α ≤ Vi

Vmin ≤ Vi ≤ Vmax, ηmin ≤ ηi ≤ 1.

(11)

This is a valid GP since the objective is a posynomial, there
aren monomial equalities, and all of the inequalities are either
monomial or posynomial inequalities.

Next we show that (10) and (11) are equivalent problems.
The slowdown factorηi (8) is a monotone increasing function
of voltageVi, since forα ≥ 1 andVi > Vth we have

dηi

dVi
=

(Vi − Vth)α (αVi/(Vi − Vth) − 1)

κV 2
i

> 0.

The slowdown factor is also a concave function inV , which
together with monotonicity can be used to cast problem (10)
as a convex problem. However, here we are mainly interested
in how to convert this equality into a posynomial inequality,
and turn the problem into a GP. We relax the equality (8) in
problem (10) as

(Vi − Vth)α/(κiVi) ≥ ηi (12)

and argue that this inequality is always tight at the optimal
solution (i.e., it is met with equality). Assume that this is not
the case, and that there is an optimalVi such that the above
inequality is slack. We can then decrease the objective value
(it is a quadratic) by reducingVi, which reduces the value of
the lefthand side, until the inequality is tight. Then, by contra-
diction, the relaxed inequalities are always tight at the optimal
solution, and the optimal solution of the relaxed problem is
also an optimal solution of the original problem (10). After
algebraic manipulation, the inequality (12) is equivalentto

Vth + (ηiκiVi)
1/α ≤ Vi,

which is a posynomial inequality and is compatible with GP.
We conclude that the problems (10) and (11) are equivalent.

B. Constant slowdown problem

Theconstant slowdown problem is a special case of the uni-
form slowdown problem, in which the same slowdown factor
is applied to all task instances in the system. Therefore the
goal of the constant slowdown problem is to choose the overall
slowdown factorη that minimize the energy consumption of
the system, while satisfying feasibility of the tasks. In addition,
we also want to determine the value of the optimal supply

voltage V and the task execution timesτ1, . . . , τn, i.e., we
seek to solve

minimize NV 2

subject to F dtm
i (τ) ≤ 1, i = 1, . . . , n

Ci/η = τi

(V − Vth)α/(κV ) = η
Vmin ≤ V ≤ Vmax, ηmin ≤ η ≤ 1,

(13)

whereN =
∑n

i=1
Ni is a constant.

We can give an explicit solution to this problem. We first
note that the objective is to find the smallest possible voltageV
subject to the problem constraints, which translates to finding
the smallest possibleη (since η is an increasing one-to-one
function of V on the domain[ηmin, 1]). Thus, an equivalent
problem is

minimize η
subject to F dtm

i (Ci) ≤ η, i = 1, . . . , n
ηmin ≤ η ≤ 1,

(14)

where we have substitutedτi = Ci/η in the feasibility
constraints and pulledη to the righthand side (it factors out).
Clearly, the optimal slowdown factor in the DTM case is

ηdtm = min{ηmin, F dtm

i (Ci)}, i = 1, . . . , n,

while in the OTM case is

ηotm = min{ηmin, F otm

i (Ci, t)/t}, t ≤ tmax, t ∈ T .

III. EXPERIMENTAL RESULTS

The GP problem (11) can be efficiently solved using modern
interior-point methods [7, Chap. 11], [10], [11]. For our
numerical experiments we use GPPOSY, a publicly available
Matlab implementation of an interior-point method for solving
GPs in posynomial form [3]. The GPPOSY solver can easily
handle problems with hundreds of tasks and thousands of
feasibility constraints. For simple prototyping, we also solved
smaller problems with up to ten tasks using CVX [12].

We consider the same experimental setup as in [1],e.g.,
we randomly generate task sets with random periods in the
range [20000, 50000], WCETs in the range[100, 5000], and
deadlines which are about1/4 of the task periods. We take
Vth = 0.36V andα = 1.5, and use an operating voltage range
with Vmin = 0.6V and Vmax = 1.8V. We useǫ = 0.01 to
obtain1% near-optimal solutions for every experimental run.

The results are summarized in figure 1, with the plot show-
ing the mean and standard deviation for the total time required
to find optimized slowdown over50 randomly generated task
system withn tasks. Figure 2 shows the average number of GP
problem constraints asn increases, which explains variation
in the solution times for randomly generated problems withn
larger than20 tasks.

REFERENCES

[1] R. Jejurikar and R. Gupta, “Optimized slowdown in real-time task
systems,”IEEE Transactions on Computers, vol. 55, pp. 1588–1598,
Dec. 2006.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,” in
Proc. of IEEE Real-Time Systems Symposium, pp. 95–105, Dec. 2001.



4

20 40 60 80 100
0

10

20

30

40

50

n

tim
e

(s
ec

)

Fig. 1. Average time taken by the solver to solve50 randomly generated
task systems with increasing number of tasksn. Error bars show standard
deviation, around the average value, for each value ofn.

20 40 60 80 100
0

1000

2000

3000

n

nu
m

be
r

of
co

ns
tr

ai
nt

s

Fig. 2. Average number of GP constraints (size of the problem) for 50

randomly generated task systems with increasing number of tasks n. Error
bars show standard deviation, around the average value, foreach value ofn.

[3] K. Koh, S.-J. Kim, A. Mutapcic, and S. Boyd, “GPPOSY: A Matlab
solver for geometric programs in posynomial form.” Available atwww.
stanford.edu/∼boyd/ggplab/, 2006.

[4] R. Bland, D. Goldfarb, and M. Todd, “The ellipsoid method:A survey,”
Operations Research, vol. 29, no. 6, pp. 1039–1091, 1981.

[5] S. Baruah, A. Mok, and L. Rosier, “Algorithms and complexity con-
cerning the preemptively scheduling of periodic, real-time tasks on one
processor,”Real-Time Systems Journal, vol. 2, pp. 301–324, 1990.

[6] U. Devi, “An improved schedulability test for uniprocessor periodic task
systems,” inProc. of 15th Euromicro Conference on Real-Time Systems,
pp. 23–30, July 2003.

[7] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[8] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,”Optimization and Engineering, vol. 8, pp. 67–
127, Mar. 2007.

[9] S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz, “Digital circuit optimiza-
tion via geometric programming,”Operations Research, vol. 53, no. 6,
pp. 899–932, 2005.

[10] S. Wright,Primal-dual interior-point methods. Philadelphia, PA, USA:
SIAM, 1997.

[11] Y. Nesterov and A. Nemirovsky,Interior-point polynomial methods
in convex programming, vol. 13 of Studies in Applied Mathematics.
Philadelphia, PA: SIAM, 1994.

[12] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming, version 1.0RC3.” Available atwww.stanford.
edu/∼boyd/cvx/, Feb. 2007.


