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1 I n t r o d u c t i o n  

It is well known that  convex programs have many attractive properties, includ- 
ing the proven existence of efficient methods to solve them. What  is not as 
widely appreciated, however, is that  nonsmooth convex programs--i .e . ,  models 
with nondifferentiable constraints or objectives--can, in theory, be solved just 
as efficiently as their smooth counterparts. But here, as is often the case, theory 
and practice do not coincide. Methods that  are theoretically efficient for general 
nondifferentiable problems, such as the ellipsoid method [3], are notoriously slow 
in practice. 

In contrast, there are many solvers available for smooth convex programs, as 
well as for certain standard forms such as semidefinite programs (SDPs), that  are 
efficient in both theory and practice; e.g., [13, 16, 17, 18]. These solvers can often 
be used to solve a general nonsmooth problem as well--not directly of course, 
but by first transforming it into an equivalent form supported by the solver. The 
equivalent problem is usually larger than the original, but the superior efficiency 
of the solver more than compensates for the increase in size, especially if problem 
structure is taken into account. 

The transformation approach dates back to the very first days of linear pro- 
graming [7]. It is usually taught as a collection of tricks that  a modeler can use 
to (hopefully) reformulate problems by hand. The versatility of the approach, 
of course, depends upon the variety of transformations known by the modeler. 
But while some transformations are fairly obvious and widely known, others are 
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neither obvious nor well known, even to some experts in convex optimization. 
Furthermore, even if a transformation is identified, the reformulation process is 
often time consuming and error prone, for both experts and applications-oriented 
modelers alike. 

We propose to enable modeling frameworks to largely automate the process 
of identifying and applying these transformations, so that a much wider variety 
of models--smooth and nonsmooth alike--can be both easily specified and era- 
ciently solved. Our approach depends upon two distinct but interrelated devel- 
opments. The first is a methodology for constructing convex optimization models 
called disciplined convex programming. The methodology imposes a set of rules 
or conventions that must be followed when constructing convex programs. The 
rules are simple and teachable, drawn from basic principles of convex analy- 
sis, and follow the practices of those who regularly use convex optimization. 
Conforming problems are called, appropriately, disciplined convex programs, or 
DCPs. The DCP ruleset does not limit generality, but it does require that  the 
modeler explicitly provide just enough structure to allow further analysis and 
solution of a problem to be automated. 

The second development is a new method for defining or implementing a func- 
tion in a modeling framework, as as the optimal value of a parameterized convex 
program (specifically, a DCP). We call such a function definition a graph ira- 
plementation because it exploits the relationship between convex and concave 
functions and their epigraphs and hypographs, respectively. A graph implemen- 
tation encapsulates a method for transforming instances of a specific function 
in a constraint or objective into a form compatible with the underlying solver's 
standard form. The conditions imposed by the DCP ruleset ensure that  these 
transformations always preserve equivalence and convexity. The most significant 
benefit of graph implementations is their ability to efficiently implement non- 
differentiable functions. But in fact, graph implementations can also be used 
to implement many smooth functions as well when the target standard form is 
nonsmooth (e.g., an SDP). 

We have created a modeling framework called cvx [8] that  supports disciplined 
convex programming and graph implementations, cvx uses the object-oriented 
features of M A T L A B ~ t o  turn it into an optimization modeling language: opti- 
mization variables can be declared and constraints and objectives specified using 
natural MATLAB|  syntax, cvx verifies compliance with the DCP ruleset, trans- 
forms conforming models to solvable form, calls an appropriate numerical solver, 
and translates the numerical results back to the original problem--all  without 
user intervention. The framework includes a large library of common convex and 
concave functions, both smooth and nonsmooth, and more can be added. 

To an applications-oriented user, the conceptual model presented by cvx is 
very simple: cvx solves any problem (up to some practical size limits, of course) 
constructed according to the DCP ruleset from functions found in the cvx library. 
The modeler need not know what transformations are taking place, or even 
that  a transformation is necessary. That  is, graph implementations are entirely 
opaque or hidden from a standard cvx user. On the other hand, expert users 
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can use graph implementations to add new transformations to the system that 
general users can exploit simply by calling the new functions in their models. 
This division of labor allows modelers to focus on building convex programs, and 
experts to focus on solving them. 

In what follows, we will describe disciplined convex programming and graph 
implementations in detail. Both are abstract, language-independent concepts; 
nevertheless, it will be easier to explain both using examples from an actual 
modeling framework such as cvx. So we begin by i~roducing cvx with a few 
simple examples. A basic familiarity with MATLAB~is assumed throughout. 

2 A B r i e f  I n t r o d u c t i o n  t o  cvx 

To begin, consider the simple linear program 

minimize c T x 

subject to Ax < b, (1) 

with variable x C R n and da ta  A C R mxn, b C R m, and c C R n. The following 

( M A T L A B @ / c v x )  code generates and solves a random instance of (1)" 

m = 1 6 ;  n = 8 ;  

A = r andn (m,n )  ; b = r andn (m,1 )  ; c = r a n d n ( n , 1 ) ;  
cvx_beg in  

v a r i a b l e  x (n) 
m i n i m i z e (  c '  * x ) 
s u b j e c t  t o  

A . x < = b ;  

c v x  end 

The indentat ion is purely for stylistic reasons and is optional. The code is rela- 
tively self-explanatory, but  a few notes are in order: 

�9 The cvx b e g i n  and cvx end commands mark  the beginning and end, re- 
spectively, of any cvx model. 

�9 Variables must be declared before their first use. For example, the v a r i a b l e  
s ta tement  above declares x to be a vector of length n. 

�9 The s u b j e c t  t o  s ta tement  is opt ional - - i t  is provided by cvx only to make 
models more readable and has no mathemat ica l  effect. 

�9 Objectives and constraints may be placed in any order. 

When cvx end is reached, cvx will complete the conversion of the model to 
solvable form and call the underlying numerical solver. It will replace the 
M A T L A B |  variable x, which up to that  point was a special cvx variable object, 
with a numeric vector representing an optimal value. 

Now consider a norm minimization problem with box constraints: 

minimize I IAy-  bll 2 (2) 
subject to g __ y _ u 
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The following cvx/MATLAB@ code constructs and solves a version of (2), 
reusing A and b from above and generating random bounds: 

1 = - a b s ( r a n d n ( n , 2 ) )  ; u = + a b s ( r a n d n ( n , 2 ) )  ; 

cvx_begin 
variable y(n) 
minimize(norm(A,y-b,2) ) 
subject to 

y<=u; 

y>=l; 
cvx_end 

It is well known that  (2) can be reformulated as a (convex) quadratic program 
(QP) or a second-order cone program (SOCP). (cvx, in fact, converts this prob- 
lem to an SOCP.) The transformation in this case is not particularly complicated; 
still, it is nice to have it completely automated. 

cvx supports a variety of other norms and penalties for this model simply by 
replacing the objective function; for example: 

minimize(norm(A,y-b,2) + O. l,norm(y, I) ) 
minimize(norm(A,y-b,3.5) ) 
minimize(sum(huber(A,y-b)) ) 

All of these examples can be reformulated as SOCPs as well. Here, however, the 
transformations are not at all obvious, even to experts; and in all three cases 
working out the transformation by hand would be tedious and error prone, cvx, 
however, can solve all three problems automatically. 

As a final example, consider the task of determining the minimum volume 
ellipsoid (also known as the LSwner-John ellipsoid) g containing a finite set of 
points Zl, z2, �9 �9 �9 zn c R d" 

minimize vol(g) (3) 
subject t o z i c g ,  i - 1 , . . . , n .  

The parameterization we will use for g is 

-~ {u I IIPu + qll2 -< 1 }, (4) 

where (P, q) E R dxd x R d, and P is symmetric positive semidefinite. In this case, 
vol(g) is proportional to det (P -1) (see [6, w With this parametrization we 
can cast the problem above as 

minimize det P -1  
subject t o l l P z i + q l [ 2 < l ,  i - l , 2 , . . . , n ,  (5) 

with variables P - p T  E a dxd and q C R d. We have written the objective 
informally as det P -  1; a more precise description is faet_inv (P), where 

A [ d e t ( P )  -1 P - p T  ~_ 0 
f~_~v(P) 

+oc otherwise. (6) 
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This function implicitly constrains P to be symmetric and positive definite. The 
function faet_inv is convex, so the,problem above is a convex problem. 

The following c v x / M A T L A B ~  code generates a random set of points and 
computes the optimal ellipsoid by solving (5)" 

d=2; 

z = randn(d,n) ; 

cvx_begin 

variables P(d,d) q(d) 

minimize (det_inv(P) ) 

subject to 

for i = i �9 n, 

norm( P,z(',i)+q,2 ) <= I; 

end 

cvx_end 

The function de t_ inv  represents faet_inv('), including the implicit constraint that 
its argument be symmetric and positive definite. It is known that this problem 
can be cast as a semidefinite program (SDP), but the required conversion is 
quite complicated. Fortunately, that conversion is buried inside cvx's definition 
of de t_ inv  and performed automatically. 

This is, of course, a considerably abbreviated introduction to cvx, intended 
only to give the reader an idea of the basic syntax and structure of cvx models. 
The reader is encouraged to read the user's guide [8] for a more thorough treat- 
ment, or to download the software and try it. The examples presented here can 
be entered exactly as listed. 

3 Disciplined Convex Programming 

Disciplined convex programming was first named and described by Grant, Boyd, 
and Ye in [9] and Grant in [10]. It was modeled on the methods used by those who 
regularly construct convex optimization models. Such modelers do not simply 
construct arbitrary nonlinear programs and attempt to verify convexity after the 
fact; rather, they begin with a mental library of functions and sets with known 
geometries, and combine them in ways which convex analysis guarantees will 
preserve convexity. 

Disciplined convex programming is an attempt to formalize and this practice 
and codify its techniques. It consists of two key components: 

�9 an atom library--a collection of functions or sets with known properties of 
curvature (convexity and concavity) and monotonicity; and 

�9 the DCP ruleset--a finite enumeration of ways in which atoms may be com- 
bined in objectives and constraints while preserving convexity. 

The rules are drawn from basic principles of convex analysis, and are easy to 
learn, once you have had an exposure to convex analysis and convex optimization. 
They constitute a set of sufficient but not necessary conditions for convexity, 
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which means that  it is possible to build models that  violate the rules but are still 
convex. We will provide examples of such violations and their resolution later in 
this section. 

3.1 Preliminaries 

The rules of disciplined convex programming depend primarily upon the cur- 
vature of numeric expressions. The four categories of curvature considered are 
constant, affine, convex, and concave. The usual definitions apply here; for ex- 
ample, a function f : R n ~ a is convex if its domain is a convex set, and 

f (Gx + (1 - G ) y )  _< c~f(x) + (1 - (~ ) f (y )  Vx, y e R n, c~ E [0, 1]. (7) 

Of course, there is significant overlap in these categories: constant expressions 
are affine, and real affine expressions are both convex and concave. Complex 
constant and affine expressions are considered as well, but of course convex and 
concave expressions are real by definition. 

Functions in the atom library are chracterized not just by curvature but by 
monotonicity as well. Three categories of monotonicity are considered: nonde- 
creasing, nonincreasing, and nonmonotonic. Again, the usual mathematical def- 
initions apply; for example, a function f "  R ~ R is nondecreasing if 

x >_ y ~ f (x) >_ f (y). (8) 

Two technical clarifications are worth making here. First, monotonicit X 
sidered in a global, extended-valued sense. For example, the MATLAB 
root function s q r t  is interpreted in cvx as follows: 

fsqrt" R + (R t O - ~ ) ,  
x > o 

Aqrt(x) 
- c~  x < O 

is con- 
square 

(9) 

Under this interpretation, it is concave and nondecreasing. Secondly, for func- 
tions with multiple arguments, curvature is considered jointly, while mon- 
tonicity is considered separately for each argument. For example, the function 
quad over_lin in cvx, given by 

~ x T x / y  
f (X, y) - [ 

y > 0  
(10) 

y_<0 
fqol (x, y)" (R n • R) ~ (R O +c~), 

is jointly convex in x and y, but nonincreasing in y alone. 
With terminology defined, we now proceed to the ruleset itself. 

3.2 C o n s t r a i n t s  a n d  Objectives 

A disciplined convex program may either be an optimization problem consist- 
ing of a single objective and zero or more constraints, or a feasibility problem 
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consist ing of one or more  const ra ints  and no objective. The  rules for objectives 

and const ra in ts  are as follows: 

�9 A valid object ive is 
- the minimiza t ion  of a convex expression; 
- the maximiza t ion  of a concave expression. 

�9 A valid const ra in t  is 
- a set membersh ip  relat ion (E) in which the lef t-hand side (LHS) is affine 

and the r igh t -hand  side (RHS) is a convex set. 

- an equali ty (=)  with an affine LHS and an affine RHS. 

- a less- than inequali ty (_<) with a convex LHS and a concave RHS. 

- a grea t e r - t han  inequali ty (>_) with a concave LHS and a convex RHS. 

For any problem tha t  conforms to these rules, the  const ra in t  set is convex. 

These  rules, however, require more  than  jus t  convexity of the  const ra in t  set: 

They  const ra in  how the const ra in t  set is described. For example,  the  const ra in t  

s q u a r e  (x)==0,  where x is a scalar variable,  defines the convex set {0}. But  it is 

rejected by the rules above, since the  LHS of this equali ty const ra in t  is not  affine. 
W h e n  the const ra in t  is wr i t t en  in the equivalent  form x==O, however, which is 

accepted by the rules above, since bo th  sides are affine. 

3 .3  S i m p l e  E x p r e s s i o n s  

Disciplined convex p r o g r a m m i n g  de termines  the curva ture  of numeric  and set 

expressions by recursively applying the  following rules. This  list may  seem long, 
but  it is for the  most  par t  an enumera t ion  of basic rules of convex analysis for 

combining convex, concave, and affine forms: sums, mul t ip l ica t ion by scalars, 

and so forth. For the  basics of convex analysis, see, e.g., [2, 4, 6, 15, 20]. 

�9 A valid affine expression is 
- a valid cons tant  expression; 

- a declared variable; 
- a valid call to a function with an affine result;  
- the sum or difference of affine expressions; 
- the p roduc t  of an affine expression and a constant .  

�9 A valid convex expression is 
- a valid cons tant  or affine expression; 

- a valid call to a function with a convex result; 

- the  sum of two or more  convex expressions; 
- the difference between a convex expression and a concave expression; 

- the  p roduc t  of a convex expression and a nonnegat ive  constant ;  

- the p roduc t  of a concave expression and a nonposi t ive constant ;  

- the  negat ion  of a concave expression. 

�9 A valid concave expression is 

- a valid cons tan t  or affine expression; 

- a valid call to a function in the  a tom l ibrary with a concave result; 
- the sum of two or more  concave expressions; 
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- the  difference be tween  a concave expression and  a convex expression; 
- the  p roduc t  of a concave expression and a nonnega t ive  constant ;  
- the  p roduc t  of a convex expression and  a nonposi t ive  constant ;  
- the  negat ion  of a convex expression.  
A valid convex set expression is 

- a valid reference to a convex set in the  a t o m  library; 

- the  in tersect ion of two or more  convex set expressions; 
- the  sum or difference of convex set expressions; 
- the  sum or difference of a convex set expression and a constant ;  
- the  p roduc t  of a convex set expression and  constant .  

If an express ion cannot  be categor ized by this ruleset,  then  it is re jected by 

cvx. For ma t r ix  and ar ray  expressions,  these rules are appl ied on an elementwise 
basis. We note  t ha t  the set of rules listed above is r edundan t ;  there  are much 
smaller,  equivalent  sets of rules. 

Of  par t i cu la r  note  is t ha t  these expression rules forbid products be tween  non- 
cons tan t  expressions.  We call this the  no-product rule for obvious reasons.  For 
example ,  the  expression xv /x  , wr i t t en  in cvx as x , s q r t  (x) ,  is convex (at least 

when  x is posit ive) but  is re jected by cvx as violat ing the  above rules. Fortu-  
nately, cvx provides a funct ion called pou_pos  (x ,  p) t ha t  implements  the  convex 
and concave branches  of x^p, so this expression can be wr i t t en  as p o w ( x , 3 / 2 ) .  

3 .4  Compositions 

A basic rule of convex analysis is t ha t  convexi ty  is closed under  compos i t ion  
wi th  an a tone mapping .  This  is pa r t  of the  D C P  ruleset  as well: 

�9 A convex, concave, or a tone funct ion may  accept  as an a rgumen t  an ai~ne 
expression (assuming it is of compat ib le  size). 

For example ,  consider the  funct ion s q u a r e ,  which is provided  in the  cvx a t o m  
library. This  funct ion squares  its a rgument ;  i.e., it computes  x. ,x .  (For a r ray  
a rguments ,  it squares  each e lement  independent ly . )  It is known to be convex, 
provided  its a rgumen t  is real. So if x is a real variable,  then  

square( x ) 

is accepted  by cvx; and,  thanks  to the  above rule, so is 

square( A �9 x + b ) 

if A and  b are cons tan t  matr ices  of compat ib le  size. 

The  D C P  ruleset  also provides for cer ta in  nonl inear  composi t ions  as well. The  
four compos i t ion  rules are: 

�9 If a convex funct ion is nondecreas ing  in a given a rgument ,  then  tha t  a rgume n t  
may  be convex. 

�9 If a convex funct ion is nonincreas ing in a given a rgument ,  then  tha t  a rgume n t  
may  be concave. 
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�9 If a concave function is nondecreasing in a given argument, then that  argu- 
ment may be concave. 

�9 If a concave function is nonincreasing in a given argument, then that  argu- 
ment may be convex. 

(In each case, we assume that the argument is of compatible size.) In fact, nearly 
every rule in the DCP ruleset can be derived from these composition rules. 

For example, the pointwise maximum of convex functions is convex, because 
the maximum function is convex and nondecreasing. Thus if x is a vector variable 
then 

max( a b s (  x ) ) 

obeys the first of the four composition rules and is therefore accepted by cvx. 
In fact, the infinity-norm function norm( x, Inf  ) is defined in exactly this 
manner. Affine functions must obey these composition rules as well; but because 
they are both convex and concave, they prove a bit more flexible. So, for example, 
the expressions 

sum( square( x ) ) 
sum( sqrt( x ) ) 

are both valid nonlinear compositions in cvx since the rules for both the convex- 
nondecreasing and convex-nonincreasing cases apply to sum. 

3.5 T h e  R u l e s e t  in P r a c t i c e  

As we stated in the introduction to this section, the DCP rules are sufficient 
but not necessary conditions for the convexity (or concavity) of an expression, 
constraint, or objective. Some expressions which are obviously convex or concave 
will fail to satisfy them. For example, if x is a cvx vector variable, then the 
expression 

sqrt( sum( square( x ) ) ) 

is rejected by cvx, because there is no rule governing the composition of a concave 
nondecreasing function with a convex function. Fortunately, there is a simple 
workaround in this case: use norm ( x ) instead, since norm is in the atom library 
and is known by cvx to be convex. 

This is an example of what is meant by our statement in the introduction that 
disciplined convex programming requires the modeler to supply "just enough" 
structure to enable the automation of the solution process. Obviously, both norm 
and the longer, non-compliant version are equivalent numerically, but the latter 
form enables cvx to complete the verification and conversion process. Of course, 
because the library is finite, there will inevitably be instances where a simple 
substitution is not possible. Thus to insure generality, the atom library must be 
expandable. 
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4 Graph Implementations 

Any modeling framework for optimization must provide a computational de- 
scription of the functions its supports to the underlying solver. For a smooth 
function, this traditionally consists of code to compute the value an derivatives 
of the function at requested points. In cvx, it is possible to define a convex 
or a concave function as the solution of a parameterized DCP. We call such a 
definition a graph implementation, a term first coined in [10] and inspired by 
the properties of epigraphs and hypographs of convex and concave functions, 
respectively. 

4.1 T h e  Basics 

Recall the definition of the epigraph of a function f : R  n --~ (R U +oc): 

epi f _a { (x, y) e R n x a I f (x)  _ y }. (11) 

A fundamental principle of convex analysis states that  f is a convex function 
if and only if epi f is a convex set. The relationship between the two can be 
expresed in a reverse fashion as well: 

f(x) =_ inf { y I (x, y) C epi f }. (12) 

(We adopt the convention that  the infimum of an empty set is +oc.) Equation 
(12) expresses f as the solution to a convex optimization problem---or, more 
accurately, a family of such problems, parameterized by the argument x. 

A graph implementation of f takes the relationship in (12) and makes it 
concrete, by expressing epi f in a solvable manner - - tha t  is, with an equivalent 
collection of constraints in x and y that  are compatible with the target solver. 
For example, consider the real absolute value function Abs(X) = IX I. Its epigraph 
can be represented as an intersection of two linear inequalities: 

epi fabs = { (x, y) l lxl <_ Y } = { (x, y) l x < y , - x  < y } (13) 

A graph implementation is just a description or encapsulation of that  transfor- 
mation, justified mathematically through a simple equivalency of sets. 

In cvx, graph implementations can be specified using the same syntax as other 
cvx models, and are subject to the same DCP ruleset as well. The following 
cvx /MATLAB@ code is a representation of faDs" 

function y = f_abs(x) 

cvx begin 

variable y 

minimize( y ) 

subject to 

x <=y; 

-x <=y; 

cvx_end 
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(The absolute value function abs in cvx is actually implemented a bit differently; 

for example, it supports complex values and vector-valued arguments, in an 

elementwise fashion.) 
If f_abs is called with a numeric value of x, then the cvx specification it con- 

tains will construct a linear program with a single variable and two inequalities. 
Upon reaching cvx_end, cvx will call the underlying solver and compute the 

correct result--at least to within the tolerances of the solver. This is, of course, 

a rather impractical way to compute the absolute value; in the real implemen- 

tation of abs in cvx we avoid this inefficiency. But it is, at least, technically 

correct, and it is also a useful way to debug a graph implementation. 

The more interesting case is when f_abs is used within a cvx model, with 

an affine cvx expression for an argument. In this case, the cvx specification 

will be incomplete, because the value of x is not yet known. What cvx does in 

this circumstance is to incorporate the specification into the surrounding model 
itself, in a manner not unlike the expansion of a inline function in C++. For 
example, if z is a scalar cvx variable, then the constraint 

f_abs(z-3) <= I; 

will be translated internally by cvx as follows: 

y<= i; 
x == z - 3 ;  
x < = y ;  
-x  < = y ;  

(Steps are taken as needed to avoid name conflicts with existing variables.) The 
constraint is now in a form compatible with an efficient solver. Of course, two 
new variables and several new constraints have been added, but in the long run 
the added costs of expansions like this are far outweighed by the fact tha t  a 
much more efficient solver can now be used, because the nondifferentiability has 
been eliminated. 

Of course, the t ransformat ion of the absolute value function into an efficiently 
solvable form is relatively well known. But while it may be obvious to some, it 
is certainly not to everyone; and it is certainly convenient to have the transfor- 
mat ion automated.  For more advanced functions, the benefits should be more 
clear. 

4.2 A d v a n c e d  U s a g e  

Graph implementat ions of convex functions are not, in fact, limited to strict 
epigraph representations. Suppose tha t  S c R n x R m is a convex set and f �9 
(R  n • R m) ~ (R  U +ce)  is jointly convex in x and y; then 

f "  a n ~ ( a  u -~-cx)), f (x) ~- inf { f(x,  y) [ (x, y) C S } (14) 

is a convex function of x. If m -- 1 and f(x,  y) a_ Y, then the epigraph form (12) 
is recovered; but cvx fully supports  this more general form. 
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For example, consider the unit-halfwidth Huber penalty function h(x): 

h" R ~  n, h(x) A Ixl_<l 
21xl-  1 Ixl _> 1 (15) 

This function cannot be used in an optimization algorithm utilizing Newton's 
method, because its Hessian is discontiuous at x = +1, and zero for Ix[ _> 1. 
However, it can be expressed in the form (14) in this manner: 

h(x) a_inf{2v+w 2 [ [ x [ _ < v + w ,  w < _ l }  (16) 

We can implement the Huber penalty function in cvx as follows: 

f u n c t i o n  cvx_op tva l  = huber (  x ) 
cvx_begin  

variables w v; 

minimize( 2 * v + square( w ) ); 

subject to 

abs( x ) <= w + v; 

w<= i; 

cvx_end 

If huber  is called with a numeric value of x, then cvx will solve the resulting 
QP and return the numeric result. (As with f_abs,  there is a simpler way to 
compute the Huber penalty when its argument is a numeric constant.) But 
if huber  is called from within a larger cvx specification, then cvx will use this 
implementation to transform the call into a form compatible with the underlying 
solver. Note that  the precise transformation depends on how square  and abs are 
themselves implemented; multilevel transformations like this are quite typical. 

There is a corresponding development for concave functions as well. Given 
the set S above and a concave function g :  ( Rn • Rm) --+ (R [3 +oo) is concave, 
the function 

/ .  R ( a  v f(x) A { g(x, y) I (x, y) c s } (17) 

is also a concave function. If 9(x, y) -~ y, then 

f (x)  A sup { y I (x, y) E S } (18) 
_ 

gives the hypograph representation of f; that  is, S -  h y p o  f.  In cvx, a concave 
incomplete specification is simply one that  uses a maximize objective instead of 
a minimize objective. 

Some functions are not thought of as nondifferentiable in a casual setting but 
are technically so, and must be dealt with as such in an optimization algorithm. 
Consider, for example, the real square root function (9) above. This function is 
concave, and is smooth for positive x, but not at x - 0. Its hypograph, however, is 

h y p o  fsqrt -~ { (x, y) [ x _> 0, ~ _> y } - { (x, y) [ max{y, 0} 2 _< x } (19) 



Graph Implementations for Nonsmooth Convex Programs 107 

Thus a graph implementation can solve the nondifferentiability problem. In cvx, 
this function can be implemented as follows: 

function y = f_sqrt(x) 

cvx_begin 

variable y 

maximize( y ) 

subject to 

square( y ) <= x 

cvx end 

This particular type of nondifferentiability also occurs in the concave entropy 
function; it can be eliminated with a similar transformation. 

4.3 Con ic  Solver  Support 

The most obvious benefit of graph implementations is their ability to describe 
nonsmooth functions in a computationally efficient manner. But the solvers used 
in the first publicly released versions of cvx posed a different challenge: they did 
not support smooth functions either. Rather, these solvers solved semidefinite- 
quadratic-linear programs (SQLPs)--problems of the form 

minimize c T x 

subject to A x  = b 

X C K:I • K~2 x . . . ~ L  
(20) 

where x is the optimization variable, .4 is a linear operator, b and c are vectors, 
and the sets K:i are convex cones from a select list: the nonnegative orthant R~_, 
the second-order cone Qn, and the semidefinite cone S~: 

~n ~_A { (X, y) e R n • R ] Ilxll2 <_ y } (21) 

~ ;  A { X C a n x n  ] Z - X T, ~min(X) ~ 0 } (22) 

Clearly, SQLPs are very closely related to SDPs; in fact, all SQLPs can be solved 
as SDPs. For more information about these problems, consult [12, 19], or the 
documentation on the solvers themselves [16, 17]. 

In practice, few application-driven models naturally present themselves as 
SQLPs; rather, modelers have simply recognized that  their problems can be 
transformed into that form. In fact, as is known to readers of certain well-known 
texts on the subject [1, 5, 12, 14], SQLPs are very versatile, and can represent 
a wide variety of smooth and nonsmooth convex programs. The challenge, then, 
lies in finding an SQLP representation of of a given convex program--assuming 
one exists. 

Using graph implementations, a variety of both smooth and nonsmooth func- 
tions were added to the cvx atom library for SQLP solvers, including minimums 
and maximums, absolute values, quadratic forms, convex and concave branches 
of the power function x p, ~p norms, convex and concave polynomials, geometric 
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means, eigenvalue and singular value functions, and determinants. Key omissions 
include logarithms, exponentials, and entropy; such functions simply cannot be 
exactly represented in an SQLP solver. (On the other hand, smooth solvers can- 
not solve many of the eigenvalue and determinant problems for which SQLP 
solvers excel.) 

For a simple example, consider the function fsq(X) a_ x2; its epigraph form 
(12) can be expressed using a single semidefinite cone: 

fsq(X) A inf { y l [  y x x ]C }, (23) 
The cvx version of this function is 

function y = f_sq(x) 

cvx_begin 

variable y 

minimize( y ) 

[ y, x ; x, I ] == semidefinite(2); 

cvx end 

(Since MATLAB|  does not have a set membership c operator, cvx uses equality 
constraints and functions like s e m i d e f i n i t e  to accomplish the same result.) 

For a somewhat more complex example, consider the matrix fractional func- 
tion f~f: (R n • R n• --~ (R U +oc), where 

l xTy -1  y T  
f~f(x, Y) - ~ x Y - ~- 0 (24) 

+oc otherwise 

This function is convex in both arguments, and implicitly constrains Y to be 
both symmetric and positive definite. Its epigraph representation is 

fmf(X,Y) Asup{z I Ix YT :] ES~ +1 } (25) 
so it may be implemented in cvx as follows: 

f u n c t i o n  cvx_optva l  = f_mf( x, Y ) 
n = l e n g t h (  x );  
cvx_begin 

v a r i a b l e  z ; 
minimize(  z ) ; 
s u b j e c t  to  

[ Y, x ; x ' ,  z ] == s e m i d e f i n i t e ( n + l ) ;  
cvx_end 

Both f_sq and f_mf are relatively simple examples in comparison to other 
functions in the cvx library. The complexity of some SQLP implementations is in 
some cases quite striking. For example, the ~p norm can be represented exactly in 
an SQLP whenever p = n / d  is rational. The number of cone constraints required 
to represent it, however, depends not only on the size of the vector involved, but 
also in the pattern of bits in a binary representation of n and d! Needless to 
say, performing such transformations by hand is quite impractical--but  once 
implemented, quite reasonable for a computer. 
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5 Final  W o r d s  

We believe that disciplined convex programming closes a significant gap between 
the theory and practice of convex optimization. A large fraction of useful con- 
vex programs are nonsmooth; and until now, those who wished to solve them 
were faced with unattractive options: transform them by hand to a different, 
more easily solved form; develop a custom solver; utilize a poorly-performing 
subgradient-based method; or approximate. A modeling framework that sup- 
ports disciplined convex programming provides a truly attractive alternative in 
most of these cases. 
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