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Abstract— The algebraic connectivity of a graph is the
second smallest eigenvalue of the graph Laplacian, and is a
measure of how well-connected the graph is. We study the
problem of adding edges (from a set of candidate edges)
to a graph so as to maximize its algebraic connectivity.
This is a difficult combinatorial optimization, so we seek
a heuristic for approximately solving the problem. The
standard convex relaxation of the problem can be expressed
as a semidefinite program (SDP); for modest sized prob-
lems, this yields a cheaply computable upper bound on the
optimal value, as well as a heuristic for choosing the edges
to be added. We describe a new greedy heuristic for the
problem. The heuristic is based on the Fiedler vector, and
therefore can be applied to very large graphs.

I. INTRODUCTION

Let G = (V, E) be an undirected graph with n nodes
and m edges. For an edge l connecting nodes i and j,
we define the edge vector al ∈ Rn as ali = 1, alj = −1,
and all other entries 0. The incidence matrix A ∈ Rn×m

of the graph G is the matrix with lth column al. The
Laplacian L of G is the n × n matrix

L = AAT =
m

∑

l=1

ala
T
l , (1)

i.e., the diagonal entry Lii is the degree of node i, and
Lij = −1 if (i, j) ∈ E, and is 0 otherwise. Clearly, L $
0 (i.e., it is positive semidefinite), and L1 = 0, where 1

is the vector of all ones. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

be the eigenvalues of L. The second smallest eigenvalue
λ2(L) is called the algebraic connectivity of the graph
G, and the corresponding normalized eigenvector is
called the Fiedler vector [Fie73].

There are many reasons the algebraic connectivity is
considered to be a measure of how well-connected a
graph is. For one, λ2(L) is monotone increasing in the
edge set: if G1 = (V, E1) and G = (V, E2) are such
that E1 ⊆ E2, then λ2(L1) ≤ λ2(L2) [Fie73]. That is,
the more connected graph (on the same vertex set) has
the greater algebraic connectivity.

The algebraic connectivity has a direct connection to
the number of connected components: λ2(L) > 0 if and
only if G is connected [Fie73]; in fact, the mutiplicity

of the 0 eigenvalue is exactly equal to the number of
connected components in G.

The algebraic connectivity is also related to the spar-
sity of cuts in the graph. Let X be a proper subset of
V , and let Ec be the set of edges connecting X and its
complement Xc. Then [FKP03]

λ2(L) ≤ min
X⊆V

n|Ec|
|X ||Xc|

.

That is, a graph with large algebraic connectivity cannot
have very sparse cuts; conversely, λ2 is small for a
graph with sparse cuts. This is related to a heuristic from
graph partitioning, whereby an approximate bisection of
a graph is computed using the Fiedler vector. Roughly
speaking, a graph with small algebraic connectivity is
easier to bisect than one with large algebraic connectiv-
ity. We discuss this in greater detail in §III-C. There is
also a relation between λ2(L) and linear embeddings of
graphs: a graph with large λ2(L) cannot be embedded
very well into R, and vice-versa. This connection is
discussed in greater detail in §III-D.

The mixing rate of a continuous time Markov chain
with unit rates on the edges is given by λ2(L); so this
Markov chain converges to its stationary distribution
faster for a graph with larger algebraic connectivity. The
algebraic connectivity has also emerged as an important
parameter in many systems problems defined over net-
works, notably as a measure of stability and robustness
of the networked dynamic systems; for a number of
references, see [KM06].

The paper is organized as follows. In the remainder
of this section, we state the problem and discuss related
work. We derive the convex relaxation in §II. In §III,
we derive a heuristic based on the Fiedler vector and
discuss its properties. We compare the performance of
this heuristic in §IV. Extensions are discussed in §V.

A. Problem statement

In this paper, we study the following problem. Given
a base graph Gbase = (V, Ebase), a set of mc candidate
edges Ecand on V , and a number k, 0 ≤ k ≤ mc, choose
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k edges from Ecand that lead to the greatest increase in
algebraic connectivity when added to Gbase. (We assume
that Ebase ∩ Ecand = ∅.) That is, we want to solve the
problem

maximize λ2(L(Ebase ∪ E))
subject to |E| = k,

E ⊆ Ecand,
(2)

where the optimization variable is the subset E of
candidate edges. (Note that if we replace the constraint
|E| = k by |E| ≤ k, there will be an optimal solution
with |E| = k since λ2(L) is monotone in the edge set.)

This can be formulated as a Boolean problem as
follows. Every subset of Ecand can be encoded using
a Boolean vector x ∈ {0, 1}mc, where xl = 1 if edge l
belongs to the subset, and xl = 0 otherwise. Let Lbase

denote the Laplacian matrix corresponding to Gbase.
Then (2) can be written as

maximize λ2(Lbase +
∑mc

l=1 xlalaT
l )

subject to 1T x = k,
x ∈ {0, 1}mc,

(3)

with variable x.
This problem is combinatorial, and can, of course, be

solved exactly by exhaustive search over a set of size
(

mc

k

)

, i.e., by computing λ2 for
(

mc

k

)

Laplacian matrices.
However, this is not practical for large mc and k; here
we are interested in efficient heuristics for this problem.

B. Related Work

The algebraic connectivity of a graph has been studied
extensively since the seminal work of Fiedler [Fie73].
However, there have only been a few studies in the liter-
ature dealing with the problem of choosing a graph from
a set of graphs to maximize the algebraic connectivity.
In [FK98], the authors use graph-theoretic methods to
extremize the algebraic connectivity over trees of fixed
diameter. In [KM06], the authors study the problem of
choosing the vertex configuration subject to a proximity
constraint that maximizes the algebraic connectivity. In
[DM05], the authors use the relation between alge-
braic connectivity and K-connectivity to formulate the
problem of finding power-efficient topologies subject
to constraints on K-connectivity as 0/1 semidefinite
programs. A related article of interest is [Guo06], where
the author studies the effect of adding and grafting edges
on the spectral radius of the Laplacian.

A related problem is that of optimizing weights on the
edges of a graph to maximize the algebraic connectivity
of the weighted graph (here the variables are the weights
on the edges, and not the graph topology). Fiedler
defines this optimal value as the absolute algebraic

connectivity of the graph [Fie93]. For related work on
the algebraic connectivity, see [SBXD] and [GHW05].

II. CONVEX RELAXATION

Here we derive the convex relaxation of (3). For x ∈
[0, 1]mc , define

L(x) = Lbase +
mc
∑

l=1

xlala
T
l . (4)

Replacing the Boolean constraint x ∈ {0, 1}mc by the
linear constraint x ∈ [0, 1]mc , we obtain the following
relaxation of (3):

maximize λ2(L(x))
subject to 1

T x = k,
0 ≤ x ≤ 1.

(5)

Since this problem has a larger feasible set than (3), its
optimal value is an upper bound on the optimal value
of (3).

The problem (5) is a convex optimization problem: the
constraints are linear functions of the variable x, and the
objective is a concave function of x. To see this, note
that the matrix L(x) is positive semidefinite on [0, 1]mc ,
and has smallest eigenvalue 0 with corresponding eigen-
vector 1. So its second smallest eigenvalue is ([HJ85,
§4.2])

λ2(L(x)) = inf{yT L(x)y | ‖y‖ = 1,1T y = 0}.

So λ2(L(x)) is the pointwise infimum of a family of
linear functions of x, and is therefore a concave function
of x ([BV04, §3.2.3]).

The convex relaxation (5) can be formulated as the
following semidefinite program (SDP):

maximize s
subject to s(I − 11

T /n) + L(x),
1T x = k,
0 ≤ x ≤ 1.

(6)

A standard SDP solver can be used to solve (6) for
moderate problem sizes, where mc is up to a 1000
edges or so. For larger problems, a subgradient method
can be used, but this may converge slowly to the
optimal solution to the relaxation. The computational
requirements for solving (6) motivate the local heuristic
in §III.

Solving (5) immediately gives an upper bound on the
optimal value of (3); if in addition the solution to (5)
is Boolean, it is also optimal for (3). In general, this
need not happen, and we use a heuristic to obtain a
Boolean vector from the optimal solution to (5). One
simple heuristic is to set the largest yl to 1, and the
remaining entries to 0. More sophisticated heuristics
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such as randomized rounding [Vaz03] may be used as
well.

We note that the solution to (5) is a concave function
of k, the number of edges added. (The optimal value
of a concave maximization problem with constraints
Q(x) ≤ θ is a concave function of θ [Lue69]). Roughly,
this means that to the extent to which the upper bound
reflects the actual optimal value of (3), the first few
edges added lead to a much greater increase in algebraic
connectivity than those added later on. That is, a large
increase in algebraic connectivity can be obtained by
only adding a few well-chosen edges.

III. A GREEDY PERTURBATION HEURISTIC

Here we describe a greedy local heuristic for solving
(3) based on the Fiedler vector. We add the k edges one
at a time, each time choosing the edge l ∼ (i, j) which
has the largest value of (vi − vj)2, where v is a Fiedler
vector of the current Laplacian.
Greedy Heuristic:

• Starting from Gbase, add k edges, one at a time:
1. Find v, a unit eigenvector corresponding to

λ2(L), where L is the current Laplacian.
2. From the remaining candidate edges, add an

edge (i, j) with largest (vi − vj)2.
The motivation for this heuristic is as follows.

If v is an eigenvector with unit norm corresponding
to λ2, then vvT is a supergradient of λ2 at L, i.e., for
any symmetric matrix Y

λ2(L + Y ) ≤ λ2(L) + Tr(Y vvT ).

If λ2 is isolated (i.e., λ1 < λ2 < λ3), then λ2(L) is an
analytic function of L, and therefore of x. In this case
the supergradient is the gradient, i.e.,

∂

∂xl
λ2(L) = vT ∂L

∂xl
v, (7)

where v is the unique normalized eigenvector (up to a
sign flip) corresponding to λ2. (This result also follows
from perturbation theory for symmetric matrices.) Since

∂L

∂xl
= ala

T
l ,

the partial derivative of λ2(L) with respect to xl is
(vi−vj)2, where l ∼ (i, j). In other words, when λ2(L)
is isolated, (vi−vj)2 gives the first order approximation
of the increase in λ2(L), if edge l is added to the
graph. Therefore step (2) in our algorithm corresponds
to adding an edge, from among the remaining candi-
dates, that gives the largest predicted increase in λ2(L),
according to a first order approximation.

When λ2 is not isolated, adding a single edge cannot
increase λ2. It follows directly from the results in
[BNS78] that if λ2 > 0 has multiplicity r, exactly r
edges need to be added before λ2 increases from its
current value.

A. Computing the perturbation heuristic

The perturbation heuristic requires only an eigenvec-
tor computation, as opposed to the solution of an SDP
for the convex relaxation. Computing all the eigenvec-
tors of an n × n dense matrix costs approximately
4/3n3 arithmetic operations. Lanczos algorithms can
be used for very efficiently computing the top and
bottom few eigenvalues and approximate eigenvectors of
large sparse matrices [Dem97]. Given an n × n sparse
symmetric matrix P , the Lanczos algorithm computes a
h×h symmetric tridiagonal matrix T , whose eigenvalues
are good approximations of h eigenvalues of P , and
whose eigenvectors can be used to compute approximate
eigenvectors of P . Conveniently, the first eigenvalues to
converge are the largest and smallest few eigenvalues
of P . Also, since we are only interested in the relative
values of (vi−vj)2 for candidate edges (i, j), the Fiedler
vector does not need to be computed to high accuracy.
Thus, the Lanczos algorithm is a good choice for our
perturbation heuristic.

The Fiedler vector can also be computed efficiently
for very large graphs using algebraic multigrid tech-
niques as described in [KCH02]. The algorithm de-
scribed in [KCH02] proceeds by expressing the original
high-dimensional problem in lower and lower dimen-
sions using a coarsening process, and solves the problem
exactly at the coarsest level. A refinement process is then
used to project the solution back to higher dimensions,
appropriately updating the solution at each scale, until
the original problem has been solved.

B. Properties

We discuss two properties of the perturbation heuristic
in this section.

1) Connecting disconnected graphs: Suppose a graph
is disconnected. Then the local heuristic applied to
this graph always chooses an edge that connects two
connected components.

To see this, suppose G has r connected components.
Then 0 is an eigenvalue with multiplicity r. The set
of vectors v1, . . . , vr, where vq

j = 1/
√

nq if node j
belongs to the connected component q with size nq, and
0 if it does not, is an orthonormal set of eigenvectors
for the eigenvalue 0. Any linear combination of these
eigenvectors (except multiples of 1) has (vi − vj)2 = 0
for i and j belonging to the same component, and there
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is some pair of nodes i and j belonging to different
connected components for which (vi − vj)2 > 0. So
the local heuristic will always pick an edge across
components. Specifically, λ2 changes from 0 with
the r − 1th edge added by the local heuristic, since
each edge chosen by the local heuristic bridges two
connected components.

2) Lower and upper bounds: Here we derive lower
and upper bounds on the algebraic connectivity of a
graph obtained by adding a single edge to a connected
graph.

Let L be the Laplacian of the current graph. We as-
sume that λ2(L) is isolated, with normalized eigenvector
v. Suppose we add an edge l ∼ (i, j) with edge vector
al to this graph. Then, we have the following bounds
for λ2(L + alaT

l ):

λ2(L + ala
T
l ) ≥ λ2 +

(vi − vj)2

6/(λ3 − λ2) + 3/2
, (8)

and

λ2(L+ala
T
l ) ≤ λ2 +

(vi − vj)2

1 + (2 − (vi − vj)2)/(λn − λ2)
.

(9)
Note that lower and upper bound are both increasing
functions of (vi − vj)2. Therefore, the perturbation
heuristic can be interpreted as adding the edge to the
current graph that maximizes both the lower bound (8)
and the upper bound (9) on the algebraic connectivity
of the resulting graph.

A weaker upper bound can be obtained immediately
as follows: Since vvT is a supergradient of λ2(L),

λ2(L + ala
T
l ) ≤ λ2(L) + vT (L + ala

T
l )v

= λ2(L) + (vi − vj)
2. (10)

Lower bound:
The lower bound is established as follows. Let L =
QΛQT be the eigenvalue decomposition of L, and
suppose that all entries in Λ are distinct (the same
bound holds if eigenvalues other than λ2 are repeated).
The matrices L and L + alaT

l both have eigenvalue 0
with corresponding eigenvector 1. The remaining n− 1
eigenvalues of L+alaT

l are the n−1 roots of the secular
equation ([BNS78], [Gol73])

n
∑

i=2

u2
i

d − λi
= 1, (11)

where u = QT al (note that u2 = vi − vj , and u1 = 0).
Denote by d2, . . . , dn the remaining ordered eigenval-

ues of L + alaT
l . By eigenvalue interlacing,

λi < di < λi+1, i = 2, . . . , n − 1.

Now consider d in the interval (λ2, λ3). For d in this
interval, if

u2
2

d − λ2
≥ 1 +

n
∑

i=3

u2
i

λi − d
,

then d ≤ d2. Since ‖u‖ = 2,
∑n

i=3 u2
i ≤ 2, so if

u2
2

d − λ2
≥ 1 +

2

λ3 − d
,

then d ≤ d2. Setting d − λ2 = ε, and λ3 − λ2 = δ, we
want to find ε > 0 such that

u2
2

ε
≥ 1 +

2

δ − ε
. (12)

It can be verified that setting

ε =
u2

2

2(1/δ + 1/4 +
√

1/4 + 4/δ2)

satisfies (12). Since
√

1/4 + 4/δ2 ≤ 1/2 + 2/δ, we
obtain the lower bound in (8).
Upper bound:
A sharper upper bound than (10) can be obtained using
the secular equation. From (11), the algebraic connec-
tivity of L+alaT

l is the number d2 ∈ (λ2, λ3) satisfying

d = λ2 +
u2

2

1 +
∑n

i=3 u2
i /(λi − d)

.

The LHS is an increasing function of d and the RHS is
decreasing in d. So using any d ≤ d2 in the RHS gives
an upper bound on d2. Using d = λ2 < d2, we obtain
the following upper bound:

d2 ≤ λ2 +
u2

2

1 +
∑n

i=3 u2
i /(λi − λ2)

≤ λ2 +
u2

2

1 + (2 − u2
2)/(λn − λ2)

.

This gives the upper bound in (9).

C. Relation to spectral graph partitioning

A well-known heuristic for spectral graph partitioning
is based on the Fiedler vector [PSL90], [Chu97]. The
nodes are divided into sets N1 and N2 based on the
Fiedler vector as follows:

N1 = {i | vi < 0}, N2 = {i | vi ≥ 0}.
(A more general version of this heuristic partitions the
nodes according to whether vi is greater or less than α,
where α sets the relative sizes of the partition.)

A node with a large positive or large negative value of
vi belongs ’strongly’ in N1 or N2, whereas nodes with
vi close to 0 do not belong strongly to either side of the
partition. The perturbation heuristic chooses nodes that
most strongly belong to different components, i.e., with
large (vi − vj)2, and adds an edge between them.
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Fig. 1. A randomly generated graph with 10 nodes, 14 edges, and
mc = 11.

D. Relation to linear embedding

Another interpretation of the perturbation heuristic
is via linear embedding. The problem of embedding a
graph G = (V, E) into the real line is the following:
assign node coordinates x1, . . . , xn, with 0 mean and
unit variance, so as to minimize the sum of squares
of distances between adjacent nodes. That is, the real
embedding problem is

minimize
∑

(i,j)∈E(xi − xj)2

subject to 1T x = 0,
xT x = 1.

(13)

The unit variance constraint is imposed since otherwise
the problem is trivial with optimal solution xi = 0, and
optimal value 0.

The objective in (13) is simply xT Lx, and so the
optimal value is λ2(L), with optimal solution x = v,
where v is the Fiedler vector. The perturbation heuristic
therefore adds an edge between the nodes that are
farthest from each other in the linear embedding.

IV. EXAMPLES

Figure 1 shows a randomly generated graph with 10
nodes and 14 edges, and mc = 11. The edges in Ebase

are shown as solid lines, and the edges in Ecand are
dotted. For this small example, we compute the optimal
solution to (3) by exhaustive search. We compare this
with the two heuristics, and the upper bound computed
from the SDP relaxation in Figure 2. We see that the
results from the local heuristic are very close to the
actual optimal value.

Figure 3 shows a larger example with 28 nodes and 68
edges, and mc = 42. The performance of the heuristics

0 1 2 3 4 5 6 7 8 9 10 11
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Perturbation heuristic
Upper bound
SDP relaxation
Optimal

Number of edges added, k

λ
2
(L

)

Fig. 2. A comparison of the heuristics described with the optimal
solution and upper bound for the graph in Figure 1.

Fig. 3. A randomly generated graph with 28 nodes, 68 edges, and
mc = 42.

is compared with the upper bound in Figure 4. Again,
the results from the local heuristic are very close to the
upper bound from the convex relaxation.

Finally, we show an example on a randomly generated
graph with 1000 nodes and 5517 edges, and mc = 2341
in Figure 5. For this graph, we compare addition using
the perturbation heuristic with random addition in Figure
6. As expected, random addition performs very badly
compared to the perturbation heuristic. However, the
point to be noted here is the following: after adding
150 edges using the perturbation heuristic, the algebraic
connectivity increases to 0.041, while the algebraic con-
nectivity after adding all 2341 edges is only 0.051. This
suggests that a large increase in algebraic connectivity
can be obtained by adding a few edges carefully (this
observation correlates well with the concavity of the
upper bound).
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Fig. 4. A comparison of the heuristics described and the upper bound
from the SDP relaxation for the graph in Figure 3.

Fig. 5. A randomly generated graph with 1000 nodes, 5517 edges,
and mc = 2341.

V. EXTENSIONS

A simple extension of the problem is to associate a
cost cl with each edge l. In this case, there is a constraint
on the total cost of the edges added, i.e., the problem is

maximize λ2(L +
∑mc

l=1 xlalaT
l )

subject to cT x ≤ k,
x ∈ {0, 1}mc.

(14)

Such a problem might arise, for example, in wireless
networks, where the cost of a link is the power required
to transmit across that link; the cost could also be a
function of some geometric distance between two nodes.

The convex relaxation is obtained exactly as before.
The perturbation heuristic is modified as follows: chang-
ing variables to yl = clxl, the problem is to choose k of

20 40 60 80 100 120 140

0.005
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0.015
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0.025

0.03

0.035

0.04

Perturbation heuristic

Random addition

Number of edges added, k

λ
2
(L

)

Fig. 6. A comparison of the perturbation heuristic with random
addition for the graph in Figure 5.

the yl to maximize λ2(L+
∑mc

l=1(1/cl)ylalaT
l ). If λ2 is

isolated, then
∂λ2

∂yl
=

1

cl
(aT

l v)2.

In this case, at each step we add l ∼ (i, j) from among
the candidates with the largest (vi − vj)2/cl, until no
edge can be added without the total cost exceeding k.

We also remark that the same idea works for removing
edges from a given graph: remove the k edges one at a
time by computing a Fiedler vector for the current Lapla-
cian, and choose the edge with the smallest (vi − vj)2.
This heuristic also performs well, like the heuristic for
adding edges. Finally, we remark that we can construct
an algorithm that adds and removes edges in order to
maximize the algebraic connectivity of the graph.
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