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Abstract—In this paper we present a path-following (homotopy)
method for (locally) solving bilinear matrix inequality (BMI) prob-
lems in control. The method is to linearize the BMI using a first
order perturbation approximation, and then iteratively compute a
perturbation that “slightly” improves the controller performance by
solving a semidefinite program (SDP). This process is repeated un-
til the desired performance is achieved, or the performance cannot
be improved any further. While this is an approximate method for
solving BMIs, we present several examples that illustrate the effec-
tiveness of the approach.
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1 Introduction

Promising new methods for the analysis and design of ro-
bust controllers for linear and nonlinear uncertain systems have
emerged over the last several years. The basic idea is to for-
mulate the analysis or synthesis problem in terms of convex or
bi-convex matrix optimization problems which are then solved
numerically. Most of this research has concentrated on the
semidefinite programming problem (SDP), i.e., the problem of
minimizing a linear cost function over linear matrix inequali-
ties (LMIs). SDPs are convex optimization problems that can
be solved with great practical and theoretical efficiency using
interior-point algorithms [1, 2, 3, 4, 5].

Other control problems, including synthesis with struc-
tured uncertainty, fixed-order controller design, output feed-
back stabilization, simultaneous stabilization, decentralized
controller synthesis, etc., lead to bilinear matrix inequalities
(BMIs). See, for example [6, 7, 8]. BMI problems are not con-
vex and can have multiple local solutions. The computational
complexity for solving BMI problems is much higher than LMI
problems so researchers have been looking at a variety of iter-
ative schemes to solve them locally. One well-known scheme
is to alternate between analysis and synthesis via LMIs that
often results in acceptable local solutions. For global (branch
and bound) methods for solving BMI problems refer to [6, 9].

In this paper we present a path-following (homotopy)
method for (locally) solving BMI problems in control. The
method is very easy to implement: the BMI is linearized using
a first order perturbation approximation, and then a perturba-
tion is computed that “slightly” improves the controller per-
formance by solving an SDP. This process is repeated until the
desired performance is achieved, or the performance cannot be
improved any further.
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2 Linearization method for solving BMIs in
“low-authority” control

The idea of solving BMIs by linearization and SDP has
been used in the context of low-authority controller (LAC) de-
sign [10, 11]. The assumption in LAC is that the actuators
have “limited authority” and hence the performance of the
closed-loop and open-loop systems are “close”. Therefore, us-
ing first order perturbation formulas, it is possible to predict
the performance of the closed-loop system accurately. As a re-
sult, many control problems that are normally intractable and
require the solution to BMIs can be formulated as LMIs which
can then be solved very efficiently.

In order to illustrate this linearization method, consider
the problem of linear output-feedback design with limits on the
feedback gains. Specifically, consider the linear time-invariant
dynamical system with input and output

ẋ = Ax + Bu, y = Cx

where the open-loop system ẋ = Ax has a damping or decay
rate of at least α. The goal is to design the feedback gain
matrix δK ∈ Rm×n such that the control law u = δKy gives
an additional damping of δα in the closed-loop system, while
the controller gains satisfy the interval constraints

|δKij | ≤ lij ,

for i = 1, . . . , m, and j = 1, . . . , n. This problem is known to
be NP-hard [12].

By simple Lyapunov theory (see, e.g., [13]), this problem
is equivalent to the existence of P ∈ SRn×n such that

P � 0, |δKij | ≤ lij ,

(A + BδKC)T P + P (A + BδKC) � −2(α + δα)P,
(1)

which is a BMI in the variables P and δK.
The linearization method for solving the BMI (1) can be

explained as follows. Since the open-loop system has a decay
rate of at least α, it is possible to compute P0 � 0 such that

AT P0 + P0A � −2αP0. (2)

Now write δP = P − P0 so that (1) becomes

P0 + δP � 0, |δKij | ≤ lij ,

(A + BδKC)T (P0 + δP ) + (P0 + δP )(A + BδKC)
� −2(α + δα)(P0 + δP ),

(3)

Under the low-authority assumption it is reasonable to assume
that δP , δα, and δK are “small”, and therefore their product is
to first order negligible. Hence by neglecting the second order
terms δPBδKC, CT δKT BT δP , and δαδP in (3) we get

P0 + δP � 0, |δKij | ≤ lij ,

AT (P0 + δP ) + (P0 + δP )A + P0BδKC+
CT δKT BT P0 ≺ −2α(P0 + δP ) − 2δαP0.

(4)



Clearly, (4) is an LMI in the variables δP and δK which can
be solved efficiently for the desired feedback gain matrix δK.
Of course, once (4) has been solved one should go back and
check if the low-authority assumption was correct, i.e., the
linearization error was negligible (otherwise, more iterations of
LAC design are required). References [10, 11] provide several
examples that illustrate this design procedure.

Note that this linearization method is quite powerful and
can also be applied to many other problems such as multi-
objective controller design, decentralized control, and simulta-
neous actuator/sensor placement and controller design.

3 Path-following method for solving BMIs in control

The linearization method for LAC design in the previous
section suggests a path-following (homotopy) method for (lo-
cally) solving BMIs in control. Roughly speaking, the approach
is to achieve the overall design objective by iteratively solving
a sequence of linearized problems, which at each step results
in a controller that is incrementally better than the previous
one.

In other words, starting from the initial (open-loop) sys-
tem, the idea is to design better and better controllers by slowly
improving the design objective. (For example, given a reduced-
order, decentralized, or fixed architecture controller we could
iteratively design for lower values of induced L2 norm). Since
the design objectives in consecutive problems are “close”, at
each step, we can linearize the BMI to accurately design a con-
troller that is slightly better than the previous one by solving
an SDP. Hence, the BMI is converted to a series of LMIs along
a “path” parameterized by the closed-loop performance.

This path-following method can be used to heuristically
solve many BMI problems in control. However, there are no
convergence guarantees to an acceptable solution. As with
all local methods for solving BMIs, the choice of initial value
is important for convergence to an acceptable solution, which
is a potential weakness of this method. For example, it is
not clear which P0 should be used in (4) among all P0’s that
satisfy (2). As long as P0 is “close enough” to the optimal
P however, we conjecture that it does not make much dif-
ference which P0 is chosen because P0 can be adjusted iter-
atively using the free variable δP . (Our experience indicates
that the P0 with smallest condition number, or the one that
minimizes log det P−1

0 , seem to work well in practice.) There-
fore, this method works best for “medium-authority controller”
(MAC) designs in which the required closed-loop system per-
formance is not drastically better than the open-loop system
performance.

In the next section we present examples from control for
solving BMIs using this method. In each case we briefly explain
the iterative method for solving the corresponding BMI and
the choice of initial value. These examples show the method is
very effective in solving such problems.

4 Examples

4.1 Sparse linear constant output-feedback design
Consider the BMI optimization problem

minimize
P

ij |Kij |
subject to P � 0,

(A + BKC)T P + P (A + BKC) ≺ −2αP

(5)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are given ma-
trices. This corresponds to designing a sparse linear constant
output feedback control u = Ky for the system ẋ = Ax + Bu,
y = Cx which results in a decay rate of at least α in the closed-
loop system. Minimizing the `1 norm of the feedback gains as

in (5) is a good heuristic for obtaining sparse feedback gain
matrices (see [10, 11]). Finding sparse feedback gain matrices
is a way of solving the actuator/sensor placement or controller
topology design problems.

To solve this BMI using a path-following method we pro-
ceed as follows.

1. Let K := 0.

2. Compute the Lyapunov matrix P0 with minimum condi-
tion number that proves the level of decay rate α0 in the
system ẋ = Ax (α0 is the smallest negative real part of
the eigenvalues of A). This is done by solving the SDP

minimize κ
subject to I ≺ P0 ≺ κI,

AT P0 + P0A ≺ −2(α0 − ε)P0,
(6)

where ε is a small positive number (0 < ε � 1).

3. Solve the following SDP which is the linearized version
of (5) around P0 and K:

minimize
P

ij |Kij + δKij |
subject to P0 + δP � 0, ‖δP‖ < 0.2‖P0‖

AT (P0 + δP ) + (P0 + δP )A+
P0BδKC + CT δKT BT P0 ≺

− 2α0(P0 + δP ) − 2δαP0

(7)

where δα is chosen to be “small”. Note that the con-
straint ‖δP‖ < 0.2‖P0‖ is added so that the perturbation
is small and the linear approximation should be valid.

4. Let K := K + δK, A := A + BδKC and go to step 2.

The iteration in the above algorithm stops whenever α0 exceeds
the desired α, or if α0 cannot be improved any further (i.e., (7)
is infeasible for any δα > 0).

As an example, suppose that

A =

2
66664

−2.45 −0.90 1.53 −1.26 1.76
−0.12 −0.44 −0.01 0.69 0.90

2.07 −1.20 −1.14 2.04 −0.76
−0.59 0.07 2.91 −4.63 −1.15
−0.74 −0.23 −1.19 −0.06 −2.52

3
77775 ,

B =

2
66664

0.81 −0.79 0.00 0.00 −0.95
−0.34 −0.50 0.06 0.22 0.92
−1.32 1.55 −1.22 −0.77 −1.14
−2.11 0.32 0.00 −0.83 0.59

0.31 −0.19 −1.09 0.00 0.00

3
77775 ,

C =

2
664

0.00 0.00 0.16 0.00 −1.78
1.23 −0.38 0.75 −0.38 0.00
0.46 0.00 −0.05 0.00 0.00
0.00 −0.12 0.23 −0.12 1.14

3
775 .

The system defined by (A, B, C) is unstable with a decay rate
of α0 = −0.2832 (growth rate of 0.2832). The goal is to design
a sparse K so that the decay rate of the closed-loop system
ẋ = (A + BKC)x is not less than 0.35. After 6 iterations of
the path-following method with δα = 0.1 and ε = 0.01 we get
a closed-loop decay rate of α0 = 0.3543 with

K =

2
66664

0.2461 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0059 0.3265 0.0000 0.0000

3
77775 .

Clearly, the resulting K is sparse. It only has two nonzero
columns (1 and 2), two nonzero rows (1 and 5), and three



nonzero elements (11, 51, and 52). Hence only the first and
second sensors, and the first and fifth actuators are needed.
Also, the controller has simple topology since we only need to
connect sensor 1 to actuator 1, and sensors 1 and 2 to actua-
tor 5.

Thus, the optimization has succeeded in simultaneously
performing the sensor/actuator placement problem and the
feedback control design. The `1 minimization heuristic has
done a great job noting that the number of sparsity patterns
of K is 220 ≈ 106 and an exhaustive search method would be
very time-consuming if not impractical.

4.2 Simultaneous state-feedback stabilization with
limits on feedback gains

Here we consider the problem of stabilizing three different
linear systems using a common linear constant state-feedback
law with limits on the feedback gains. Specifically, suppose
that

ẋ = Akx + Bku, u = Kx, k = 1, 2, 3.

The goal is to compute K satisfying |Kij | ≤ Kij,max such that
all three closed-loop systems

ẋ = (Ak + BkK)x, k = 1, 2, 3

are stable. This problem is known to be NP-hard [14].
A stabilizing feedback gain K exists if and only if the op-

timum of the following BMI problem is positive:

maximize mink αk

subject to |Kij | ≤ Kij,max,
(Ak + BkK)T Pk + Pk(Ak + BkK) ≺ −2αkPk,
Pk � 0, k = 1, 2, 3.

(8)
The path-following method for solving this BMI problem

locally can be briefly explained as follows. Similar to the
method of the previous example, we first compute the mini-
mum condition number Lyapunov matrices Pk, k = 1, 2, 3 that
prove the level of decay rate αk for each of the three different
systems (as in (6)). Next we solve the linearized version of (8)
around K (initially K = 0), αk, and the computed Pk’s. Ak

and K are updated as K := K + δK, Ak := Ak + BkδK, and
the procedure is repeated.

As an example suppose that

A1 =

2
4 1 −1 0

1 1 0
0 0 −0.5

3
5 , A2 =

2
4 1.5 −7 0

7 1.5 0
0 0 1

3
5 ,

A3 =

2
4 −0.5 −3 0

3 −0.5 0
0 0 2

3
5 ,

and

B1 = B2 = B3 =

2
4 0.2477 −0.1645

0.4070 0.8115
0.6481 0.4083

3
5 .

Note that all three systems are unstable. With Kij,max = 50,
after 15 iterations, the path-following method gives

K =

� −50.0000 23.6909 33.6566
−3.8940 −50.0000 −48.8410

�
, α = 1.05.

Since α > 0 the three systems are simultaneously stabilizable
and furthermore, stabilized! Note that the maximum gain con-
dition of Kij,max = 50 is active.

4.3 H2/H∞ controller design
Consider the system

ẋ = Ax + Bu + B1w, z1 = C1x + D1u, z2 = C2x + D2u.

The goal is to find a feedback gain matrix K such that for
u = Kx the H2 norm from w to z2 is minimized while the H∞
norm from w to z1 is less than some prescribed level γ. This
can be done by solving the BMI optimization problem (cf. [15])

minimize η2

subject to2
4
�

(A + BK)T P1 + P1(A + BK)+
(CT

1 + D1K)T (CT
1 + D1K)

�
P1B1

BT
1 P1 −γ2I

3
5 ≺ 0,

�
(A + BK)T P2 + P2(A + BK) P2B2

BT
2 P2 −I

�
≺ 0,

�
P2 CT

2

C2 Z

�
� 0, Tr(Z) < η2, P1 � 0, P2 � 0.

(9)
A path-following method for solving this BMI is as follows.

1. Compute an initial K say by the method of [15] which
can be done using SDP. This method assumes a common
Lyapunov matrix for the H2 and H∞ problems and is
therefore suboptimal. Suppose that P1 is the Lyapunov
matrix obtained using this method that proves a level of
γ in the H∞ norm.

2. With u = Kx, compute the H2 norm η of the closed-loop
system and corresponding Lyapunov matrix P2.

3. Solve the linearized BMI (9) around K, P1, η2, and P2

using SDP to get the perturbations δK and δP1.

4. Let K := K + δK, A := A + BδK, C := C + DδK.

5. Solve the SDP

minimize t

subject to

�
AT P + PA + CT

1 C1 PB1

BT
1 P −γ2I

�
≺ 0,

−tI ≺ P − (P1 + δP1) ≺ tI, P1 � 0.

This gives the Lyapunov matrix P which proves a level
of γ in the H∞ norm for the closed-loop system, and is
closest to the first-order adjusted P1 (in spectral norm).
Let P1 := P and go to step 2.

The iteration in the above algorithm stops whenever η2 cannot
be improved any further (i.e., δη2 = 0 at step 3).

As an example suppose that

A =

2
4 −1.40 −0.49 −1.93

−1.73 −1.69 −1.25
0.99 2.08 −2.49

3
5 , B =

2
4 0.25

0.41
0.65

3
5 ,

B1 =

2
4 −0.16 −1.29

0.81 0.96
0.41 0.65

3
5 , C1 = [−0.41 0.44 0.68] ,

C2 = [−1.77 0.50 − 0.40] , D1 = D2 = 1,

and γ = 2. The method of [15] gives

Kkharg = [1.3485 − 0.2865 0.4801]

resulting in η = 0.8389. A couple of iterations of the path-
following method reduces the H2 norm to η = 0.3286 with

K = [0.9434 − 0.6514 − 0.9636].

4.4 Joint HAC/LAC design
Consider the truss structure shown in Figure 1. The struc-

ture consists of 39 bars with stiffness and damping connecting
17 masses at the nodes. The dynamics of the structure can be
written as ż = Az where A ∈ R64×64, and the state variable z
consists of (a linear combination) of the horizontal and vertical



displacements, and rates of displacements of each mass, ui, vi,
u̇i, and v̇i respectively for i = 1, . . . , 17.

This problem investigates a typical LAC application, which
is to add modest damping to a structure to compensate for
spillover from a higher-authority controller (HAC) that has
been designed using a reduced model of the structure. The
design methodology in this example follows the classic two-
step process [16, 17]. We first design a HAC, which is, for
example, a Linear-Quadratic Gaussian (LQG) controller or a
controller that achieves some eigenvalue-placement specifica-
tion (note that the specific design process for the initial HAC
is not important for this paper). A key point is that these
higher authority designs are typically based on significantly
reduced order models of the system to avoid designing a very
high order controller. As a result, we would expect a con-
siderable amount of spillover of the control authority to the
higher frequency modes of the structure. The destabilizing ef-
fects of the spillover are addressed during the second step of
the design by adding sufficient damping along bars. In this
example it is required that the additional damping be such
that the closed-loop eigenvalues fall within the shaded region
of Figure 2 (corresponding to a minimum damping of 0.01 and
minimum damping ratio of 0.02).

(u1, v1)

(u17, v17)(u17, v17)

Figure 1: Truss structure consists of 39 bars (stiffness and
damping) and 17 nodes (masses).

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01
−3

−2

−1

0

1

2

3

desired region for
closed-loop eigenvalues

open-loop eigenvalues

Figure 2: Open-loop eigenvalues of structure and the desired
region for closed-loop eigenvalues.

The full-order HAC controller is designed based on a
reduced-order truss model, using the 5 lowest frequency modes.
These are the most lightly damped modes and have a good fre-
quency seperation from the remaining 27 modes. The eigen-
values of the feedback interconnection of the HAC (which is
of order 10) and the truss are shown in the top of Figure 3
(only eigenvalues near the origin are shown). Note that, as a
result of the spillover, the system is actually unstable and the
eigenvalue-placement specification is obviously violated.

At the second step of the design, to satisfy the eigenvalue
specifications, damping (limited in this case for illustrative pur-
poses to a maximum size of 0.08) is added along the bars.
However, with the limited amount of damping allowed in this
problem, the eigenvalue-placement specifications still cannot
be achieved when all dampings are set to the maximum of 0.08
(Figure 3). Therefore, besides adding damping along bars, we
need to adjust the HAC to hopefully get a feasible solution.
The problem of jointly designing the dampers and adjusting
the HAC is a BMI which we will attempt to solve using the
path-following method of this paper.

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01
−4

−2

0

2

4

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01
−4

−2

0

2

4

Re(s)

Re(s)

Im
(s

)
Im

(s
)

Figure 3: Eigenvalues of the feedback interconnection of the
truss and initial HAC with no dampers (top), and with all
dampers set to the maximum value of 0.08 (bottom). Clearly,
eigenvalue specifications are not satisfied even when the damp-
ings are maximum.

In the framework considered in this paper, for the second
step of the design, the open-loop system is actually the inter-
connection of the HAC and the truss. The variables in the
design are the amount of damping along the bars as well as
perturbations to the elements of the HAC system matrices.
The perturbations are limited to 5% of their original values
for first order perturbation formulas to be approximately valid
(the HAC is put in modal form). The problem specification
is to minimize the sum of the damper values subject to the
eigenvalue specifications. Using a path-following method for
solving this BMI and first order perturbation formulas for the
eigenvalues of a matrix [10], at each iteration we need to solve
a linear program (LP) with 419 variables and 483 linear in-
equality constraints. This can be readily done using widely
available software for solving LPs1

It turns out that after a single iteration of the path-
following method the eigenvalue-placement specification is

1For example the LP solver PCx can be downloaded from WWW
at URL http://www-c.mcs.anl.gov/home/otc/Library/PCx/



achieved (in other words the low-authority assumption is
valid). The eigenvalue locations for the closed-loop sys-
tem after adding the dampers and adjusting the HAC are
shown in Figure 4. The figure clearly shows that this com-
bined HAC/LAC design has sufficiently damped the (unsta-
ble) modes of the system. (Note that a couple of eigenvalues
slightly violate the damping ratio constraint but we can simply
perform another iteration to fix this problem.) Figure 5 shows
the location of the nonzero dampings. The total amount of
damping added to the structure in these 19 struts is 1.28 (this
is less than the maximum amount of 39 × 0.08 = 3.12 tried
before).

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01
−4

−2

0

2

4

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01
−4

−2

0

2

4

Re(s)

Re(s)

Im
(s

)
Im

(s
)

Figure 4: Eigenvalues of the feedback interconnection of the
truss and HAC before adding dampers (top), and after adding
dampers and adjusting the HAC (bottom).

Figure 5: Location of dampers for damper design for the
feedback interconnection of the plant and the HAC. A solid line
between two nodes corresponds to a nonzero damper between
those two nodes.

This simple problem shows that there are often key advan-
tages to simultaneously designing the HAC and LAC compo-
nents of the control architecture. More importantly, however,
this example also shows that this entire control design problem
can be posed as an LP, which can be solved very efficiently and
very quickly on a simple computer.

5 Conclusions

In this paper we presented a path-following method for
(locally) solving BMIs. The method is very easy to implement
and is based on linearizing the BMIs and solving a sequence
of SDPs. In general, as with all local methods for solving
BMIs, the choice of initial value is important for convergence
to an acceptable solution. As long as the initial value is “close
enough” to the optimum value we expect the method to work
well. However, the examples demonstrate that quite large per-
formance improvements are possible using this method. It was
also shown that by minimizing the `1 norm of feedback gains
we can arrive at sparse designs, and therefore in effect, we
can solve sensor/actuator placement and controller structure
design problems.
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