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ABSTRACT
We address the problem of strategic asset allocation (SAA) with
portfolios that include illiquid alternative asset classes. The main
challenge in portfolio construction with illiquid asset classes is that
we do not have direct control over our positions, as we do in liquid
asset classes. Instead we can only make commitments; the position
builds up over time as capital calls come in, and reduces over time as
distributions occur, neither of which the investor has direct control
over. The effect on positions of our commitments is subject to a
delay, typically of a few years, and is also unknown or stochastic.
A further challenge is the requirement that we can meet the capital
calls, with very high probability, with our liquid assets.

We formulate the illiquid dynamics as a random linear system,
and propose a convex optimization based model predictive control
(MPC) policy for allocating liquid assets and making new illiquid
commitments in each period. Despite the challenges of time delay
and uncertainty, we show that this policy attains performance sur-
prisingly close to a fictional setting where we pretend the illiquid
asset classes are completely liquid, and we can arbitrarily and imme-
diately adjust our positions. In this paper we focus on the growth
problem, with no external liabilities or income, but the method is
readily extended to handle this case.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making.

KEYWORDS
convex optimization, illiquid alternatives, model predictive control,
endowment model
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1 INTRODUCTION
There is considerable investor interest across several financial con-
texts in constructing portfolios which mix liquid and illiquid assets,
especially illiquid alternative investments. We wish to perform
strategic asset allocation to asset classes that include illiquid alter-
native assets, as well as more liquid asset classes. Several challenges
arise. First, we can only augment our illiquid positions by making
capital commitments. Moreover, these commitments only indirectly
affect our illiquid position through uncertain and delayed capital
calls, that we have no direct control over. A further challenge is
the solvency requirement: we should be able to fund the capital
calls from our liquid positions with very high probability. A simple
strategy to guarantee coverage of capital calls is to keep an amount
equal to the uncalled capital commitments in cash. However this
creates significant cash drag, since this cash could be invested in
higher returning liquid assets. The method we describe in this paper
addresses all of these issues.

2 PREVIOUS WORK
There is a rich history of studying portfolio construction. Our work
helps extend the modern portfolio theory framework developed by
Markowitz [15] and Merton [16], which focuses on liquid assets.
We contribute to the further study of illiquidity and multi-period
planning. While this work takes as an input a stochastic model
which describes the risk and return of illiquid investments, cali-
brating such models is a nuanced and well studied problem. For
a guide to the literature on the risks and returns of private equity
investments, see Kortweg [13].

Continuous time. There is a breadth of work on modeling portfo-
lio construction with illiquid assets. Many authors consider continu-
ous time stochastic processes. Dimmock et al. study the endowment
model, under which university endowments hold high allocations
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in illiquid alternative assets, via a continuous time dynamic choice
model with deterministic-in-time discrete liquidity shocks every
𝑇 periods [7]. They allow the investor to increase the position in
the illiquid asset instantaneously, not modeling the delayed nature
of capital calls. Ang et al. also study a continuous time problem,
but model the timing of liquidity events of the illiquid asset as an
independent Poisson process [1]. Optimal solutions are assumed
to have almost surely non-negative liquid wealth, meaning that
the investor must always be able to cover the effects of illiquidity.
Sorensen, Wang, and Yang [18] study the commitment risk of a
fixed alternative’s commitment by focusing on an investor who can
modify their positions in stocks and bonds, taking an investment
in an illiquid asset as given and held to maturity.

Discrete time. The discrete time case is also well studied. Taka-
hashi and Alexander first introduced what amounts to a determin-
istic linear system to model an illiquid asset’s calls, distributions,
and asset value [19]. This model posits that calls are a time-varying
fraction of uncalled commitments, and that distributions are a time-
varying fraction of the illiquid asset value, and returns are con-
stant. Our model is similar, but differs in two important ways. First,
our model is time-invariant. Second our model incorporates ran-
domness in these fractions as well as the returns. Giommetti and
Sorensen use the Takahashi and Alexander model in a standard,
discrete-time, infinite-horizon, partial-equilibrium portfolio model
to determine optimal allocation to private equity [9]. Here the calls
and distributions are deterministic fractions of the uncalled com-
mitments and illiquid asset value, but the illiquid asset value grows
with stochastic returns.

Optimal allocation to illiquid assets. Across the literature we have
reviewed, the reported optimal allocations to illiquid assets are strik-
ingly low compared to the de facto wants and need of institutional
investors who are increasingly allocating larger and larger weights
to illiquid alternatives. In their extensive survey of Illiquidity and
investment decisions, Tédongap and Tafolong [20] report that rec-
ommended illiquid allocations range from the low single digits to
around 20% on the upper end, much lower than the target levels ob-
served in practice. For example, the National Association of College
and University Business Officers (NACUBO) provide data showing
the allocation weights of illiquid alternatives in University endow-
ments reaching 52% in 2010. Unlike other analyses, our method
does not require investors be able to cover calls with probability
one, and instead provides a tool for maintaining an optimized target
asset allocation under uncertain calls, distributions, returns, and
growth.

Hayes, Primbs, and Chiquoine propose a penalty cost approach
to asset allocation whereby an additional term is added to the tradi-
tional mean-variance optimization (MVO) problem to compensate
for the introduction of illiquidity [11]. They solicit a user provided
marginal cost curve which captures the return premium needed
for an illiquid asset to be preferred over a theoretically equivalent
liquid alternative. This leads to a formulation nearly identical to the
standard MVO problem, with a liquidity-adjusted expected return
(a function of the allocation). In their work the notion of liquidity
is captured in a scalar between 0 and 1.

Multi-period optimization. Our policy is based on solving a multi-
period optimization problem. Dantzig and Infanger [6] introduce
a multi-stage stochastic linear programming approach to multi-
period portfolio optimization. Mulvey, Pauling, and Madey survey
the advantages of multi-period portfolio models, including the po-
tential for variance reduction and increased return, as well as the
ability to analyze the probability of achieving or missing goals [17].
Boyd et al. [3] describe a general framework for multi-period con-
vex optimization. This framework focuses on planning a sequence
of trades over a set of periods trades given return forecasts, trading
costs, and holding costs. Our framework also solves a multi-period
convex optimization problem, but we do not make an approxima-
tion of the dynamics, which is more appropriate for the longer time
horizons and thus more significant growth observed in strategic
asset allocation.

Model predictive control. Our method falls under the category
of Model Predictive Control (MPC), which is both widely studied
in academia and used in industry. For a survey of MPC, see for
example the books Model Predictive Control [5] or García et al. [8].
Herzog et al. [12] use an MPC approach for multi-period portfolio
optimization, but only consider normally distributed returns and
standard liquid assets. They do include a factor model of returns,
as well as a conditional value at risk (CVaR) constraint which is
different in interpretation but takes the same form as our insolvency
constraint. The closest work we have identified to our own is the
thesis of Lee, who uses a very similar multi-period optimization
problem with linear illiquid dynamics [14]. We both use a quadratic
risk, and use certainty equivalent planning to solve an open loop
control problem. Lee’s problem is multi-period, but the objective
is a function of only the final period wealth, whereas in our case
we have stage costs, as well as constraints on the solvency of our
portfolio. Additionally, in our stochastic model we use random call
and distribution intensities.

Contributions. The linear dynamics of the illiquid wealth moti-
vate model predictive control (MPC) as a solution method. To the
best of our knowledge, there do not exist multi-period optimization-
based policies for constructing portfolios with both liquid and illiq-
uid alternative assets. We believe our contributions include incor-
porating random intensities with the classic linear model of the
illiquid asset’s calls and distributions, formulating a multi-period
optimization problem to perform strategic asset allocation with
liquid and illiquid assets, using liquidity/insolvency constraints
to ensure calls are covered with high probability, and obtaining a
performance bound for the problem by considering a stylized liquid
world where the illiquid asset is completely liquid.

3 STOCHASTIC DYNAMIC MODEL FOR AN
ILLIQUID ASSET

In this sectionwe describe our stochastic dynamicmodel of one illiq-
uid asset. Our model is closely related to the linear system proposed
by Takahashi and Alexander [19], with the addition of uncertainty
in the capital calls and distributions. We note a straightforward
extension of our model which would include the Takahashi model
in §7. We consider a discrete-time setting, with period denoted by
𝑡 = 1, 2, 3 . . ., which could represent months, quarters, years, or
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any other period. Our model involves the following quantities, all
denominated in dollars.

• 𝐼𝑡 ≥ 0 is the illiquid wealth (or position in or NAV of the
illiquid asset) at period 𝑡 .

• 𝐾𝑡 ≥ 0 is the total uncalled commitments at period 𝑡 .
• 𝐶𝑡 ≥ 0 is the capital call at period 𝑡 .
• 𝐷𝑡 ≥ 0 is the distribution at period 𝑡 .
• 𝑛𝑡 ≥ 0 is the amount newly committed to the illiquid asset
at period 𝑡 .

The commitment 𝑛𝑡 is the only variable we can directly control or
choose. All the others are affected indirectly by 𝑛𝑡 .

Dynamics. Here we describe how the variables evolve over time.
At period 𝑡 ,

• wemake a new capital commitment𝑛𝑡 (whichwe can choose)
• we receive capital call 𝐶𝑡 (which is not under our control)
• we receive distribution 𝐷𝑡 (which is not under our control)

The uncalled commitment in period 𝑡 + 1 is

𝐾𝑡+1 = 𝐾𝑡 + 𝑛𝑡 −𝐶𝑡 ,
and the illiquid wealth in period 𝑡 + 1 is

𝐼𝑡+1 = 𝐼𝑡𝑅𝑡 +𝐶𝑡 − 𝐷𝑡 ,

where 𝑅𝑡 ≥ 0 is a random total return on the illiquid asset.

Calls and distributions. We model calls and distributions as ran-
dom fractions of 𝐾𝑡 , 𝐼𝑡 , and 𝑛𝑡 . We model calls as

𝐶𝑡 = 𝜆
0
𝑡 𝑛𝑡 + 𝜆1𝑡𝐾𝑡 ,

where 𝜆0𝑡 ∈ [0, 1] is the random immediate commitment call in-
tensity and 𝜆1𝑡 ∈ [0, 1] is the random existing commitment call
intensity. Similarly, we model distributions as

𝐷𝑡 = 𝐼𝑡𝑅𝑡𝛿𝑡 ,

where 𝛿𝑡 ∈ [0, 1] is the random distribution intensity.
We assume the random variables (𝑅𝑡 , 𝜆0𝑡 , 𝜆1𝑡 , 𝛿𝑡 ) ∈ R× [0, 1]3 are

I.I.D., i.e., independent across time and identically distributed. (But
for fixed period 𝑡 , the components 𝑅𝑡 , 𝜆0𝑡 , 𝜆

1
𝑡 , and 𝛿𝑡 need not be

independent.) We do not know these random variables when we
choose the current commitment 𝑛𝑡 . Formally, we assume that 𝑛𝑡 ⊥⊥
(𝑅𝑡 , 𝜆0𝑡 , 𝜆1𝑡 , 𝛿𝑡 ). The current commitment can depend on anything
known at the beginning of period 𝑡 (including for example past
values of returns and intensities), but the current period return and
intensities are independent of the commitment.

3.1 Stochastic linear system model
Themodel above can be expressed as a linear dynamical systemwith
random dynamics and input matrices. With state 𝑥𝑡 = (𝐼𝑡 , 𝐾𝑡 ) ∈ R2

and the control or input 𝑢𝑡 = 𝑛𝑡 ∈ R, the dynamics are given by

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 ,
where

𝐴𝑡 =

[
𝑅𝑡 (1 − 𝛿𝑡 ) 𝜆1𝑡

0 1 − 𝜆1𝑡

]
, 𝐵𝑡 =

[
𝜆0𝑡

1 − 𝜆0𝑡

]
. (1)

With output 𝑦𝑡 = (𝐼𝑡 , 𝐾𝑡 ,𝐶𝑡 , 𝐷𝑡 ) ∈ R4, we have

𝑦𝑡 = 𝐹𝑡𝑥𝑡 +𝐺𝑡𝑢𝑡 ,

where

𝐹𝑡 =


1 0
0 1
0 𝜆1𝑡

𝑅𝑡𝛿𝑡 0

 , 𝐺𝑡 =


0
0
𝜆0𝑡
0

 . (2)

We assume the initial state is known. We observe that 𝑥𝑡 ⊥
⊥ (𝐹𝑡 ,𝐺𝑡 ), since the former depends on the initial state, 𝑛𝑡 , and
(𝐹𝜏 ,𝐺𝜏 ) for 𝜏 < 𝑡 , and these are all independent of (𝐹𝑡 ,𝐺𝑡 ).

A careful reader might notice that these linear dynamics mean
that the commitments and distributions asymptotically approach
zero but never terminate. However, the fractions of calls and distri-
butions relative to the initial amounts are minuscule after several pe-
riods, and are negligible in the presence of new commitments com-
ing in each period. Additionally, Gupta and Van Nieuwerburgh [10]
found in analyzing long-term private equity behavior that often
funds have activity even fifteen years after inception, further jus-
tifying the persisting calls and distributions in the linear systems
model.

3.2 Mean dynamics
Let 𝑥𝑡 = E𝑥𝑡 denote the mean of the state, 𝑢𝑡 = E𝑢𝑡 denote the
mean of the input or control, and 𝑦𝑡 = E𝑦𝑡 denote the mean of the
output. We define the mean matrices

𝐴 = E𝐴𝑡 , 𝐵 = E𝐵𝑡 , 𝐹 = E𝐹𝑡 , 𝐺 = E𝐺𝑡

(which do not depend on 𝑡 ). We then have

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 , 𝑦𝑡 = 𝐹𝑥𝑡 +𝐺𝑢𝑡 , (3)

which states that the mean state and output is described by the
same linear dynamical system, with the random matrices replaced
with their expectations. The mean dynamics is a time-invariant
deterministic linear dynamical system.

3.3 A particular return and intensity
distribution

We suggest the following parametric joint distribution for the ran-
dom vector (𝜆1𝑡 , 𝜆0𝑡 , 𝛿𝑡 , 𝑅𝑡 ). They are generated from a random 3-
vector

𝑧𝑡 ∼ N(𝜇, Σ) ∈ R3 . (4)

From these we obtain

𝜆1𝑡 =
1

1 + exp(𝑧𝑡 )1
, 𝜆0𝑡 =

1
2
𝜆1𝑡 , 𝛿𝑡 =

1
1 + exp (𝑧𝑡 )2

, 𝑅𝑡 = exp (𝑧𝑡 )3 .
(5)

With this model, the return is log-normally distributed while the
call and distribution intensities are logit-normally distributed. De-
pendency among the return and the intensities are modeled by the
off-diagonal entries of Σ.

3.4 Example
Here we describe a particular instance of the distribution described
above, that we will use in various numerical examples in the sequel.
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Example return and intensity distribution. In this example we
use the following parameters for the distribution of (𝜆1𝑡 , 𝜆0𝑡 , 𝛿𝑡 , 𝑅𝑡 )
specified in (4):

𝜇 =


−0.700
−0.423
0.158

 , Σ =


0.068 0.072 0.006
0.073 0.271 0.043
0.006 0.043 0.079

 . (6)

This example is based on yearly periods. The mean return of
the illiquid asset is derived from the BlackRock Capital Market
Assumptions as of July 2021, which reports one private equity
asset, Buyout, with a mean annual return of 15.8% [2]. The call and
distribution mean intensities are calibrated from private equity data
for the eFront Buyout fund. The mean values of the intensities are
we report the empirical means

𝜆
1
𝑡 = .26, 𝜆

0
𝑡 = .128, 𝛿𝑡 = .33.

(These are found by Monte Carlo simulation, since the mean of a
logit-normal distribution doesn’t have an analytical expression.)
The covariance matrix is calibrated from the same data.

3.5 Comparison with the Takahashi and
Alexander model

Our stochastic model of an illiquid asset is closely related to that
of Takahashi and Alexander [19], but it differs in to key ways. The
most important difference is that our model is Markovian; the calls,
distributions, and returns at time 𝑡 are conditionally independent of
the all previous quantities, given the state at time 𝑡 . In comparison,
Takahashi and Alexander’s model specifies time varying call and
distribution intensity parameters. These time varying intensities
mean that the final intensities can be set to 1, meaning calls and
distributions can have deterministic end times, and the exposure
will not geometrically decline. In §7 we describe how to modify our
model to depend on arbitrarily many previous time periods. This
means we can exactly capture the original Takahashi and Alexan-
der model with this extension of our model. We emphasize that
this generalization remains fully tractable from the portfolio opti-
mization standpoint described in this paper. The second difference
between our model and that of Takahashi and Alexander is that
ours is a stochastic model, with random intensities, whereas theirs
is deterministic.

4 JOINT LIQUID AND ILLIQUID MODEL
We now describe a model for an investment universe consisting of
multiple illiquid alternative and liquid assets. First, we extend to a
universe of 𝑛ill illiquid assets.

Multiple illiquids. We extend the same quantities as in §3 from
scalars to vectors of dimension 𝑛ill.

𝐾𝑡 , 𝐼𝑡 ,𝐶𝑡 , 𝐷𝑡 ∈ R𝑛ill
, 𝑛𝑡 ∈ R𝑛ill

, 𝑅ill𝑡 , 𝜆
1
𝑡 , 𝜆

0
𝑡 , 𝛿𝑡 ∈ R𝑛ill

.

We have the exact same dynamics as before, duplicated for each
illiquid asset. Each has its own states for exposure and uncalled
commitment, and its own control for its new commitments. The
illiquid calls, distributions, and returns are now part of a joint
distribution. The illiquid dynamics extend in vectorized form to

𝐾𝑡+1 = 𝐾𝑡 + 𝑛𝑡 −𝐶𝑡 , 𝐼𝑡+1 = diag(𝑅𝑡 )𝐼𝑡 +𝐶𝑡 − 𝐷𝑡 ,

with

𝐶𝑡 = diag(𝜆0𝑡 )𝑛𝑡 + diag(𝜆1𝑡 )𝐾𝑡 , 𝐷𝑡 = diag(𝑅𝑡 ) diag(𝛿𝑡 )𝐼𝑡 .

We emphasize that while the return, call, and distribution dynamics
here are separable across the illiquid assets, the underling ran-
dom variables ((𝑅𝑡 ) 𝑗 , (𝜆0𝑡 ) 𝑗 , (𝜆1𝑡 ) 𝑗 , (𝛿𝑡 ) 𝑗 ) can be modeled jointly.
We continue with our assumption that these random variables are
independent across time.

Multiple liquids. There are now a set of𝑛liq liquid assets available
to us. The liquid assets are simple: we can buy and sell them at will
at each period; they suffer none of the complex dynamics of the
illiquid assets. We add one new state, 𝐿𝑡 , the (total) liquid wealth
at period 𝑡 . In addition to new commitments for each illiquid asset,
at each time 𝑡 we now control how we allocate our liquid wealth
each period, as well as how much outside cash to inject into our
liquid wealth. Thus we have the additional quantities, which we
can control:

• ℎ𝑡 ≥ 0 (∈ R𝑛liq ) is the allocation in dollars invested in liquid
assets at period 𝑡

• 𝑠𝑡 ≥ 0 (∈ R) is the outside cash injected at period 𝑡
At the beginning of period 𝑡 , we invest (or allocate) our liquid
wealth in liquid assets. This corresponds to the constraint 𝐿𝑡 =

1𝑇ℎ𝑡 . We receive multiplicative liquid returns (𝑅liq𝑡 ) 𝑗 ∈ R on liquid
asset 𝑗 , yielding total return ℎ𝑇𝑡 𝑅

liq
𝑡 . We then pay out capital calls

from and receive distributions to our liquid wealth, for all illiquid
assets. This corresponds to a net increase in liquid wealth given by
−1𝑇𝐶𝑡 + 1𝑇𝐷𝑡 . Lastly, if at this stage our liquid wealth is negative,
we are forced to add outside cash 𝑠𝑡 to at least bring our liquid
wealth to zero. Compactly, the liquid dynamics are

𝐿𝑡+1 = ℎ𝑇𝑡 𝑅
liq
𝑡 − 1𝑇𝐶𝑡 + 1𝑇𝐷𝑡 + 𝑠𝑡 ,

with constraints

ℎ𝑡 , 𝑛𝑡 , 𝑠𝑡 ≥ 0, 𝐿𝑡 ≥ 0, 𝐿𝑡 = 1𝑇ℎ𝑡 .

4.1 Stochastic linear system model
We can again represent these dynamics as a stochastic linear system.
Let 𝑥𝑡 = (𝐿𝑡 , 𝐼𝑡 , 𝐾𝑡 ) ∈ R1+2𝑛ill

be the state vector. The control is
𝑢𝑡 = (ℎ𝑡 , 𝑛𝑡 , 𝑠𝑡 ) ∈ R1+𝑛liq+𝑛ill

. Extending the 𝐴 and 𝐵 matrices from
§1, define

𝐴𝑡 =


0 (𝛿𝑡 ◦ 𝑅ill𝑡 )𝑇 −𝜆1𝑡

𝑇

0 diag((1 − 𝛿𝑡 )𝑅ill𝑡 ) diag(𝜆1𝑡 )
0 diag(0) diag(1 − 𝜆1𝑡 )

 (7)

𝐵𝑡 =


𝑅
liq
𝑡

𝑇
−𝜆0𝑡

𝑇 1
0𝑇 diag(𝜆0𝑡 ) 0
0𝑇 diag(1 − 𝜆0𝑡 ) 0

 . (8)

Then the random linear dynamics with multiple illiquids and liquids
are

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 ,
with constraints

ℎ𝑡 , 𝑛𝑡 , 𝑠𝑡 ≥ 0, 𝐿𝑡 ≥ 0, 𝐿𝑡 = 1𝑇ℎ𝑡 .
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The presence of the outside cash control 𝑠𝑡 implies that a feasible
control exists for any feasible value of the states, since 𝑠𝑡 prevents
the liquid wealth from ever being negative.

As in §3.2, we let 𝑥𝑡 = E𝑥𝑡 denote the mean of the state,𝑢𝑡 = E𝑢𝑡
denote the mean of the input or control, define the mean system
matrices as

𝐴 = E𝐴𝑡 , 𝐵 = E𝐵𝑡 ,

and recover the same mean dynamics

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 . (9)

4.2 Return and intensity distribution
We extend the previous generative model specified in (4) and (5) to
include liquid returns,

𝑧𝑡 =

[
𝑧int𝑡

𝑧ret𝑡

]
∼ N(𝜇, Σ) ∈ R3𝑛ill+𝑛liq

, 𝜇 =

[
𝜇int

𝜇ret

]
, Σ =

[
Σint Σ12
Σ21 Σret

]
.

(10)
From these we obtain delayed and immediate call intensities

𝜆1𝑡 =
1

1 + exp(𝑧𝑡 )1:𝑛ill
, 𝜆0𝑡 =

1
2
𝜆1𝑡 .

The distribution intensities and returns are, respectively

𝛿𝑡 =
1

1 + exp+(𝑧𝑡 )𝑛ill+1:2𝑛ill
,

[
𝑅ill𝑡
𝑅
liq
𝑡

]
=

[
exp (𝑧𝑡 )2𝑛ill+1:3𝑛𝑛ill

exp (𝑧𝑡 )3𝑛ill:

]
.

5 STRATEGIC ASSET ALLOCATION UNDER
THE RELAXED LIQUID MODEL

In this section we introduce a highly simplified model, where all of
the challenges of illiquid alternative assets are swept under the rug.
This model is definitely not realistic, but we can use it to develop
an unattainable benchmark for performance that can be obtained
with the more accurate model.

5.1 Relaxed liquid model
As a thought experiment, we imagine the illiquid assets are com-
pletely liquid: we have arbitrary control of illiquid asset positions
(immediate increase or decrease). This is a relaxation of the actual
problem setting, where we must face stochastic and only indirectly
controllable calls and distributions. The idea of a relaxed liquid
model is not new; for example, Giommetti et al. [9] consider the
target allocations resulting from treating illiquid assets as fully liq-
uid for comparison, but do not evaluate stochastic control policies
trying to achieve these allocations in an illiquid world. The relaxed
liquid model is also implicitly behind various Captial Market As-
sumptions, where return ranges, and correlations, are given for
both liquid and illiquid assets.

The relaxed liquid model is very simple. There is only one state,
the total wealth𝑊𝑡 . The quantities we have control over are the
allocations to liquid and illiquid assets, denoted ℎliq𝑡 ∈ R𝑛liq

and
ℎill𝑡 ∈ R𝑛ill

. The wealth evolves according to the dynamics

𝑊𝑡+1 = 𝑢𝑇𝑡 𝑟𝑡 , 𝑢𝑇𝑡 1 =𝑊𝑡 , 𝑢 =

[
ℎ
liq
𝑡

ℎill𝑡

]
,

where 𝑟𝑡 = 𝑧ret𝑡 is defined in (10).

We use the standard trick of working with the weights of the
allocations in each period, denoted𝑤𝑡 , instead of 𝑢𝑡 . This is defined
as 𝑤𝑡 = 𝑢𝑡/𝑊𝑡 , so 1𝑇𝑤𝑡 = 1. We recover the dollar allocations as
𝑢𝑡 =𝑊𝑡𝑤𝑡 .

5.2 Markowitz allocation and policy
A standard way to choose a portfolio allocation is to solve the one
period risk-constrained Markowitz problem,

maximize 𝜇𝑇𝑤

subject to 1𝑇𝑤 = 1, 𝑤 ≥ 0
∥Σ1/2𝑤 ∥2 ≤ 𝜎,

(11)

where 𝜎 is the maximum tolerable return standard deviation, and 𝜇
and Σ are the expected return and return covariance, respectively.
We denote the optimal allocation as 𝑤★. The natural policy asso-
ciated with solving the Markowitz problem simply rebalances to
𝑤★: it sets 𝑢𝑡 =𝑊𝑡𝑤

★ for each period 𝑡 . This simple rebalancing is
of course not possible under the accurate model that includes the
challenges of alternative assets, but it is under the relaxed liquid
model.

5.3 Example
Liquid performance. Under the assumptions of §5.1, we solve the

one period Markowitz problem with 𝜇ret, Σret the mean and covari-
ance of the joint distribution of liquid, illiquid asset returns. Using
this relaxed Markowitz target, we simulate the fantasy performance
achieved by being able to perfectly rebalance both liquids and illiq-
uids to theMarkowitz target each period, for multiple periods, using
the policy described earlier in 5.2.

For the parameters defined in (10), we use the specific values of

𝜇ret = (0.158, 0.000, 0.072, 0.023, 0.036, 0.046) , (12)
𝜎ret = (0.281, 0.000, 0.206, 0.046, 0.047, 0.162) , (13)

and

𝐶ret =



1.000 0.000 0.422 −0.298 −0.002 0.261
0.000 1.000 0.000 0.000 0.000 0.000
0.422 0.000 1.000 −0.843 0.197 0.800
−0.298 0.000 −0.843 1.000 −0.018 −0.739
−0.002 0.000 0.197 −0.018 1.000 0.628
0.261 0.000 0.800 −0.739 0.628 1.000


,

(14)
with Σret = diag(𝜎ret)𝐶ret diag(𝜎ret). The liquid return mean and
covariance matrix are gathered from the BlackRock Capital Market
Assumptions for equities as of July 2021 [2]. The corresponding
expected returns are

𝑅
liq
𝑡 = (1.218, 1.098, 1.024, 1.038, 1.061, 1.000) ,

where the last asset is cash.

Risk-return trade-off. By solving the Markowitz problem with
these parameters across a range of values for the risk tolerance 𝜎
(which give rise to corresponding Markowitz targets), we can create
a risk-return trade-off plot, shown in figure 1 as the "performance
ceiling." We should consider this trade-off curve as an unattainable
performance benchmark, that we can only strive to attain when
the challenges of illiquid alternatives are present.
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6 STRATEGIC ASSET ALLOCATIONWITH
FULL ILLIQUID DYNAMICS

In §5, we describe an approach to strategic asset allocation for port-
folios including an imagined class of illiquid alternatives which are
rendered completely liquid. In this section, we provide methods to
perform strategic asset allocation with mixed liquid and illiquid
alternative portfolios where we can only augment our illiquid po-
sition by making new commitments, and the effect of this action
is random and delayed. First, we describe a method which over
time establishes and then maintains a given target allocation under
growth. Then, we describe a more sophisticatedMPCmethodwhich
jointly selects a target allocation based on a user’s risk tolerance,
establishes the target, and maintains the target in growth.

6.1 Steady-state commitment policy
We first describe a simple policy, which seeks to track a target
allocation 𝜃 targ. It allocates liquid assets proportionate to its desired
liquid allocation, and makes new commitments of a target level of
illiquid wealth scaled by the asymptotic expected private response
to constant commitment. The input is a target allocation 𝜃 targ,
current liquid wealth L and illiquid wealth I. First, the policy checks
if 𝐿 is negative. If it is, it returns control

𝑢 = (ℎ, 𝑛, 𝑠), ℎ = 0, 𝑛 = 0, 𝑠 = |𝐿 |.

Otherwise, if the liquid wealth is positive, the policy proceeds as fol-
lows. First, the policy rebalances the liquid holdings proportionately
to 𝜃 targ,

ℎ = 𝐿
𝜃 liq

1𝑇 𝜃 liq
,

where 𝜃 liq, 𝜃 ill are the liquid and illiquid blocks of the allocation

vector 𝜃 targ =

[
𝜃 liq

𝜃 ill

]
, respectively. Then, with 𝛼𝐼 as the 1 dollar

private commitment step response (the steady-state level of the
illiquid asset resulting from a constant unit commitment 𝑛1 =

1, 𝑛2 = 1, . . .), and 𝐼 targ as the target illiquid level, 𝐼 targ = 𝜃 ill (𝐿 + 𝐼 ),
the policy commits

𝑛𝑖 =
𝐼
targ
𝑖

𝛼𝐼𝑖

and returns control 𝑢 = (ℎ, 𝑛, 0).

6.2 Model predictive control policy
We now describe a more sophisticated policy which plans ahead
based on a model of the future, seeking to maximize wealth subject
to various risk constraints. For a sequence of prospective actions,
the policy forecasts future state variables using the mean dynamics
described in (9). The policy then chooses a sequence of actions by
optimizing an objective which depends on the planned actions and
forecast states. Finally, the policy executes solely the first step of
the planned sequence. The impact of that action is observed, and
the resulting state is observed, and then this cycle repeats.

The policy selects a planned sequence of actions by trying to
maximize the ultimate total liquid and illiquid wealth. However,
it is also constrained by a user’s risk tolerance, which caps the
allowable per period return volatility. Additionally, because capital
calls are stochastic in nature, the policy seeks to guarantee that

with high probability, all capital calls can be funded from the liquid
wealth.

Modified Markowitz constraint. Motivated by the standard one
period risk-constrained Markowitz problem (11), we would like
to include a risk constraint in our planning problem. However,
the Markowitz problem has variables in weight space rather than
wealth space. Other multi-period optimization problems based on
the Markowitz problem, such as in [3], assume a timescale over
which the wealth does not grow significantly over the planning
horizon. In our case, since potential application contexts include
endowments and insurers, we must handle substantial growth over
the investment horizon. Thus, we consider an analogous risk con-
straint in wealth space rather than weight space,

𝑦𝑇 Σ𝑦

(1𝑇𝑦)2
≤ 𝜎2 ⇐⇒ ∥Σ1/2𝑦∥2 ≤ 𝜎1𝑇𝑦.

𝑦 = (ℎ, 𝐼 ) is the liquid and illiquid exposure. Thus, we use the
constraint

∥Σ1/2𝑦∥2 ≤ 𝜎1𝑇𝑦,
which is invariant in wealth. It is also convex, which means that
problems with such constraints can be reliably solved.

Insolvency constraint. An important challenge in performing
strategic asset allocation with illiquid alternatives is ensuring that
the probability of being unable to pay a capital call is extremely
low. In our model, this corresponds to requiring

𝑃 (𝑊𝑡+1 < 0 | 𝑋𝑡 , 𝑛𝑡 , ℎ𝑡 ) ≤ 𝜖 ins

for a small probability of failure 𝜖 ins. We make several approxima-
tions to facilitate a convex constraint. First, we approximate 𝑅liq𝑡 as
a multivariate normal random variable,

𝑅
liq
𝑡 ∼ 𝑁 (𝜇liq, Σliq).

It is important to note that these parameters are the mean and
covariance of the liquid returns, rather than the mean and covari-
ance which parameterize the log normal liquid return distribution
given by 𝜇ret and Σret in (10). Then we assume we receive the ex-
pected calls 𝑐𝑡 = E[𝐶𝑡 | 𝑋𝑡 , 𝑛𝑡 , ℎ𝑡 ], which is a linear function of
our controls. They are given by 𝑐𝑡 = 𝜆

1,𝑇
𝑡 𝐾𝑡 + 𝜆

0,𝑇
𝑡 𝑛𝑡 . Finally, we

assume pessimistically there are no distributions or outside cash.
With these approximations, we have

𝑃 (𝑊𝑡+1 < 0 | 𝑋𝑡 , 𝑛𝑡 , ℎ𝑡 ) ≈ 𝑃 (𝑅liq𝑡 ℎ𝑡 − 𝑐𝑡 ≤ 0)
= 𝑃 (𝑁 (ℎ𝑇𝑡 𝜇liq − 𝑐𝑡 , ℎ𝑇𝑡 Σliqℎ𝑡 ) < 0) ≤ 𝜖.

This probabilistic constraint holds if and only if

𝑐𝑡 − ℎ𝑇𝑡 𝜇liq ≤ Φ−1 (𝜖 ins)∥Σ1/2liq ℎ𝑡 ∥2, (15)

where Φ is the standard normal cumulative distribution function.
This constraint is convex provided 𝜖 ins ≤ 1/2, since thenΦ−1 (𝜖 ins) ≤
0, and (15) is a second order cone constraint (see [4, §4.4.2]).

As mentioned above, the constraint (15) is pessimistic because it
assumes no distribution. An alternative and less pessimistic formu-
lation of the insolvency constraint would consider the distribution,
the calls, and the liquid returns all under a joint normal approxima-
tion.
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Smoothing penalty. Among control sequences with similar objec-
tive values, we would like for new commitments to be fairly smooth
across time. We can consider a natural commitment smoothing
penalty

𝑔(𝑛) =
𝐻−1∑︁
𝑡=0

𝛾𝑡 ∥𝑛𝑡+1 − 𝑛𝑡 ∥2

The time discount 𝛾 appears because in a growth context we expect
𝑛𝑡 to increase over time. Additionally, it helps account for the
increased uncertainty of future planned steps.

MPC planning problem. All objective terms and constraints out-
lined above are consolidated into one optimization problem. At
time 𝑡 , we plan {𝑥𝜏 |𝑡 }𝑡+𝐻+1

𝜏=𝑡 , {𝑢𝜏 |𝑡 }𝑡+𝐻𝜏=𝑡 , where 𝐻 is the planning
horizon, by solving the optimization problem

maximize
∑𝑡+𝐻
𝜏=𝑡 𝛾

𝑡
(
𝐿̂𝜏 |𝑡 + 1𝑇 𝐼𝜏 |𝑡 − 𝜆cash𝑠𝜏 |𝑡

)
− 𝜆smooth𝑔(𝑛̂ · |𝑡 )

subject to 𝑥𝑡 |𝑡 = 𝑥𝑡
𝑥𝜏+1 |𝑡 = 𝐴𝑥𝜏 |𝑡 + 𝐵𝑢𝜏 |𝑡
𝐿̂𝜏 |𝑡 ≥ 0
ℎ̂𝜏 |𝑡 , 𝑛̂𝜏 |𝑡 , 𝑠𝜏 |𝑡 ≥ 0
1𝑇 ℎ̂𝜏 |𝑡 = 𝐿̂𝜏 |𝑡
∥Σ1/2𝑦𝜏 |𝑡 ∥2 ≤ 𝜎1𝑇𝑦𝜏 |𝑡
𝜆
1,𝑇
𝐾̂𝜏 + 𝜆

0,𝑇
𝑛̂𝜏 |𝑡 − ℎ̂𝑇𝜏 |𝑡 𝜇liq ≤ Φ−1 (𝜖 ins)∥Σ1/2liq ℎ̂𝜏 |𝑡 ∥2,

(16)
where 𝜆cash > 0 is a hyperparameter penalizing outside cash use,
and 𝜏 = 𝑡, . . . ,𝑇 +𝐻 for all terms except 𝐿, where 𝜏 = 𝑡, . . . , 𝑡 +𝐻 +1.
Recall that 𝐿, 𝐼 , and 𝐾 are components of 𝑥 , and ℎ, 𝑛, and 𝑠 are
components of 𝑢.

6.3 Example
In this example, we evaluate the performance of the two policies
described in §6.1 and §6.2 using the risk return trade off. For the
parameters defined in (10), we use the specific values of

𝜇ret = (0.158, 0.000, 0.072, 0.023, 0.036, 0.046) , (17)
𝜎ret = (0.281, 0.000, 0.206, 0.046, 0.047, 0.162) , (18)

𝐶ret =



1.000 0.000 0.422 −0.298 −0.002 0.261
0.000 1.000 0.000 0.000 0.000 0.000
0.422 0.000 1.000 −0.843 0.197 0.800
−0.298 0.000 −0.843 1.000 −0.018 −0.739
−0.002 0.000 0.197 −0.018 1.000 0.628
0.261 0.000 0.800 −0.739 0.628 1.000


,

(19)
with Σret = diag(𝜎ret)𝐶 diag(𝜎ret).

Illiquid dynamics. We consider the actual illiquid world: full
call/distribution random dynamics as described in §4.1. We evaluate
the two policies described in §6.1 and §6.2 on the same simulated
returns as the imaginary Markowitz portfolio.

Example policy specifications. In this case study, we use the steady
state commitment policy with parameter 𝛼𝐼 = 3.685, and values of
𝜃 arising from solving the one period Markowitz problem defined
in 5.2 for 30 evenly spaced values of 𝜎 between 0 and .3, with our
specified return distribution parameters defined in (12–14).
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Figure 1: Risk return trade-off, 200 simulations of 20 periods.

For the MPC policy, we use the same 𝜎 values described above,
but for numerical reasons use the standard trick of moving the risk
limit to penalized form by subtracting

𝜆risk (∥Σ1/2𝑦𝑡 ∥2 − 𝜎1𝑇𝑦𝑡 )+
from each term of the objective defined in (16), penalizing excess
risk. The parameter values are

𝛾 = .97, 𝐻 = 10, 𝜖 ins = .02, 𝜆risk = 10, 𝜆smooth = .1, 𝜆cash = 1000,

with 𝐴, 𝐵 as defined in (9), with the distributions instantiated in (6)
and (17–19).

Results. We see in figure 1 that both the MPC and heuristic poli-
cies are extremely close to the risk-return performance of the liquid
relaxation, which is an unattainable benchmark. This is despite
the challenging illiquid dynamics we face in the non-relaxed set-
ting. The performance stated here is averaged across 20 periods of
simulation, for 200 simulated trajectories.

Across a shorter time horizon, there is a larger gap between the
MPC policy and the liquid performance ceiling, and also between
the MPC and simple policies. This has a perfectly clear interpreta-
tion: because there is a roughly 4 period delay before peak illiquid
exposure, the impact of the illiquid alternative asset’s high returns is
delayed. Additionally, by planning ahead, the MPC policy achieves
illiquid exposure faster than the simple policy.

7 EXTENSIONS
We list a brief collection of extensions discussed in the longer paper.

• extending the model to allow for liquidation of illiquid alter-
natives on the secondaries market

• incorporating liabilities
• tracking target portfolio weights, including for the illiquid
assets

• planning based on time-varying forecasts
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• modeling separate vintages of the illiquid asset

8 CONCLUSION
We have described a flexible stochastic linear system model of
liquid and illiquid alternative assets, that takes into account the
dynamics of the illiquid assets and the randomness of returns, calls,
and distributions. This model allows us to develop an MPC policy
that in each time period chooses a liquid wealth allocation, and also
new commitments to make in each alternative asset.

We compare the results of this policy with a relaxed liquid model,
where we assume that all illiquid assets are fully liquid. This re-
laxed liquid model is easy to understand, since the challenges of
alternative assets have all been swept under the rug. For the relaxed
liquid model, we can work out optimal investment policies. The
performance with these policies can be thought of as an unattain-
able benchmark, that we know we cannot achieve or beat when all
the challenges of alternative investments are present.

Suprisingly, the performance of the MPC policy under the real
model, with all the challenges of alternative assets, is very close
to the performance of the relaxed liquid model, under an optimal
policy. Roughly speaking, there isn’t much room for improvement.
This is a strong validation of the MPC policy.

Another interesting conclusion is that the relaxed liquid model
is not as useless as one might imagine, since MPC can attain similar
performance with all the challenges present. In a sense this validates
reasoning based on the relaxed liquid model, where illiquid assets
are treated as liquid assets. Roughly speaking, the asset manager can
reason about the portfolio using the simple relaxed liquid model;
feedback control with the MPC policy handles the challenges of
illiquid alternative assets.
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