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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized, tailored method

e this tutorial focuses on step 1 (a.k.a. GP modeling)

e step 2 is technology
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Why?

e we can solve even large GPs very effectively, using recently developed
methods

e so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

e GP is especially good at handling a large number of concurrent
constraints

e GP formulation is useful even when it is approximate
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Trade-offs in optimization

e general trade-off between generality and effectiveness

e generality

— number of problems that can be handled
— accuracy of formulation
— ease of formulation

e cffectiveness

— speed of solution, scale of problems that can be handled
— global vs. local solutions
— reliability, baby-sitting, starting point
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Example: least-squares vs. simulated annealing

least-squares
e large problems reliably (globally) solved quickly
e no initial point, no algorithm parameter tuning

e solves very restricted problem form

e with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, . . . )

simulated annealing

e can be applied to any problem (more or less)
e slow, needs tuning, babysitting; not global in practice

e method of choice for some problems you can’t handle any other way
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Where GP fits in

somewhere in between, closer to least-squares . . .

e like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . ..

e solves a class of problems broader than least-squares, less general than
simulated annealing

e formulation takes effort, but is fun and has high payoff
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Geometric Programming



Monomial & posynomial functions

x = (x1,...,Ty,): vector of positive optimization variables

e function g of form

g(x) = caytwy® - -y,

with ¢ > 0, «; € R, is called monomial

e sum of monomials, i.e., function f of form
t
_ Xk .2k o
f(x) = E :Ck:331 Lo~ e,

k=1

with ¢ > 0, ;1 € R, is called posynomial
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Examples

with x, y, z variables,

e 0.23, 2z+/x/y, 3x*y 1?2z are monomials (hence also posynomials)
e 0.23+x/y, 2(1+ xy)3, 2x+ 3y + 2z are posynomials

o 22 + 3y — 2z, x°+tanx are neither
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Geometric program (GP)

a special form of optimization problem:

minimize  fo(z)

fi are posynomials and g; are monomials

e a highly nonlinear constrained optimization problem

e but, can be solved extremely efficiently

— dense 1000 vbles, 10000 constraints: one minute on PC
— sparse 1M vbles, 10M constraints: one hour on PC
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Example

minimize z~ly

subject to 27! <1,
(1/3)x <1,
22y~ 12 1 3y1/2,-1 < 1
zy tz7? =1

e this one could be solved by hand, or by sweeping values of x, y, and z

e but a GP with 1000 variables (which is easily solved if you know how)
cannot be solved by hand or sweeping
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Posynomial and monomial algebra

e monomials closed under products, division, positive scaling, powers
(hence, inverse), e.g.,

(2513‘_02 11) (ngy 0.3 2) —0621708 0.8 2

e posynomials closed under sums, products, positive scaling, division by
monomials, positive integer powers
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Simple GP extensions

e maximizing a monomial objective g

— same as minimizing g~ !, a monomial (hence also posynomial)

e monomial-monomial equality constraint g; = go

— same as monomial equality constraint g1 /g = 1

e posynomial-monomial inequality constraint f < g

— same as posynomial inequality constraint f/g <1

ICCAD 2004
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Example

e maximize volume of box with width w, height h, depth d

e subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to  2(hw + hd) < Ayan, wd < Ag,
a<h/w<p, v<d/w<)d

in standard GP form:

minimize h lw td~!

subject to (2/Awa11)hw + (Z/Awan)hd <1, (1/Aﬂr)wd <1
ah~lw <1, (1/Bhw <1
ywd=t <1, (1/5)w td<1
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Trade-off analysis

(no equality constraints, for simplicity)

e form perturbed version of original GP, with changed righthand sides:

minimize  fo(x)
subject to  fi(z) <w;, i=1,...,m

e u; > 1 (u; < 1) means ith constraint is relaxed (tightened)
e let p(u) be optimal value of perturbed problem

e plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)

ICCAD 2004
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Trade-off curves for maximum volume box example

107 1Ayal = 100
| 1A yal = 50
10%
= :Awall = 10
10¢
10 102 10°
Aﬂoor

e maximum volume V' vs. Ag,, for Ayan = 10, 50, 100

e h/w, d/w aspect ratio limits 0.5, 2

ICCAD 2004
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Sensitivity analysis

e optimal sensitivity of ith constraint is

Op/p

B 8uz/uz u—1

Si

e S, predicts fractional change in optimal objective value if ith constraint
is (slightly) relaxed or tightened

e very useful in practice; give quantitative measure of how tight a binding
constraint Is

e when we solve a GP we get all optimal sensitivities at no extra cost
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Example

e minimize circuit delay, subject to power, area constraints (details later)

minimize  D(x)
subject to  P(x) < P™ax,  A(x) < Amax

e both constraints tight at optimal x*: P(z*) = P™**, A(x*) = A™
e suppose optimal sensitivities are SPV" = —2.1, §27°* = —(0.3

e we predict:

— for 1% increase in allowed power, optimal delay decreases 2.1%
— for 1% increase in allowed area, optimal delay decreases 0.3%

ICCAD 2004
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How GPs are solved

the practical answer: none of your business

more politely: you don’t need to know

it's technology:

e good algorithms are known

e good software implementations are available

ICCAD 2004
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How GPs are solved

e work with log of variables: y; = logz;
e take log of monomials/posynomials to get
minimize  log fo(eY)

subject to log f;(e¥) <0, i=1,...,m
log gi(e¥) =0, ¢

e log fi(e¥) are convex functions
e log g;(e¥) are affine functions, i.e., linear plus a constant

e solve (nonlinear) convex optimization problem above using
interior-point method
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Current state of the art

e basic interior-point method that exploits sparsity, generic GP structure

e approaching efficiency of linear programming solver

— sparse 1000 vbles, 10000 monomial terms: few seconds
— sparse 10000 vbles, 100000 monomial terms: minute
— sparse 109 vbles, 10” monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)

ICCAD 2004
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History

e GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

e engineering applications from the very beginning

— early applications in chemical, mechanical, power engineering

— digital circuit transistor and wire sizing with Elmore delay since 1984
(Fishburn & Dunlap’s TILOS)

— analog circuit design since 1997 (Hershenson, Boyd, Lee)

— other applications in finance, wireless power control, statistics, . . .

e extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Generalized Geometric Programming



Handling positive fractional powers

e suppose f1, fo are posynomials
e we can handle f; + f5 < 1 directly, since LHS is posynomial
e we can't handle f; + f3'1 <1, since f3! isn't posynomial

e trick: replace inequality f1 + f5' <1 with two (posy) inequalities

fi+tt <1, fa <t

t is new variable (called dummy or slack)
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Handling maximum

e suppose f1, fo2, f3 are posynomials
e can't handle f1 + max{fs, f3} < 1 since max{fs, f3} isn't posynomial

e trick: replace f1 + max{fs, f3} < 1 with three (posy) inequalities

f1+t§17 f2§t7 f3§t
t i1s new slack variable

e can be applied recursively, together with fractional power trick

ICCAD 2004
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Example

minimize  xyz + 4z~ ly=3/2

subject to max{z,y} +2 <1
y(zt/? +32)1/2 4 22 < 1

equivalent to GP

minimize  xyz + 4z~ ly=3/?

subjectto t1 +2<1, x<t;, y<t

yta/ 2+ 22 <1, V2432 <ty

(t1 and t5 are new variables)

ICCAD 2004
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

e max {1 + 1,221 + x8'2x3_3'9}
. (() L =05 1.7,.0.7 1.5
1L3 ‘|‘37 X3 )

° (max{1+x1,2:r;1+:C(2)°2:L'§3'9})1' —|—£El 1 37

o 4:13_0 1x%7max {max{1—|—:131,2331—|—:1: x339} —|—ZL’1 1 :1:1:1:2:133}

ICCAD 2004
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Generalized geometric program (GGP)

minimize  fo(z)
subject to  fi(x) <

fi; are generalized posynomials, g; are monomials

e using tricks, can convert GGP to GP, then solve efficiently

e conversion tricks can be automated

— parser scans problem description, forms GP
— GP solver solves GP
— solution transformed back (dummy variables eliminated)

ICCAD 2004
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configure cell widths, heights

minimize bounding box area

fixed cell areas

aspect ratio constraints

minimize
subject to

.a GGP

ICCAD 2004

Floor planning

w2

hw

hiw; = Ai,  1/amax < hi/w; < amax,
max{hl, hg} + max{hg, h4} S h,
max{w + we, w3 + wa} < w

— = A
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Mixed-integer geometric program

minimize  fo(x)
subject to  f;(x)

1, 2=1,...,m
gz(x> L,

<
cD;, i=1,....k

e f; are generalized posynomials, g; are monomials
e D; are discrete sets, e.g., {1,2,3,4,...} or {1,2,4,8...}

e very hard to solve exactly; all methods make some compromise
(compared to methods for GP)

e heuristic methods attempt to find good approximate solutions quickly,

but cannot guarantee optimality

e global methods always find the global solution, but can be extremely
slow

ICCAD 2004
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Digital Circuit Design Applications



Gate scaling
input flip flops  combinational logic block output flip flops

| = ‘
T4 > 6 >
in—— b2 ——out
15 37 >
" 3
clock e — ]

e combinational logic; circuit topology & gate types given
e gate sizes (scale factors x; > 1) to be determined

e scale factors affect total circuit area, power and delay
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Area & power

e total circuit area: A = (a121 + -+ + apxy)A

— A: area of unit scaled inverter
— a;: area of unit scaled gate ¢ (in units of A)

e total power (dynamic + static): P = (byzy + - + bpxy) forc B

— fax: clock frequency
— FE: energy lost per transition by unit scaled inverter driving no load

e A and P are linear functions of x, with positive coefficients, hence
posynomials

ICCAD 2004
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RC gate delay model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Vaa

— an

= / R;

. w .

: 1 an \ C%nt C’zL

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

e input & intrinsic capacitances, driving resistance, load capacitance

in ~in int ~int D L E : in

JEFO(7)
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RC gate delay model

e model

Ci" = a;nC, Ci" = B,C, R; = v;R/x;

— C': intrinsic capacitance of unit scaled inverter
n: (input capacitance of unit scaled inverter) /C
— R: driving resistance of unit scaled inverter

e RC gate delay:

D; = 0.69R;(C} + C™*) = (%ﬁi (Vi / ;) Z No;x

JEFO(7)
D = 0.69RC: delay of unit scaled inverter with no load

e D, are posynomials (of scale factors)

ICCAD 2004
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Path and circuit delay

vV
ot
\'I

e delay of a path: sum of delays of gates on path
. . . posynomial

e circuit delay: maximum delay over all paths
.. . generalized posynomial
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Basic gate scaling problem

minimize D
subject to P < P™#* A < Amax
1<z, 2=1,....n

...a GGP

extensions/variations:

e minimize area, power, or some combination
e add other constraints

e optimal trade-off of area, power, delay

ICCAD 2004
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Example: Ladner-Fisher 32-bit adder

e 451 gates (scale factors); RC gate delay model

e typical optimization time: few seconds on PC

70D

50D )
700 A Amax 1200 A
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Ladner-Fisher 32-bit adder with integer scale factors

e add constraints x; € {1,2,3,...}

e simple rounding of optimal continuous scalings

80D

> before rounding

50D _
700A Amax 1200A

ICCAD 2004
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Sparse GP gate scaling problem

minimize D

subject to 1; <D for j an output gate
P S Pma,X’ A S Amax
1<z, 21=1,....n

e I are upper bounds on signal arrival times

e extremely sparse GP; can be solved very efficiently

ICCAD 2004
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Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility
(hence efficient global solution)

e area, delay, power can be any generalized posynomials of scale factors,
e.g.,

D; = a; + bi(C7) w07 P = c; + di(C7)' 2 + ey

1

e these can be found by more refined analysis, or fitting generalized
posynomials to simulation/characterization data
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Distinguishing gate transitions

e can distinguish rising and falling transitions, with different delay, energy,
C'™, for each gate input/transition

e (bounds on) signal arrival times can be propagated through recursions,
e.qg.,

T — T + D o7t pir Tt — 7+ ptt ot pit
? ]Ier]l_%ii){ J+ Jv’ .7+ JZ}’ 2 jg]l;‘%é){ J+ Jv’ J—I_ J@}

e gate scaling problem more complex, but still a GGP
(hence can be efficiently solved)
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Modeling signal slopes

associate (worst-case) output signal transition time 7 with each gate

model delay, energy, input capacitance as (generalized posynomial)
functions of scale factor, load capacitance, input transition time

propagate output transition time using (generalized posynomial)
function of scale factor, load capacitance, input transition time

common model:

Di = CLZCZL/ZIJZ + /iiTZ-in, Ez = bZ(CzL +szz) —+ )\ixiTgn, T; — ViDi

gate scaling problem still a GGP

ICCAD 2004
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Arrival time propagation with soft maximum

e can even generalize max function used to propagate signal arrival times
e replace with soft maximum, e.g., (TP 4 --- + TP)*/? (say, p ~ 10)

e can account for increased delay when inputs switch simultaneously

e can choose soft maximum function by fitting simulation data

e gate scaling problem remains a GGP
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Design with a standard library

e circuit topology is fixed; choose size for each gate from discrete library

e a combinatorial optimization problem, difficult to solve exactly

e GP approach

— for each gate type in library, fit given library data to find
GP-compatible models of delay, power, . ..

— size with continuous fitted models, using GP

— snap continuous scale factors back to standard library
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Robust design over corners

e have K corners or scenarios, e.g., combinations of

— process parameters
— supply voltage
— temperature

e for each corner have (slightly) different models for delay, power, . . .

e robust design finds gate scalings that work well for all corners

ICCAD 2004

43



Robust design over corners

e basic (worst-case) robust design over corners:

minimize max{DW ... D)}

subject to PN (z) < pmax P (g) < pmax
A S Amax
1<z, 2=1,...,n

e many variations, e.g., minimize average delay over corners,

(1/K) (DY + -+ D)

e results in (very large, but sparse) GGP

ICCAD 2004
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Multiple-scenario design

e have K scenarios or operating modes, with K models for P, D, . ..

e scenarios are combinations of

— supply & threshold voltages
— clock frequency
— specifications & constraints

e like corner-based robust design, but scenarios are intentional

e find one set of gate scalings that work well in all scenarios

ICCAD 2004
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Example

e find single set of gate scalings to support both high performance mode

and low power mode

— in high performance mode: Pfast < pfast  pfast < pfast
— in low power mode: Pslow < pslow - pslow < pyslow

minimize A

subject to  Pslow < pslow Dslow < pslow
—_— 9 -~
Pfast < pfast, Dfast < Dfast
1<z, 1=1,...,n

...a GGP

ICCAD 2004
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Dual mode desigh example

e random netlist, 100 gates, average fanout 3

e alpha-power law delay model; dynamic + leakage power model

e dual mode

— low power (slow): f3o% = fop, V3w = 1.0, Vilow = 0.4
— high performance (fast): fiast = 2f.,, Viast = 2.0, Viast

e objective is area; different power/delay specs for each mode

ICCAD 2004
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Dual mode desigh example

A | D (slow) D (fast) | P (slow) P (fast)

specification - 30D 15D 500P 5000P
design for slow only | 3304 30 22 290 2700
design for fast only | 3704 38.4 15 440 4060
dual mode design | 3804 25 15 444 4062

e [: delay of unit scaled inverter driving no load, in fast mode

o P = f.E: dynamic power dissipated by unit scaled inverter driving no
load, transition frequency f., supply voltage 1.0V
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Statistical parameter variation

e circuit peformance depends on random device and process parameters
e hence, performance measures like P, D are random variables P, D
e delay D is max of many random variables; often skewed to right

e distributions of P, D depend on gate scalings z;

PDF

50D 75D

circuit delay

e related to (parametric) yield, DFM, DFY . ..
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Statistical design

e measure random performance measures by 95% quantile (say)

minimize  Q??(D)
subject to Q%°(P) < Pmax, A < Amax
1<z, +1=1,...,n

o extremely difficult stochastic optimization problem; almost no
analytic/exact results

e but, (GP-compatible) heuristic method works well

ICCAD 2004
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Heuristic for statistical design

e assume generalized posynomial models for gate delay mean D;(x) and
variance o;(x)?

e c.g., 0i(x) = m:zji_l/zDi(a:) (Pelgrom’s model)
e optimize using surrogate gate delays
D;(z) = D;(x) + rioi(x)
k;0;(x) are margins on gate delays (x; is typically 2 or 3)
e verify statistical performance via Monte Carlo

(can update k;'s and repeat)

ICCAD 2004
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Heuristic for statistical design

heuristic statistical design

e often far superior to design obtained ignoring statistical variation

e not very sensitive to details of process variation statistics (distribution
shape, correlations, . . .)

e below: Ladner-Fisher 32-bit adder, Pelgrom variance model

statistical design

PDF

, \ nominal design

50D circuit delay D
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Path delay mean/std. dev. scatter plots

=
S

o . . .
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RC tree optimization

Rs Rs

AN
Coy— Cs

— R:

R
4

Rg

- —A\\
— 04 _ 06

e R;s and (s are generalized posynomials of some underlying variables x

ICCAD 2004
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Elmore delay

e Elmore delay at node 1:

D, = / vi(t) dt
0

area under voltage curve, when voltages are initialized as v;(0) = 1

e Elmore delay of RC tree is D = max{D1,..., Dy}
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Elmore delay expression

e analytic expression for EImore delay D;

Z R; Ctot

jEP(7)

e P(i) is path from root to node i
e (!°' is the total capacitance downstream from node i (including C;)
e D, is posynomial of x

e D is generalized posynomial of z

ICCAD 2004
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RC tree optimization

e minimize RC tree delay subject to (generalized posynomial) constraints

minimize D
subject to  fi(x) <0, i=1,...,m
..a GGP
e sparse formulation:
minimize s
subjectto s>D,;, 1=1,....n
tot tot .
5™ 2 ZiEChild(j) G+ 1=1....n

D; > Dparry + RiC°, i=1,...,n
fZ<ZC>§O, izl,...,m
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Wire

e choose wire segment widths w;, . .

e optimize delay, area

sizing

.,Wx In an interconnect network

ICCAD 2004
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7 model for wire segment

Tw

e wire resistance and capacitances

9!
||
N
||

C; = Bilyw; + il

e with m model, interconnect network becomes RC tree, with R;s and C}s
posynomial functions of wire segment widths w;

ICCAD 2004
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Wire sizing via GP

minimize D
subject to w;"" <w; <w"*, 1=1,...,N
LLiwy + -+ vy < Amax

...a GGP

e can easily optimize interconnect network with 10000 wires, using sparse
GP formulation

e can use more accurate generalized posynomial models of R;, C;
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Device sizing

e devices (and wire segments) are sized individually
e replace each device with switch-level RC model
e each transition is associated with RC tree

e use Elmore delay to measure delay of transition

e ... problem is GGP

ICCAD 2004
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Switch-level RC device model

D

o %B Coo D Cov

S N
NMOS Cab

PMOS

e crude linear approximation of device, for delay and power optimization
e R, all CUs are generalized posynomials of device width

o we'll ignore Cgq (but can be incorporated via Miller effect . . . )
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Example: 2-input NAND

Vaa
! |
Ci= |B A
A {Cdm:: Capba——
Cy—— Rsa1 Rgao
Vaa - X
| A :T:Cdb?):: ct
# M, PQ M p— p—
} X de3
A J M3 — oL K‘E e L
e B T sb3 db4
5 -
B ¢ M4 de4

C1 = Cgha+Css2, O = Cgpz+Cg3, C3 = Cgp1+Cgs1, Cs = Copat+Cgs
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Example transition

e transition: B falls from V34 to zero; A remains at Vg

e associated RC tree:

C1 = Cap1 + Cavz + Capb3, C2 = Cgpz + Cana
e Elmore delay: D = del(C’L + C1 + Cy)
e energy lost: E = (CY + Cy + C)V3E,/2

ICCAD 2004
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Device, supply and threshold voltage optimization

e goal: jointly optimize device sizes, supply and threshold voltages via

GGP

e need to: model delay, power as generalized posynomial functions of
device sizes, supply and threshold voltages

ICCAD 2004
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Generalized posynomial delay model

e alpha-power law model

Vaa T
D = h(w,C™, ™"
(Vaa — Vin)® ( )

h is generalized posynomial

e generalized posynomial approximation
D= led_a(l + Vth/Vdd + -+ (%h/Vdd)5)O‘h(w, CL, Tin)

error under 1% for Vgq > 2V, 1.3 < a <2

ICCAD 2004
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Generalized posynomial power model
e gate dynamic power: Py, = fi(C" 4+ C™)V3,
e leakage current model for NMOS: e = awe™ (Vin=7Vaa)/Vo
e simple gate leakage power model:
Piear = Vaa(z)e” Vin—rVaa)/Vo
Y is generalized posynomial (from gate topology, stack effect . . . )

e bad news: P, (by itself) cannot be approximated by a generalized
posynomial

e good news: the total power P = Pyyy + Pleak can be approximated by
a generalized posynomial
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Example

total power P

V2 + 30Vgqe~ (Vin=0-06Vaa)/0-039 (45 to scaling)

12

12

lal approximation

® posynomia
P =V2 +0.06V34(1 + 0.0031V44)°%°(V;1,/0.039) ~6-16

AN

e error under 3% (well under accuracy of model!)

68
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Joint optimization of device sizes, Vy4, & Vi,

basic problem, with variables: z;, Vin i, Vaai (... a GGP)

minimize D

subject to P < pP™ax, A < Amax
‘/;rkrlun S ‘/:Gh,i S tr}rllax7 1= ]-7"'7n
VdIgln S Vdd,’l, S dISaX, Z — 1, . o e 777/

other constraints . . .

extensions/variations:
e discrete allowed Vyq, Viy, values (yields MIGP)
e clustering, with single V4, Vin per cluster

e multi-scenario design: choose single set of w;'s, different V(fj), Vt(hk) for
each scenario k=1,..., K
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Joint optimization example

e random netlist, 100 gates, average fanout 3, alpha-power-law model
e variables: gate scale factors x;, threshold voltages Vi, ;
e all gates with common supply voltage

e four delay-power trade-off curves:

— all gates low Vi, ; = 0.2
— all gates high V4, = 0.4
— continuous threshold voltages 0.2 < V4, ; < 0.4
— discrete threshold voltages V;y, ; € {0.2,0.3,0.4}

ICCAD 2004
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Joint optimization example

1000 P
%h,z’ =04

Q.‘ i
Vini € {0.2,0.3,0.4}

oo = Viy,; = 0.2
300P — T9.2 < Vini < 0.4
15D ymax 10D

e D: delay of unit scaled inverter driving no load in fast mode

e P: dynamic power dissipated by unit scaled inverter driving no load
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Joint optimization example

100%

% of gates

om0 Vi = 0.4

o4 Vi = 0.3

0% —
15D

. © © Wh = 0.2

40D
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Analog Circuit Design Applications



Large signal MOS model

D S
] -
G I G I
AL el
S D
NMOS PMOS

gate overdrive voltage Vyoy = Ves — Vin

saturation condition: Vg > Visat = Vgov (Vdsat is minimum
drain-source voltage for device to operate in saturation)

square-law model I = 0.5uCox(W/L)VZ,

GP model variables: I, L, W

Viov = (1C0ox/2) "/ 212 LY/21 =1/2 is monomial
Vas = Vaov + Vin Is posynomial

ICCAD 2004
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Small signal dynamic MOS model

G i D
Cgb f— Cgs f— gmvgs GD %go f— Cdb

B S

e transconductance gy, = (2uCox)/21/2L=1/2W1/2 is monomial
e output conductance g, = Al is monomial
e all capacitances are (approximately) posynomial in I, L, W

e better (GP-compatible) models can be obtained by fitting data from
accurate models or measurements

ICCAD 2004
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Example: monomial g, model

e monomial model of g, for /O NMQOS device in a 0.13um technology

e 11000 data points (from BSIM3) over ranges

— 03um < L <3um, 2um < W < 20pum
— 0.7V < Vg < 1.7V, Viggar < Vs < 1.5V

e V45 appears in data set, but not in g,, model
e monomial fit (using simple log-regression, Sl units):

G = 0.027810'4798L_0'511W0'5632
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Example: monomial g, model

e fitting (relative) error cumulative distribution plot:

100%

fraction of data points

5% 10%

fitting error

=
X

o for 90% of points, fit is better than 4%

ICCAD 2004
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Single transistor common source amplifier

e variables: I, L, W, R

e saturation: Vie + IR < Vg

e gain G =gn/(1/R+ go)

® power P = VddI

e (unity gain) bandwidth B = g,,/C"

e design problem:

ICCAD 2004

minimize
subject to

P
B 2 Bmll’l’
saturation

G Z Gmin
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Common source amplifier design via GP

® rewrite as

minimize P
subject to B > Bmin» G71> 1/Gm”l
Vasat + IR < Vg

e ...a GP, since P and B are monomials, and
G—l _ 1/R+go
dm

is posynomial

e this is a simple problem; don't need GP sledgehammer . . .

ICCAD 2004

78



Current mirror opamp

Vaa

M95}—£M3 M}y ij—{f]\%

GD Lo out
in—%EMl M2 ]%II’]—I—

MlO]T‘ | M-

o My, My and Ms, M, matched pairs
e four current mirrors: Mg, Ms; Myg, M7, Mg, Ms; My, Mg
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Design problem

minimize P
subject to B > B™", G > G™™",
other constraints . . .

e objective & specifications:
— P is power dissipation
— DB is unity gain bandwidth
— G is DC gain
— A'is (active) area
e design variables: Lq,..., Ly, W1,...,Wig

e given: Vyq, C1,, I.of, common-mode voltage V.,

e we'll formulate as GP

ICCAD 2004
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Power, bandwidth, gain, & area

e power: P = Vyq(Is + Is + I7 + I19) .. . posynomial
e bandwidth: B = g1, 29m 6/(9m,4CL) . . . monomial
e area: A=W{L{+---+ WioL1o . . . posynomial
e gain: G = Jm,29m,6

gm,4(go,6 + go,7)

. G71 is posynomial, so G > G™ can be written as G~ < 1/G™®

ICCAD 2004
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Dimension, matching, and current constraints
e limits on device sizes: Lyin < L; < Lpaxy Win < W, 1 =1,...,10
e differential symmetry constraints (M7, My and M3, M, matched):

Wy =W,  Li=Ly L =1
W3 = Wy, L3 = Ly, I3 = 1y,

e length & gate overdrive voltage matched for current mirror pairs:

Ls = Lg, Lo = L7, L3 = Lo, Ly = Lg
Vgov,5 — Vgov,Sa Vgov,lO — Vgov,?: Vgov,S — Vgov,97 Vgov,4 — Vgov,6

e current relations:

I =15=1;/2, Ig = Ief, I¢ = Iy, Iy = I
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Saturation constraints

e diode connected devices (M3, My, Mg, M1o) automatically in saturation

e others must have Vs > Vygat:
— M7 Vasat,7 < Vem
— Me¢: Vasat,6 + Vem < Vad
— Mo: Visat,9 + Vas 10 < Vaa
= Ms: Vass + Ves1 < Vem
— My & Msy: Vo + Ves 3 < Vaa + Vin

e ... all are posynomial inequalities

ICCAD 2004 83



Node capacitances and non-dominant poles

e capacitances at nodes are posynomials, e.g.,

C°" = Cya6 + Cab,6 + Cear + Cap.7 + CL

e non-dominant time constants are posynomials:

_Car

’
9m,3

Cq2 Clao
p— —’ ’7_9 p—
9m,4 9m,10

1 T2

(Ca1, Cq2, Cq9 are node capacitances at drains of My, My, My)

e to limit effect of non-dominant poles, make sum smaller than dominant

time constant:
71+ T2 + 79 < Tdom = CL/9m
.. a posynomial constraint

ICCAD 2004
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ICCAD 2004

Power versus bandwidth trade-off

0.1

85



Joint electrical /physical design

e cach device has a (physical) cell width w and height h for floor planning
e devices are folded into multiple fingers

e (approximate) posynomial or monomial relations link electrical variables
(I, L, W) and physical variables (w, h), e.g.,

— cell area is at least 4x active area: wh > 4W L
— cell aspect ratio limited to 5:1: 1/5 < w/h <5

A
v
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Slicing tree layout scheme

e vertical and horizontal slices fix relative placement of device cells

e leaves are device cells; root is bounding box

hbbox

- - - - - - e — - - = =

ICCAD 2004
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Slicing tree constraints
e introduce width, height for each node in slicing tree
e for each vertical slice with parent a and children b, ¢ add constraints

Wy = Wp + We, he = max{hy, he}

e for each horizontal slice with parent a and children b, ¢ add constraints

wo = max{wp, We}, hg, = hy + h.

e shows width and height of bounding box and each node is generalized
posynomial of device cell widths, heights

e resulting GP formulation is very sparse

ICCAD 2004
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Joint electrical /physical design via GP

e form one GP that includes

— electrical variables, constraints (1;, L;, Wi, gm.i - - -)
— physical variables, constraints (w;, h;, wPPo*, APPox )
— coupling constraints (w;h; > 4W;L;, . . . )

e solve it all together

e extensions: can add

— parasitic estimates
— more accurate expressions for device cell dimensions
— channels for routing

ICCAD 2004
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Optimal filter implementation

simple Gm-C two-pole lowpass filter

0 B g2
- . output
input +
C1 —— Co ——
transfer function is
1
H(s) t1 =C1/g1, t2=C2/gs

B 1 + tls + t1t2827

g; i1s amplifier transconductance

ICCAD 2004
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Noise analysis

e N, is input referred (white) amplifier input-referred voltage density

e spectral density of output noise is

N? + w?N3
(1 — tytow?)? + t{w?

N(w)® =

e root-mean-square output noise voltage is

00 1/2
M = (/ N (w)? dw) = (aN7 + BN3) bz
0

ICCAD 2004
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Amplifier and capacitor implementation models

e cach amplifier has private variables u (e.g., device lengths & widths)
and constraints

e transconductance g is monomial in u; area A*™P, power P,
input-referred noise density IV are posynomial in u

e cach capacitor has private variables v (e.g., physical dimensions) and
constraints

e capacitance C' is monomial in v; area A°*P is posynomial

e design variables are uq, uo, v1, v

ICCAD 2004 92



Optimal filter implementation problem

e filter is Butterworth with frequency w.:

tlz\@/wc, t2:(1/\@)/wc
e minimize total power of implementation, subject to area, output noise
limits:

minimize  P(uy) + P(us)

subject to  t; = v/2/w,., ty = (1/v/2)/w.
Aamp(ul) _l_Aamp(uz) _I_Acap(,vl) _l_Acap(UQ) S Amax
M = (we/4V2)(N? + 2N3)H/2 < e

e a GGP in the variables uq, us, vy, vo

ICCAD 2004
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Example

e Butterworth filter with w. = 10%rad/s
e private variables in amplifiers: (equivalent) L, W

e amplifier model:

A=WL, P =25-10"4W/L,

g=4-10""W/L, N =/7.5-10"16L/W
(based on simple model with Vygq = 2.5, Vo = 0.2)

e private variable in capacitors is area A°P; C' = 10~ % AP

o AmaxX —4.107

ICCAD 2004
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ICCAD 2004
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Power versus noise trade-off
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Monomial and Posynomial Fitting



A basic property of posynomials

e if f is a monomial, then log f(e¥) is affine (linear plus constant)
e if f is a posynomial, then log f(e¥) is convex
e roughly speaking, a posynomial is convex when plotted on log-log plot

e midpoint rule for posynomial f:

— let z be elementwise geometric mean of x, y, t.e., z; = /i

— then f(2) < /f(x)f(y)

e a converse: if log ¢(eY) is convex, then ¢ can be approximated as well
as you like by a posynomial
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Convexity in circuit design context

e consider circuit with design variables Wy, ... W, (say) & performance
measure ¢(W1,...,W,) (e.g., power, delay, area)

e two designs: Wi(a) & Wi(b), with performance gb(a) & gb(b)

e form geometric mean compromise design with Wi(c) = \/Wi(a)Wi(b),
performance ¢(¢)

e if ¢ is generalized posynomial, then we have ¢(¢) < \/¢(@) ()

e this is not obvious
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Monomial /posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

e form function F'(y) = log f(eY)

e f can be approximated by a monomial if and only if F' is nearly affine
(linear plus constant)

e f can be approximated by a generalized posynomial if and only if F'is
nearly convex

ICCAD 2004 98



Examples

1 ‘ ‘ —————0.5/(1.5 — x)
’ tanh(x)
%fxoo e " dt
0101 | I |

e tanh(z) can be reasonably well fit by a monomial

e 0.5/(1.5 — x) can be fit by a generalized posynomial

o (2/\/m) fxoo e=t" dt cannot be fit very well by a generalized posynomial

ICCAD 2004



What problems can be approximated by GGPs?

minimize  fo(x)
subject to  fi(x) <

e transformed objective and inequality constraint functions
F;(y) = log fi(eY) must be nearly convex

e transformed equality constraint functions G;(y) = log G;(e¥) must be
nearly affine
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Monomial fitting via log-regression

find coefficient ¢ > 0 and exponents a1, ..., a, of monomial f so that
f@)~ D i=1,...N

® rewrite as

log f(zP) = logc+ailogzl” + -+ ay, log z(?

~ logf®, i=1,...,N

e use least-squares (regression) to find loge, a4, ..., a, that minimize
. ' | N\ 2
Z (logc + a; log :clz) + 4 aylogzD —log f(%))
i=1
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Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that
f@)~ D i=1,...N

e minimize sum of squared fractional errors

i\f: (f(i) _f({)(x(i))>

1=1

2

can be (locally) solved by Gauss-Newton method

e needs starting guess for coefficients, exponents

ICCAD 2004
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Posynomial fitting example

e 1000 data points from f(z) = (1 — 0.5(z? + x5 + 25" — 1)2)1/2 over

e cumulative error distribution for 3-, 5-, and 10-term posynomial fits

100% [

fraction of data points

0%

0% fitting error 3.5%
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Conclusions



Conclusions

(generalized) geometric programming

e comes up in a variety of circuit sizing contexts

e can be used to formulate a variety of problems

e admits fast, reliable solution of large-scale problems

e is good at concurrently balancing lots of coupled constraints and
objectives

e is useful even when problem has discrete constraints
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Approach

e most problems don’t come naturally in GP form; be prepared to
reformulate and/or approximate

e GP modeling is not a “try my software” method; it requires thinking

e our approach:

— start with simple analytical models (RC, square-law, Pelgrom, . . .)
to verify GP might apply

— then fit GP-compatible models to simulation or measured data

— for highest accuracy, revert to local method for final polishing
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e looking for keys under street light
(not where keys were lost, but lighting is good)

e forcing problems into GP-compatible form
(problems aren’t GPs, but solving is good)
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