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ABSTRACT
Compressed sensing or compressive sampling (CS) has been
receiving a lot of interest as a promising method for signal
recovery and sampling. CS problems can be cast as convex
problems, and then solved by several standard methods such
as interior-point methods, at least for small and medium size
problems. In this paper we describe a specialized interior-
point method for solving CS problems that uses a precondi-
tioned conjugate gradient method to compute the search step.
The method can efficiently solve large CS problems, by ex-
ploiting fast algorithms for the signal transforms used. The
method is demonstrated with a medical resonance imaging
(MRI) example.

Index Terms— compressed sensing, compressive sam-
pling,ℓ1 regularization, interior-point methods, preconditioned
conjugate gradients.

1. INTRODUCTION

1.1. Compressed sensing

Let z be an unknown vector inRn. Suppose that we havem
noisy linear measurements ofz of the form

yi = 〈φi, z〉 + vi, i = 1, . . . ,m,

where〈·, ·〉 denotes the usual inner product,v ∈ R
m is the

noise, andφi ∈ R
n are known signals. Standard reconstruc-

tion methods require at leastn samples. Suppose we know a
priori thatz is compressible or has a sparse representation in
a transform domain, described byW ∈ R

n×n (after expand-
ing the real and imaginary parts if necessary). In this case,if
the measurement vectors are well chosen, then the number of
measurementsm can be dramatically smaller than the sizen
usually considered necessary.

Compressed sensing [1] or compressive sampling [2] ex-
ploits the compressibility in the transform domain by solving
a problem of the form

minimize ‖Φz − y‖2
2 + λ‖Wz‖1 (1)

where the variable isz ∈ R
n and‖x‖1 =

∑

i
|xi| denotes

the ℓ1 norm. Here,Φ = [φ1 · · ·φm]
T

∈ R
m×n is called

the compressed sensing matrix,λ > 0 is the regularization
parameter, andW is called the sparsifying transform.

1.2. Solution methods

WhenW is invertible, the CS problem (1) can be reformu-
lated as theℓ1-regularized least squares problem (LSP)

minimize ‖Ax − y‖2
2 + λ‖x‖1 (2)

where the variable isx ∈ R
n and the problem data or pa-

rameters areA = ΦW−1 ∈ R
m×n and y ∈ R

m. The
ℓ1-regularized problem (2) can be transformed to a convex
quadratic program (QP), with linear inequality constraints,

minimize ‖Ax − y‖2 +
∑

n

i=1 λui

subject to −ui ≤ xi ≤ ui, i = 1, . . . , n,
(3)

where the variables arex ∈ R
n andu ∈ R

n.
The data matrixA is typically fully dense, and so small

and medium sized problems can be solved by standard con-
vex optimization methods such as interior-point methods. The
QP (3) that arises in compressed sensing applications has an
important difference from general dense QPs: there are a fast
method for multiplying a vector byA and a fast method for
multiplying a vector byAT , based on fast algorithms for the
sparsifying transform and its inverse transform. A special-
ized interior-point method that exploits such algorithms may
scale to large problems [4]. An example isl1-magic [5],
which uses the conjugate gradient (CG) method to compute
the search step.

Specialized computational methods for problems of the
form (2) include path-following methods and variants [6, 7,
8]. When the optimal solution of (2) is extremely sparse, path-
following methods can be very fast. Path-following methods
tend to be slow, as the number of nonzeros at the optimal
solution increases. Other recently developed computational
methods forℓ1-regularized LSPs include coordinate-wise de-
scent methods [9], bound optimization methods [10], sequen-
tial subspace optimization methods [11]), iterated shrinkage
methods [12, 13], and gradient projection algorithms [14].
Some of these methods can handle very large problems with
modest accuracy.

The main goal of this paper is to describe a specialized
interior-point method for solving the QP (3). The method
uses a preconditioned conjugate gradient (PCG) method to
compute the search step and therefore can exploit fast algo-
rithms for the sparsifying transform and its inverse transform.



The specialized method is far more efficient than (primal-
dual) interior-point methods that use direct or CG methods to
compute the search step. Compared with first-order methods
such as coordinate descent methods, the specialized methodis
comparable in solving large problems with modest accuracy,
but is able to solve them with high accuracy with relatively
small additional computational cost. The method is demon-
strated with an MRI example.

2. PRELIMINARIES

We describe some basic ingredients necessary for the interior-
point method described in Section 3.

2.1. Dual problem

To derive a Lagrange dual of (2), we first write it in the equiv-
alent form

minimize zT z +
∑

n

i=1 λ|xi|
subject to z = Ax − y,

where the variables arex ∈ R
n andz ∈ R

m. We associate
dual variablesνi ∈ R, i = 1, . . . ,m with the equality con-
straintszi = (Ax − y)i. The Lagrange dual of (2) can be
written as

maximize G(ν) = −(1/4)νT ν − νT y
subject to ‖AT ν‖∞ ≤ λ.

(4)

The dual problem (4) is a convex optimization problem with
a variableν ∈ R

m. We say thatν ∈ R
m is dual feasible if it

satisfies the constraints in the dual problem (4). (See [15,§4]
for more on Lagrange duality.)

Any dual feasible pointν gives a lower bound on the op-
timal valuep⋆ of the primal problem (2),i.e., G(ν) ≤ p⋆,
which is called weak duality. Furthermore, the optimal value
of the primal and dual are equal since the primal problem (3)
satisfies Slater’s condition, which is called strong duality [15].

2.2. Suboptimality bound

We are able to derive an easily computed bound on the sub-
optimality of x, by constructing a dual feasible pointν from
an arbitraryx. The dual point

ν = 2s(Ax − y), (5)

with the scaling constants = min
{

1, λ/‖AT ν‖∞
}

, is dual
feasible. ThereforeG(ν) is a lower bound on the optimal
value of (2). The difference between the primal objective
value and the associated lower boundG(ν) is called thedual-
ity gap and denotedη:

η = ‖Ax − y‖2
2 +

n
∑

i=1

λ|xi| − G(ν). (6)

The duality gap is always nonnegative, and is zero at the op-
timal point.

3. AN INTERIOR-POINT METHOD

We start by defining the logarithmic barrier for the bound con-
straints−ui ≤ xi ≤ ui in (3),

Φ(x, u) = −

n
∑

i=1

log(ui + xi) −

n
∑

i=1

log(ui − xi)

with domaindom Φ = {(x, u) ∈ R
n ×R

n | |xi| < ui, i =
1, . . . , n}. The central path consists of the unique minimizer
of the convex function

φt(x, u) = t‖Ax − y‖2
2 + t

n
∑

i=1

λui + Φ(x, u),

as the parametert varies from0 to∞.
In the primal interior-point method, we compute a se-

quence of points on the central path, for an increasing se-
quence of values oft, starting from the previously computed
central point. In the primal barrier method, Newton’s method
is used to minimizeφt(x, u), i.e., the search direction is com-
puted as the exact solution to the Newton system

∇2φt(x, u)

[

∆x
∆u

]

= −∇φt(x, u). (7)

(The reader is referred to [15, Chap.11] for more on the primal
barrier method.)

For a largeℓ1-regularized LSP, solving the Newton sys-
tem exactly is not computationally practical. In the method
described below, the search direction is computed as an ap-
proximate solution to the Newton system, using a truncated
Newton method.

In the primal barrier method, the parametert is held con-
stant untilφt is (approximately) minimized,i.e., ‖∇φt‖2 is
small; when this occurs,t is increased by a factor typically
between2 and50. The method described below attempts to
update the parametert at each iteration, using the observation
made above that we can cheaply compute a dual feasible point
and associated duality gap forany x.

TRUNCATED NEWTON INTERIOR-POINT METHOD.

given relative toleranceǫrel > 0, α ∈ (0, 1/2), β ∈ (0, 1)

Initialize. t := 1/λ, x := 0, u := 1 = (1, . . . , 1) ∈ R
n.

repeat
1. Compute the search direction(∆x,∆u)

as an approximate solution to the Newton system (7).
2. Backtracking line search.

Find the smallest integerk ≥ 0 that satisfies
φt(x + βk∆x, u + βk∆u)

≤ φt(x, u) + αβk∇φt(x, u)T

[

∆x
∆u

]

.

3. Update . (x, u) := (x, u) + βk(∆x,∆u).
4. Construct dual feasible pointν from (5).



5. Evaluate duality gapη from (6).
6. quit if η/G(ν) ≤ ǫrel.
7. Update t.

As a stopping criterion, the method uses the duality gap
divided by the dual objective value. By weak duality, the ratio
is an upper bound on the relative suboptimality.

The update rule we propose is

t :=

{

max
{

µmin{t̂, t}, t
}

, s ≥ smin

t, s < smin

where t̂ = 2n/η, ands = βk is the step length chosen in
the line search. Hereµ > 1 andsmin ∈ (0, 1] are algorithm
parameters. The choice ofµ = 2 andsmin = 0.5 appears
to give good performance for a wide range of problems. This
rule has been used in solvingl1-regularized logistic regression
problems in [16]. See [16] for an informal justification of
convergence of the interior-point method based on this update
rule (with exact search directions).

We compute the search direction approximately, applying
the PCG method [17,§6.6] to the Newton system (7). It uses
a (symmetric positive definite) preconditionerP ∈ R

2n×2n

that approximates the Hessian ofφt(x, u),

∇2φt(x, u) = t∇2‖Ax − y‖2 + ∇2Φ(x, u) ∈ R
2n×2n.

The preconditioner approximates the first term with its diag-
onal entries, while retaining the second term:

P = diag(t∇2‖Ax − y‖2) + ∇2Φ(x, u) ∈ R
2n×2n.

(Herediag(S) is the diagonal matrix obtained by setting the
off-diagonal entries of the matrixS to zero.) The cost of com-
puting the diagonal entries can be amortized over all interior-
point iterations since we need to compute them only once.

The computational effort of each iteration of the PCG al-
gorithm is dominated by one matrix-vector product of the
form Hp with the HessianH = ∇2φt(x, u) and one solve
step of the formP−1r with the preconditionerP . The cost
of computingHp is cheap, since we can use fast algorithms
for the transformsΦ andW (e.g., fast discrete wavelet and
Fourier transforms). The cost of computingP−1rk is O(n)
flops.

The PCG algorithm has two parameters: the initial pointx0

and relative toleranceǫpcg. For the initial point in the PCG al-
gorithm, we use the previous search direction. The PCG rela-
tive tolerance parameterǫpcg has to be carefully chosen to ob-
tain good efficiency in the interior-point method. We change
the relative tolerance adaptively asǫpcg = min {0.1, ξη/‖g‖2},
whereη is the duality gap at the current iterate andξ is an al-
gorithm parameter. (The choice ofξ = 0.01 appears to work
well for a wide range of problems.) Thus, we solve the New-
ton system with low accuracy at early iterations, and solve it
more accurately as the duality gap decreases.

4. APPLICATION TO SPARSE MRI

In this section we demonstrate the interior-point method de-
scribed in Section 3 with real Magnetic Resonance Imaging
(MRI) data, using algorithm parametersα = 0.01, β = 0.5,
smin = 0.5, µ = 2, ξ = 0.01, andǫrel = 0.05. The regu-
larization parameter is taken asλ = 0.01. The method was
implemented in Matlab, and run on a 3.2GHz Pentium IV un-
der Linux.

In MRI, samples are collected directly in the spatial fre-
quency domain of the object of interest. The scan time in
MRI is often proportional to the number of Fourier coeffi-
cients required for reconstruction. Using compressed sensing,
one can significantly reduce the number of acquisition sam-
ples and hence the scan time. This approach is referred to as
sparse MRI [3]. Here, the compressed sensing matrixΦ in (1)
is a random Fourier ensemble,i.e., a matrix obtained by ran-
domly removing many rows of the discrete multi-dimensional
Fourier transform (DFT) matrix. Brain images have a sparse
representation in the wavelet domain. In the example shown,
we use the Daubechies 4 wavelet transform as the sparsifying
transformW in (1).

We scanned the brain of a healthy volunteer. We obtained
205 out of512 possible parallel lines in the spatial frequency
of the image. The lines were chosen randomly with higher
density sampling at low frequency achieving a2.5 scan-time
reduction factor, as illustrated in the left panel of Fig. 1.

We compared the compressed sensing reconstruction method
with a linear reconstruction method, which sets unobserved
Fourier coefficients to zero and then performs the inverse Fourier
transform. Fig. 1 shows the two reconstruction results. The
linear reconstruction suffers from incoherent noise-likestreak-
ing artifacts (pointed by the arrow) due to undersampling,
whereas the artifacts seem benign in the compressed sensing
reconstruction.

The QP for compressed sensing reconstruction has around
4 × 5122 ≈ 106 variables. (Here one half are the real and
imaginary wavelet coefficients and the other half are new vari-
ables added in transforming the CS problem into a QP.) The
run time of the Matlab implementation of our interior-point
method was around3 minutes, and the total number of PCG
steps required over all interior-point iterations was137. MOSEK
[18] could not handle the QP, since forming the HessianH
(let alone computing the search direction) is prohibitively ex-
pensive for direct methods.

5. EXTENSIONS

Although not described here in detail, the interior-point method
described in Section 3 can be readily extended to other prob-
lems that have a similar form. For instance, it can be readily
extended to CS problems where theℓ1 norm of a complex
vector is the sum of the absolute values of the complex ele-
ments.



Fig. 1: Brain image reconstruction results.Left. Collected partial Fourier coefficients (in white).Middle. Linear reconstruc-
tion. Right. Compressed sensing reconstruction.
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