
EFFICIENT CONVEX OPTIMIZATION FOR

ENGINEERING DESIGN

Stephen Boydy, Lieven Vandenberghez, Michael Granty

y Information Systems Laboratory, Stanford University, Stanford, California

z Electrical Engineering Department, K.U. Leuven, Leuven, Belgium

Abstract. Many problems in engineering analysis and design can be cast as convex
optimization problems, often nonlinear and nondi�erentiable. We give a high-level
description of recently developed interior-point methods for convex optimization, ex-
plain how problem structure can be exploited in these algorithms, and illustrate the
general scheme with numerical experiments. To give a rough idea of the e�ciencies
obtained, we are able to solve convex optimization problems with over 1000 variables
and 10000 constraints in around 10 minutes on a workstation.

Keywords. Optimization, numerical methods, linear programming, optimal con-
trol, robust control, convex programming, interior-point methods, FIR �lter design,
conjugate gradients

1. INTRODUCTION

Many problems in engineering analysis and design
can be cast as convex optimization problems, i.e.,

min f0(x)
s.t. fi(x) � 0; i = 1; : : : ; L;

where the functions fi are convex. It is widely
known that such problems have desirable prop-
erties, e.g., locally optimal solutions are globally
optimal. In fact much more is true | roughly
speaking, convex optimization problems are fun-

damentally tractable, both in theory and in prac-
tice.

In this paper we consider the convex optimization
problem

min cTx

s.t. F (x) � 0;
(1)

where

F (x)
�
= F0 + x1F1 + � � �+ xmFm:

The problem data are the vector c 2 Rm and
m + 1 symmetric matrices F0; : : : ; Fm 2 Rn�n.
The inequality sign in F (x) � 0 means that F (x)
is positive semide�nite. We call problem (1) a
positive de�nite program or PDP.

Although the PDP (1) may appear quite special-

ized, it includes many important problems as spe-
cial cases. For instance, consider the linear pro-
gram (LP)

min cTx

s.t. Ax+ b � 0
(2)

where the inequality denotes componentwise in-
equality. Since a vector v � 0 (componentwise)
if and only if the matrix diag(v) (the diagonal
matrix with the components of v on its diagonal)
is positive semide�nite, we can express the linear
program (2) as a PDP with F (x) = diag(Ax+b),
i.e.,

F0 = diag(b); Fi = diag(ai); i = 1; : : : ;m;

where ai is the ith column of A.

Many other problems, including most of the con-
vex optimization problems encountered in engi-
neering, can be written as PDPs. Positive de�nite
constraints also arise directly in a number of im-
portant applications, for example, in control and
system theory (Boyd et al. 1994, Boyd and Barratt
1991). Positive de�nite programming therefore of-
fers a uni�ed way to study the properties of, and
derive algorithms for, a wide variety of convex op-
timization problems. Most importantly, however,
PDPs can be solved very e�ciently using recently
developed interior-point methods.

Interior-point methods were �rst introduced for



linear programming by Karmarkar in 1984 (Kar-
markar 1984). Although controversial at the
time, it is now generally accepted that interior-
point methods for LPs are competitive with the
simplex method, and even faster for large prob-
lems. An important breakthrough took place in
1988, when Nesterov and Nemirovsky generalized
interior-point methods for LP to general convex
programming (Nesterov and Nemirovsky 1994).

The experimental results reported in this paper
were obtained using a primal-dual potential reduc-

tion method. The method is based on the method
described by Nesterov and Nemirovsky (Nesterov
and Nemirovsky 1994; x4.5), which generalizes
Ye's method for linear programming (Ye 1991).
We modify this basic interior-point method by us-
ing conjugate gradients to exploit problem struc-
ture, as explained in (Vandenberghe and Boyd
1993).

We give a brief description of the method in the
next two sections. For more details, see (Van-
denberghe and Boyd 1994). In x4 we show how
to exploit problem structure, and in x5 we apply
these techniques to three (families of) engineering
problems.

2. DUALITY

The dual problem associated with the PDP (1) is

max �TrF0Z
s.t. TrFiZ = ci; i = 1; : : : ;m

Z � 0:
(3)

Here the variable is the matrix Z = ZT 2 Rn�n,
and TrX denotes the trace of the matrix X.

Under mild conditions, the optimal values of the
primal problem (1) and the dual problem (3) are
equal (Rockafellar 1970). This fact has important
consequences.

� Every dual feasible Z (i.e., every matrix Z

that satis�es the constraints in (3)), proves a
lower bound �TrF0Z on the optimal value of
the PDP (1).

� If F (x) � 0, and Z is dual feasible, then the
di�erence between the primal and the dual
objective values is nonnegative,

cTx+TrF0Z � 0:

We call the quantity on the left the duality

gap of the pair (x; Z).
� If the duality gap is zero, then x and Z are
optimal points, solving the primal PDP (1)
and the dual (3).

Primal-dual interior-point methods generate a se-

quence of primal and dual feasible points x(k) and
Z(k), where k = 0; 1; : : : denotes iteration number.
We can interpret x(k) as a suboptimal point and
Z(k) as a certi�cate that proves the lower bound
�TrF0Z(k) on the optimal value. The iteration is
terminated if the duality gap cTx(k) + TrF0Z

(k)

becomes less than a pre-speci�ed tolerance �.

3. ALGORITHM

The interior-point method is based on a potential
function '(x; Z). The essential properties of the
potential function are:

� ' is smooth on the interior of the feasible set,
and in�nite outside the feasible set.

� The duality gap is less than � exp'(x; Z),
where � is a positive constant; in particu-
lar, if '(x; Z) ! �1, then (x; Z) approach
optimality.

At each iteration of the algorithm, the potential
function decreases by at least a �xed amount:

'(x(k+1); Z(k+1)) � '(x(k+1); Z(k+1)) � �;

where � is an absolute constant. As a conse-
quence, the iterates remain feasible, and converge
to the optimum. The duality gap converges to
zero exponentially.

For the PDP (1), we use the potential function

'(x; Z)
�
= q log(cTx+TrF0Z)

+ log detF (x)�1 + log detZ�1: (4)

The �rst term (4) rewards a decrease in the dual-
ity gap. The second and third terms act as barrier
functions that keep F (x) and Z positive de�nite.
The scalar q is a parameter that controls the rel-
ative weight of the di�erent terms.

The updates x(k+1), Z(k+1) are generated from
x(k), Z(k) as follows. A suitable pair of search
directions, �x, �Z, are found by (approximately)
solving a least-squares problem. Then, primal
and dual step lengths � and � are chosen to
(approximately) minimize the potential '(x(k) +
��x; Z(k)+ ��Z) in the plane de�ned by the cur-
rent points and the search directions. This is
called the plane search. We then set x(k+1) =
x(k) + ��x, Z(k+1) = Z(k) + ��Z, and repeat the
process.

4. CONJUGATE GRADIENTS

One of the most remarkable properties of interior-
point methods is their insensitivity to problem
size. The number of iterations increases very
slowly, typically as the logarithm of the problem



size. For most practical purposes, the number of
steps can be considered to be almost independent
of the dimension. Typical numbers range from 10
to 50.

The overall computational e�ort is therefore de-
termined by the amount of work per iteration.
Skipping details, we can say that the main e�ort
in every iteration is the solution of a least-squares
problem of the form

min
v 2 Rm






D
(k) �

mX
i=1

viS
(k)FiS

(k)







F

(5)

to compute suitable search directions. Here, k �kF
denotes the Frobenius norm, i.e.,

kAk2F = Tr
�
ATA

�
=
X
i;j

A2
ij:

As the superscripts suggest, the matrices D(k) =
D(k)T and S(k) = S(k)T in (5) change every itera-
tion. As a practical guideline, therefore, the total
complexity of solving a convex problem is equal
to the work of solving a relatively small (say, 10{
50) and almost constant number of least-squares
problems of the form (5).

Problem (5) has m variables and n(n+1)=2 equa-
tions. Using direct methods it can be solved in
O(m2n2) operations. Important savings are possi-
ble when the matrices Fi are structured. The eas-
iest type of structure to exploit is block-diagonal
structure. Assume F (x) consists of L diagonal
blocks of size ni, i = 1; : : : ; L. Then the number
of equations in (5) is

PL

i=1 ni(ni + 1)=2, which is
often an order less than n(n+ 1)=2. For instance,
in the LP case (diagonal matrix F (x)), the num-
ber of variables is n, and solving the least-squares
problem requires only O(m2n) operations.

Usually much more can be gained by exploiting
the internal structure of the diagonal blocks in
Fi. The conjugate gradients method or the LSQR
algorithm of Paige and Saunders (Paige and Saun-
ders 1982) appear to be very well suited. In exact
arithmetic, these algorithms solve (5) in m + 1
iterations, where each iteration requires one eval-
uation of the `forward' mapping,

(v1; : : : ; vm) 7!
mX
i=1

viFi; (6)

and one evaluation of its adjoint

W 7! (TrF1W; : : : ;TrFmW ) (7)

for some vector v and symmetric matrix W =
WT . When the matrices Fi are unstructured,
these two operations take mn2 operations. Hence,

the cost of solving (5) using LSQR is O(n2m2),
and nothing is gained over direct methods.

In most cases, however, the two operations (6)
and (7) are much cheaper than mn2 because of
the special structure of the matrices Fi. A well-
known example is a sparse LP, but sparsity is not
the only example. The equations are often dense,
but still highly structured in the sense that the
mappings (6) and (7) can be evaluated faster than
O(mn2) operations. We will see several examples
in x5.

In practice, i.e., with roundo� error, the standard
conjugate gradients algorithms can perform quite
poorly; the number of iterations required to solve
the least-squares problem can be much higher
than m + 1. Two techniques can be used to im-
prove the rate of convergence. The standard tech-
nique is pre-conditioning, described in (Golub and
Loan 1989). There is no simple universal method
for constructing a suitable pre-conditioner, but of-
ten a good choice follows from the properties of
the underlying engineering problem. The design
of a pre-conditioner is problem dependent; the en-
gineer's experience with and intuition about the
problem is invaluable.

The other technique is re-orthogonalization. Re-
orthogonalizaton can always be applied. It makes
the algorithm converge as in exact arithmetic (i.e.,
in O(m) steps), but is expensive: it increases the
cost of N LSQR iterations with O(mN2) opera-
tions. This is too expensive if the algorithm is run
to completion.

This brings us to another great advantage of using
iterative methods to solve the least-squares prob-
lem (5): the option of early termination. The
LSQR-algorithm produces good search directions
even if the iteration is stopped before the exact
solution of the least-squares problem (5) has been
found. It can be proved that early termination
does not a�ect the worst-case convergence rate,
provided a good stopping criterion is used (Van-
denberghe and Boyd 1993). In our experience,
we often �nd that suitable search directions can
be generated after only O(

p
m) LSQR iterations.

An important consequence is that the cost of re-
orthogonalization is not nearly as high as it is
when LSQR is run to completion, i.e., O(m) iter-
ations.

We should mention one important issue that arises
when early termination of LSQR is used. When
the least-squares problem (5) is solved exactly,
the dual search direction �Z is computed from its
residual. With early termination of LSQR, this
search direction will not exactly satisfy the equal-
ity constraints TrFi�Z = 0 required for dual fea-



sibility. The user must supply a subroutine that
perturbs a dual search direction that nearly satis-
�es these equalities into one that exactly satis�es
them. The design of this subroutine is problem-
dependent; see (Vandenberghe and Boyd 1993).

Let us summarize the main points. Many con-
vex optimization problems arising in engineering
can be cast in the form of the PDP (1). Roughly
speaking, solving the PDP (1) requires the (ap-
proximate) solution of between 10 and 50 least-
squares problems of the form (5). Using LSQR
to approximately solving such a least-squares
problem requires somewhere between O(

p
m) and

O(m) evaluations of the forward and adjoint map-
pings (6) and (7). It follows that if we can exploit
problem structure to evaluate these mappings ef-
�ciently, we can solve the PDP (1) e�ciently.

This general scheme is summarized in Figure 1.

can evaluate forward, adjoint fast
(exploiting structure)

+

can solve least-squares problem fast
(using LSQR)

+

can solve convex problem fast
(using interior-point methods)

Fig. 1. Exploiting problem structure to
e�ciently solve convex problems.

5. EXPERIMENTAL RESULTS

In this section we illustrate the general scheme
outlined above on three (convex) engineering
problems. The �rst problem is FIR �lter design.
The second is a robust input design problem: we
must determine an input that will work well with
multiple, given plants. The third problem is ro-
bust input design for a multiple-input multiple-
output plant. In each case we generate a family of
problems indexed by a dimension M which is the
number of free variables in the problem. Michael
Grant developed the software, called INTPT be-
low, as well as the examples.

Even though INTPT handles general PDPs, these
three examples are in fact LPs. This allows us to
compare the computational e�ort and memory us-
age of INTPT with that of LSSOL, a widely used
package for solving linear and linearly-constrained
quadratic programs (Gill et al. 1986). We must

immediately point out that LSSOL was not de-
signed to exploit structure; we are merely com-
paring INTPT, an interior-point code that ex-
ploits problem structure, to LSSOL, an opti-
mized simplex-based LP code that does not ex-
ploit structure.

We should also point out that INTPT is still in
development, and that no e�ort was expended in
optimizing it for these examples. For instance, we
used no pre-conditioning at all.

5.1 Testing environment

We used a DECstation 5000/240 with 64
megabytes of memory. DEC Fortran version 3.2
was used to compile LSSOL and the Fortran sub-
routines employed by INTPT; the GNU Founda-
tion's g++ was used to compile the C++ code.
Full compiler optimization was enabled in all
cases. We used the standard UNIX library routine
getrusage to measure the total execution time,
t(M ), and the amount of resident (in-core) mem-
ory usage, m(M ), for a given number of variables
M . We collected data for a wide range of problem
sizes, in an attempt to measure the general trends
of each.

The execution time t(M ) was �t to a function of
the form ~t(M ) = a+ bM c by minimizing

X
i

(log(a + bM c
i )� log t(Mi))

2 (8)

over a, b, and c. Likewise, the memory consump-
tion was �t to ~m(M ) = a + bM + cM2 by mini-
mizing

X
i

(a+ bMi + cM2
i �m(Mi))

2 (9)

over a, b, and c. These curves are included in
the plots presented below. The constant factor in
~m(M ) was subtracted from the data before plot-
ting, in order to remove the contributions of the
programs themselves and to better show the ac-
tual growth rates on a logarithmic plot.

5.2 FIR �lter design

Suppose we wish to design a (non-causal) zero-
phase �lter which satis�es a set of frequency re-
sponse constraints while minimizing its peak im-
pulse response. We focus on the Type I low-pass
case, a symmetric �lter with 2L+ 1 taps, and fre-
quence response

H(f) =

LX
k=�L

h(k)e�j2�kTsf



= h(0) +

LX
k=1

2h(k) cos(2�kTsf)

Other �lter design problems follow similarly.

Given a desired frequency response Hr(f) and
permissible deviation �(f), we might specify the
design problem as

min max jh(k)j
s:t: jH(fi)�Hr(fi)j � �(fi)

i = 1; : : : ; N; k = 0; : : : ; L;

(10)

where the fis denote frequencies of interest within
the passband and stopband of the �lter. The un-
knowns are the coe�cients h(0), : : : , h(L).

We can write (10) as an LP (2) by introducing a
new variable w:

min w

s:t: �w � h(k) � w; k = 0; : : : ; L
�(fi) � H(fi)�Hr(fi) � �(fi)
i = 1; 2; : : : ; N:

This LP is very structured. In order to evalu-
ate the forward mapping associated with the con-
straints, we need to compute the frequency re-
sponse of the �lter, given a set of coe�cients h(k).
This can be done very e�ciently using the Fast
Fourier Transform (FFT). The adjoint mapping
can be computed very e�ciently using the inverse
FFT.

To generate example problems of various sizes,
we began with the following speci�cation of a
continuous-time, zero-phase FIR low-pass �lter:

min khk
s:t: h(t) = h(�t)

h(t) = 0 t > 1sec

jH(f) � 1j < 0:01 f � 4Hz
jH(f)j < 0:01 f � 8Hz

(11)

where khk denotes the l1 or peak norm of the
impulse response h. The impulse response of the
optimal �lter is shown in Figure 2. Discrete ap-
proximations to this problem were created by as-
suming a piecewise-linear impulse response with
2M evenly-spaced segments. This is equivalent to
a 2M�1-tap FIR �lter (M unique taps) with a tri-
angle hold at the output. The frequency-response
constraints were discretized at 4M +1 frequencies
and compensated to include the contribution of
the triangle-hold response. The result was a lin-
ear program with M + 1 variables and 10M + 2
constraints.

INTPT exploited the structure of this problem by
using a mixed-radix, fast discrete cosine trans-
form (DCT) to evaluate the frequency-response

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

4

Time, seconds

A
m

pl
itu

de

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

Frequency, Hz

M
ag

ni
tu

de

Fig. 2. The impulse response and frequency
response of the optimal �lter.

constraints. We chose problem sizes for which the
DCT was most e�cient, so the evaluation time of
the forward and adjoint operators was reduced by
a factor of O(M= logM ). To obtain 4M + 1 fre-
quencies from the DCT we padded the M unique
taps with 3M + 1 zeros; yet despite this appar-
ent waste, the logarithmic growth of the DCT's
complexity still yielded big gains.

The plots in Figure 3 compare the execution times
and data size, respectively, of the two solvers for
various problem sizes. In this case, the advantage
in both execution time and memory consumption
lies solely with INTPT. The execution time grew

as O(M1:67) for INTPT and O(M3:28) for LSSOL.

The largest problem solved had over 1000 (inde-
pendent) variables (over 2000 taps in the FIR �l-
ter) and 10000 constraints. INTPT solved this
problem in about 4 minutes, using about 4Mb of
memory.

5.3 Robust open-loop input design

In the open-loop input design problem, we are
given a discrete-time linear system with input
u(k) 2 Rni and output y(k) 2 Rno . The prob-
lem is to design an input trajectory that makes
the output track a given reference signal ydes(k).
For example, one may want to minimize the peak
tracking error

max
k



y(k) � ydes(k)



1
:



10
-1

10
0

10
1

10
2

10
3

10
4

10
5

E
xe

cu
tio

n 
tim

e,
 s

ec
on

ds

LSSOL
INTPT 

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Number of variables

M
em

or
y 

co
ns

um
pt

io
n,

 k
ilo

by
te

s

Fig. 3. Execution times and memory
consumption for the �lter design
example.

The robust input design problem involves multiple
plants

x(i)(k + 1) = �(i)x(i)(k) + �(i)u(k)

y(i)(k) = H(i)x(i)(k) + J (i)u(k);
(12)

for i = 1; : : : ; L. The same input is applied to
each plant. The purpose is to design an input
trajectory that works well for all plants simulta-
neously, e.g., by minimizing the maximum of the
peak tracking errors

max
i;k




y(i)(k)� ydes(k)




1

:

We can also take into account various convex con-
straints on inputs and outputs, e.g., limits on the
input amplitude,

ku(k)k
1
� umax;

slew rate constraints on the input,

ku(k + 1)� u(k)k
1
� smax;

or envelope bounds on the output,

ymin � yj(k) � ymax:

A convex optimization problem that includes

some of these constraints is

min max
i;k




y(i)(k) � ydes(k)




1

s.t. 0 � uj(k) � umax

juj(k + 1)� uj(k)j � smax

the state equations (12)

x(i)(0) = 0

0 � k < N; 1 � i � L; j = 1; : : : ; ni:

(13)

The variables are the input vectors u(k), k =
0; : : : ; N � 1.

Again, problem (13) can be written as an LP with
very structured equations. To evaluate the for-
ward mapping associated with the constraints, we
need to compute the output vectors y(i)(k) for a
given input trajectory u(k), k = 0; : : : ; N�1. This
can be done very e�ciently by directly simulating
the linear systems (12). The adjoint mapping can
be evaluated by simulating the adjoint linear sys-
tems (Kailath 1980). This reduces the calculation
time for the linear operators from O(N2), if no
structure is exploited, to O(N ).

In the experiment we take two single-input single-
output systems, obtained from the continuous-
time systems

H1(s) = 16=(s2 + 1:2s+ 16)

H2(s) = 25=(s2 + 1:2s+ 25)

using a �rst-order hold on the input, with sam-
pling interval �T = 5=M , over the time interval
0 � t � 5. The input is constrained to lie between
zero and one. The maximum slew rate is 1.25/sec.
The reference trajectory is piecewise linear: zero
for 0 � t � 2, one for 3 � t � 5, with a linear
transition (slew) between t = 2 and t = 3. This
results in an LP withM+2 variables and 10M+12
constraints.

Figure 4 shows the step responses of the two sys-
tems, an optimal input u, and the resulting output
trajectories. The optimal tracking error is about
0:05, which is plotted in dotted line type above
and below the reference trajectory. The �gures
demonstrate several interesting properties of the
problem. First of all, the impulse responses of
the two systems often have opposite sign; conse-
quently the optimal control inputs for the individ-
ual plants are quite di�erent. Secondly, the op-
timal control input contains the very interesting
\preparatory" behavior for t � 1 that standard
control input design strategies would not suggest.

The plot in Figure 5 compares the execution time
and memory consumption of the two methods for
various problem sizes. While LSSOL is faster for
smaller problems, the execution time grows faster



0

0.5

1

1.5

2

y

0

0.2

0.4

0.6

0.8

1

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

t

y

Fig. 4. Step responses, control input, and
output trajectories, respectively, for the
robust input design example.

with size than for INTPT, and INTPT overtakes
it at approximately M = 170. Speci�cally, the
execution time for INTPT grew as approximately
O(M2:2), while that for LSSOL grew as O(M2:8).

Comparing the memory consumption of the two
programs exposes another signi�cant di�erence.
LSSOL consumes a much larger amount of mem-
ory than INTPT, and those requirements grow
with O(M2) behavior. As a result, the largest
problems exceeded our system-imposed memory
usage limits; but without those limits, virtual
memory paging would begin to degrade the per-
formance of either solver. The iterative methods
of INTPT, however, allow for much more mod-
est growth in memory needs with problem size,
so much larger problems can be handled. The
growth does contain a small O(M2) component,
but its coe�cient is much smaller than for LSSOL,
resulting in reasonable memory demands even for
the largest problem sizes.

The largest problem considered had over 1000
variables and 10000 constraints. INTPT solved
it in about 15 minutes, using negligible memory
(under 2Mb).

5.4 Multi-input, multi-output input design

The third problum is a robust input design prob-
lem for a multi-input muti-output system. We
consider a (simpli�ed) model of a rapid thermal
processor system, used for semiconductor manu-
facturing. An array of ni tungsten-halogen lamps

10
-1

10
0

10
1

10
2

10
3

E
xe

cu
tio

n 
tim

e,
 s

ec
on

ds

LSSOL
INTPT 

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

M
em

or
y 

co
ns

um
pt

io
n,

 k
ilo

by
te

s

Fig. 5. Execution times and memory
consumption for the robust input design
example.

TUNGSTEN-HALOGEN

LAMP
REFLECTOR

WAFER

HOLDER

QUARTZ

WINDOW

SILICON

WAFER

COLD WALL

CHAMBER

WAFER

THERMOCOUPLE POINT

Fig. 6. An experimental rapid thermal
processing (RTP) con�guration.

is used to rapidly control the temperature of a
semiconductor wafer, which for testing purposes
is out�tted with no thermocouples, as shown in
Figure 6 (Norman 1992, Gyugyi 1993).

A linearized model of the dynamics between the
lamp powers and the thermocouple readings was
taken from (Gyugyi 1993), in which 3 lamps and 5
thermocouples are employed. The dynamics from
the lamp outputs l(t) to the thermocouple read-
ings o(t) were described by a 5-state state-space
model (�;�;H = I; J = 0) with eigenvalues rang-
ing from -1.113 to -0.0181. A �rst-order model
Hlamp(s) = 8=(s+ 8) was assigned to the dynam-
ics between each lamp input ui(t) and its output
li(t). We also placed hard limits on the lamp in-
puts, and slew-rate limits on the lamp outputs.

A typical reference trajectory for rapid thermal
processing involves ramping the temperature up
to a desired value, holding, and then ramping back



-1

-0.5

0

0.5

1

1.5

2

u

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time, seconds

y

Fig. 7. Control inputs and output trajectories of
the MIMO control design example.

down:

r(t) =

8>>>><
>>>>:

0 0 � t � 2
0:8(t� 2) 2 � t � 3:25
1 3:25 � t � 6:75
0:8(8� t) 6:75 � t � 8
0 8 � t � 10

(14)

If we measure tracking error only during the time
periods in which the reference trajectory is con-
stant, and ignore the behavior during the transi-
tions, the design problem becomes

min w

s:t: _o(t) = �o(t) + �l(t)
_l(t) = 8(u(t)� l(t))
ko(t)k1 � w 0 � t � 2

ko(t)�~1k1 � w 3:25 � t � 6:75
ko(t)k1 � w 8 � t � 10
�1 � ui(t) � 2

k _li(t)k1 � 12
0 � t � 10

(15)

Plots of optimal control inputs and the resulting
trajectories are given in Figure 7.

We form an LP from this in�nite-dimensional
problem by assuming a zero-order hold on the in-
puts u, discretizing the dynamics, and sampling
the constraints. Given a sampling rate �t = t=M ,
the result is an LP with M + 2 variables and ap-
proximately 13:5(M + 1)-constraints.

Once again, using state and co-state simulation
for the dynamic system, INTPT signi�cantly re-
duced the complexity of the forward and adjoint

LSSOL
INTPT 

10
0

10
1

10
2

10
3

10
4

10
5

E
xe

cu
tio

n 
tim

e,
 s

ec
on

ds

10
2

10
3

10
2

10
3

10
4

10
5

Number of variables

M
em

or
y 

co
ns

um
pt

io
n,

 k
ilo

by
te

s

Fig. 8. Execution times and memory
consumption for the MIMO input design
example.

operators used to solve the problem. The plots
in Figure 8 document the signi�cant performance
gains made over LSSOL. The execution time grew
as O(M2:01) for INTPT and O(M3:32) for LSSOL.

The largest problem considered had over 1500
variables and 20000 constraints. INTPT solved
it in about 18 minutes, using about 5Mb memory.

5.5 Future improvements

The results shown here are the �rst complete tests

of INTPT that have been performed. Pro�ling
the code reveals that there is signi�cant room for
problem-independent improvement in the perfor-
mance of the engine which could not be incorpo-
rated into the code before the completion of this
article. Therefore, we can expect that future ver-
sions of INTPT will show much improved perfor-
mance.

Execution pro�ling has revealed that a very large
component of the execution time is spent perform-
ing the reorthogonalizations in the iterative least-
squares solver. Currently, LSQR (Paige and Saun-
ders 1982) with early termination is used to solve
the least-squares problems associated with the
interior-point technique, and complete reorthog-
onalization is used at each iteration to insure con-
vergence. Methods of selective reorthogonaliza-
tion, such as that described in (Parlett and Scott
1979), promise to greatly reduce the number of
orthogonalizations performed.



For convex programs consisting primarily of lin-
ear, quadratic, and other simple nonlinear con-
straints, the second largest consumer of CPU time
is the plane search algorithm. The plane search
reduces to minimizing over � and � the function

f(�; �) = q log(c1 + c2�+ c3�) (16)

�
NX
i=1

log(1 + �i�)

�
NX
i=1

log(1 + �i�)

where c1 > 0, and the constants ci, �i and �i are
given (Vandenberghe and Boyd 1993). The cur-
rent implementation uses damped Newton line-
search iterations. We are currently experimenting
with rational approximations of f , which appear
to greatly reduce the number of necessary plane
search steps.

Finally, we note that the architecture of the C++-
based INTPT package does not preclude the use of
FORTRAN to implement portions of numerically-
intensive code. In fact, the FORTRAN Basic Lin-
ear Algebra Subroutines (BLAS) have been used
extensively throughout, and the DCT algorithm
used above to speed up the �lter design exam-
ples is also coded in FORTRAN. The optimizing
power of FORTRAN compilers (and FORTRAN
programmers) is still generally superior to that
of C++, so implementing the constraint calcula-
tions in FORTRAN should insure maximum per-
formance; and since those calculations necessarily
comprise a large portion of the overall execution
time, healthy increases in speed can result.

6. CONCLUSIONS

The sizes of the test problems vary between a few
hundred and a few thousand variables. In the
(sparse) linear programming literature these prob-
lems would be considered small to medium sized.
We do not claim that interior-point methods are
intrinsically faster than simplex for problems in
this size range. We feel that interior-point meth-
ods do have two strong advantages:

� The problems arising in engineering are often
dense but highly structured. Interior-point
methods o�er a straightforward way to ex-
ploit this structure.

� Although the examples presented in this pa-
per are LPs, many problems arising in en-
gineering are nonlinear; they can be cast as
PDPs but not LPs. Interior-point methods
readily handle such problems.

In optimization-based engineering (and indeed, in
dense linear programming), the problems we con-

sider here are considered large scale. The meth-
ods described in this paper open the possibility
of routinely solving large scale convex engineering
problems on a workstation.

ACKNOWLEDGMENTS

We thank Gene Golub and Michael Saunders for
invaluable advice on iterative least-squares meth-
ods, including pointing us to the LSQR algorithm.

The research of S. Boyd was supported in part
by AFOSR (under F49620-92-J-0013), NSF (un-
der ECS-9222391), and ARPA (under F49620-93-
1-0085). L. Vandenberghe is Postdoctoral Re-
searcher of the Belgian National Fund for Sci-
enti�c Research (NFWO). His research was sup-
ported in part by the Belgian program on In-
teruniversity Attraction Poles (IUAP 17 and 50)
initiated by the Belgian State, Prime Minister's
O�ce, Science Policy Programming. Michael
Grant was supported by an AASERT grant.

REFERENCES

Boyd, S. and C. Barratt (1991). Linear Controller
Design: Limits of Performance. Prentice-
Hall.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakr-
ishnan (1994). Linear Matrix Inequalities in

System and Control Theory. Vol. 15 of Studies
in Applied Mathematics. SIAM. Philadelphia,
PA.

Gill, P. E., S. J. Hammarling, W. Murray,
M. A. Saunders and M. H. Wright (1986).
User's guide for LSSOL (Version 1.0): A
FORTRAN package for constrained least-
squares and convex quadratic programming.

Technical Report SOL 86-1. Operations Re-
search Dept., Stanford University. Stanford,
CA 94305.

Golub, G. and C. V. Loan (1989). Matrix Com-

putations. second edn. Johns Hopkins Univ.
Press. Baltimore.

Gyugyi, P. (1993). Model-Based Control Applied
to Rapid Thermal Processing. PhD thesis.
Stanford University.

Kailath, T. (1980). Linear Systems. Prentice-Hall.
New Jersey.

Karmarkar, N. (1984). `A new polynomial-time al-
gorithm for linear programming'. Combina-

torica 4(4), 373{395.
Nesterov, Y. and A. Nemirovsky (1994). Interior-

point polynomial methods in convex program-

ming. Vol. 13 of Studies in Applied Mathe-

matics. SIAM. Philadelphia, PA.
Norman, S. A. (1992). Wafer Temperature Con-

trol in Rapid Thermal Processing. PhD the-
sis. Stanford University.



Paige, C. C. and M. S. Saunders (1982). `LSQR:
An algorithm for sparse linear equations and
sparse least squares'. ACM Transactions on

Mathematical Software 8(1), 43{71.
Parlett, B. N. and D. S. Scott (1979). `The

Lanczos algorithm with selective orthog-
onalization'. Mathematics of Computation

33(145), 217{238. American Mathematical
Society.

Rockafellar, R. T. (1970). Convex Analysis. sec-
ond edn. Princeton Univ. Press. Princeton.

Vandenberghe, L. and S. Boyd (1993). `Primal-
dual potential reduction method for problems
involving matrix inequalities'. To be pub-
lished in Math. Programming.

Vandenberghe, L. and S. Boyd (1994). `Positive-
de�nite programming'. Submitted to SIAM

Review.
Ye, Y. (1991). `An O(n3L) potential reduction al-

gorithm for linear programming'.Mathemat-

ical Programming 50, 239{258.


